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Abstract

:

Microsatellite instability (MSI), tumor mutation burden (TMB), and programmed cell death ligand-1 (PD-L1) are particularly known as immunotherapy predictive biomarkers. MSI and TMB are closely related to DNA mismatch repair (MMR) pathway functionality, while the PD-L1 checkpoint mediates cancer cell evasion from immune surveillance via the PD-L1/PD-1 axis. Among all the novel triazolo[3,4-b]thiadiazole derivatives, the compound KA39 emerged as the most potent anticancer agent. In the present study, potential alterations in MSI, TMB, and/or PD-L1 expression upon cell treatment with KA39 are explored. We tested three MMR-deficient (DLD-1, LS174T, and DU-145) and two MMR-proficient (HT-29 and PC-3) human cancer cell lines. Our findings support KA39-induced PD-L1 overexpression in all cancer cell lines, although the most outstanding increase was observed in MMR-proficient HT-29 cells. MSI analysis showed that KA39 affects the MMR system, impairing its recognition or repair activity, particularly in MMR-deficient DLD-1 and DU-145 cells, enhancing oligonucleotide production. There were no remarkable alterations in the TMB between untreated and treated cells, indicating that KA39 does not belong to mutagenic agents. Taking together the significant in vitro anticancer activity with PD-L1 upregulation and MSI increase, KA39 should be investigated further for its implication in chemo-immunotherapy of cancer.
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1. Introduction


Triazoles and thiadiazoles are heterocyclic compounds known for possessing a wide range of pharmacological properties, including anti-microbial, anti-inflammatory, anti-convulsant, antioxidant, radio-protective, anti-leishmanial, anti-viral, anti-hypertensive, anticancer, and anti-depressant activities [1,2,3]. A series of new chemical entities has been obtained by either modifying their heterocyclic rings at different positions or fusing their core structures together. The 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles and their derivatives, generated by the cyclization of 1,2,4-triazole and 1,3,4-thiadiazole on each other to form the fused system 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles derivatives, hold a broad spectrum of biological potentialities. Nonetheless, of particular interest remains the important anticancer/antitumor efficacy displayed by this class of heterocycles. The cytotoxic potency of 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles against several cancer cell lines has driven the synthesis of alternate compounds such as 3,6-disubstituted 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles [4]. Three newly synthesized triazolo[3,4-b]thiadiazole derivatives (TATDADs) induced efficient cell growth inhibitory activity against three human colorectal cancer cell lines [5]. Further, in vitro studies conducted on three human ovarian, two colorectal, and two prostate cancer cell lines have also demonstrated significant antiproliferative activity induced by these compounds [6]. Our studies support that topoisomerase IIα (topIIα) is a potential target of the tested TATDADs, which act as topIIα inhibitors on the phosphorylation at Ser-1106 that is closely associated with the decatenation activity of the enzyme. TATDADs induced the formation of supercoiled DNA by blocking topIIα’s either ATPase- or DNA-binding activity [5]. Of great interest is the inhibitory impact of these TATDADs on the phosphorylation of both AKT isoforms (AKT1 and AKT2), suggesting that TATDADs act as multitarget anticancer agents [6].



Even if the need for novel cytotoxic anticancer agents is constant, there are more revolutionary ways introduced to treat certain types of malignancies, such as cancer immunotherapy. Targeting immune checkpoints, including PD-L1/PD-1, induce more prolonged therapeutic responses than conventional chemotherapy, indicating that immunotherapy is a valuable tool in cancer cure [7]. Discriminating cancer patients with sensitivity to immune checkpoint blockade (ICB) therapies is necessary so as to ensure an antitumor response. Three biomarkers with promising predictivity have been established: programmed death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB) [8,9].



The present study intends to explore potential alterations in PD-L1, MSI, and TMB predictive biomarkers upon cell treatment with KA39 (Figure 1; Table 1), a TATDAD with high anticancer activity. High MSI (MSI-H) has been observed in several cancers, including colorectal and prostate, with higher occurrence in colorectal cancer. In our study, three human colorectal and two prostate cancer cell lines were selected, of which some were mismatch repair deficient (dMMR)/MSI-H, while others were mismatch repair proficient (pMMR)/microsatellite stable (MSS) (Table 2). MSI assay was conducted in order to detect either qualitative or quantitative alterations in DNA fragments induced by KA39. Changes in PD-L1 expression were also evaluated in tumor cells treated with KA39, as well as the TMB, in order to investigate whether KA39 triggers an increase in the overall number of somatic mutations.




2. Materials and Methods


2.1. Cell Lines and Culture Conditions


Our study was conducted in five well-established human cancer cell lines: three colorectal adenocarcinoma (DLD-1, HT-29, and LS174T) and two prostate (PC-3 and DU-145) (Table 1). All cancer cell lines were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) and cultivated in different culture media according to supplier instructions. All growth media were supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. All cancer cell lines were cultured as monolayers and maintained at 37 °C in a humidified 5% CO2 atmosphere.




2.2. Cell Treatment


Among several newly synthesized triazolo[3,4-b]thiadiazole derivatives that have been tested for anticancer activity, KA39 has been shown as the most potent, inducing significantly higher cytostatic and cytotoxic activity against all tested cancer cell lines. In addition to KA39, two triazolo[3,4-b]thiadiazoles derivatives with significant structural similarity (>95%), XK71 and XK57, were also tested. All molecules were synthesized according to procedures that we previously reported (Figure 1; Figure S21) [4,5].




2.3. In Vitro Antiproliferative Activity


The in vitro anticancer activity of KA39 against all cancer cell lines was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide quantitative colorimetric MTT assay, as previously reported [4,5]. Briefly, cells were seeded into a 96-well plate at a density of 8 × 103 cells per well and maintained for 72 h. After 24 h of cell growth, cells were treated with KA39 in concentrations of 1–100 μM. Following 48 h of drug exposure, 50 μL of MTT (5 mg/mL) was added to each well and cells were incubated for 3 h. The absorbance of the converted dye was recorded at a wavelength of 540 nm on an ELISA reader (Versamax, Orleans, LA, USA).



MTT assay provides the required absorption values for determining three dose–response parameters, GI50, TGI, and IC50, using the linear progression method. All the experiments were carried out in triplicate. GI50 and TGI are drug concentrations that signify the cytostatic effect of a tested compound and induce 50% and 100% of cell growth inhibition, respectively; IC50 is the drug concentration that implies the cytotoxic effect of a tested compound and leads to a 50% decrease in cell viability [22,23]. The three parameters were determined using the mean of cell survival in all nine absorbance measurements, including control 24 h (Ct24), control 72 h (Ct72), and the seven drug concentrations (Tt72). The percentage of growth inhibition was calculated as [(Tt72x) − (Ct24)/(Ct72) − (Ct24)] × 100 for concentrations for which Tt72x > Ct24 and [(Tt72x) − (Ct24)/Ct24] × 100 for concentrations for which Tt72x < Ct24. GI50 was calculated as [(Tt72x) − (Ct24)/(Ct72) − (Ct24)] × 100 = 50; TGI as [(Tt72x) − (Ct24)/(Ct72) − (Ct24)] × 100 = 0; and IC50 as [(Tt72x) − (Ct24)/Ct24] × 100 = 50.




2.4. Flow Cytometric Analysis of Surface PD-L1 Expression


The impact of KA39 on PD-L1 expression was studied in four cancer cell lines, two colorectal (DLD-1 and HT-29) and two prostate (PC-3 and DU-145). Cells were seeded in a 6-well plate at a density of 5 × 105 cells/well and maintained for 24 h at 37 °C in a humidified 5% CO2 atmosphere. After 24 h of cell growth, the culture medium was replaced with fresh medium; each cell line was treated with KA39 according to the defined values of the TGI concentration and IC50 (μΜ), while untreated cells served as controls (Figure 1; Table 1). Cells treated at the TGI concentration (μΜ) were allowed to grow for 72 h in contrast to IC50 (μΜ), in which cells were exposed for 48 and 72 h. Following drug treatment, cells were collected after being washed with ice-cold PBS (pH 7.4) (Sigma-Aldrich, St. Louis, MO, USA) and detached enzymatically with standard trypsinization. All centrifugations, performed at 1500 rpm for 5 min, included medium discard and washing steps with 2 mL of cold cell-staining buffer (BioLegend, San Diego, CA, USA). Subsequently, 25 × 104 of cells were resuspended in 100 μL of cell-staining buffer and then stained with 5 μL of anti-PD-L1 antibody (PE/Cy7 anti-human CD274, Biolegend, San Diego, CA, USA). Cells were incubated at room temperature in the dark for 15 min and then resuspended with 800 μL οf cell-staining buffer. The expression of PD-L1 was analyzed on a flow cytometer (CyFlow®, SL, Partec, GmbH, Germany) using Partec Flomax software version 2.3 (Münster, Germany). For each sample, flow cytometric analysis was carried out in triplicate. The absolute values of the KA39-induced alterations in PD-L1 expression were reduced to a percentage, and controls (untreated cells) were defined as 100% of PD-L1 expression.




2.5. DNA Extraction


DNA extraction was carried out in frozen cell pellets using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). According to manufacturer’s instructions, 200 μL of ATL buffer and 21 μL of proteinase K were added and then cell samples were incubated at 56 °C for 1 h. Following further incubation at 90 °C for 15 min, 200 μL of AL buffer as well as 200 μL of 100% ethanol were added. After brief vortex mixing, the DNA extract was transferred into a QIAamp Mini spin column (in a 2 mL collection tube) and centrifuged at 1200 rpm for 1 min. Subsequently, the QIAmp Mini spin column was placed into a new 2 mL collection tube and 500 μL of AW1 buffer was added. Once samples were centrifuged at 8000 rpm for 1 min, the QIAmp Mini spin column was placed into a new 2 mL collection tube and 500 μL of AW2 buffer was added. Like before, samples were centrifuged at 8000 rpm for 1 min. Afterward, the QIAamp Mini spin column was placed into a new 2 mL collection tube and centrifugation was carried out at full speed (14,000 rpm) for 3 min. The purified DNA was eluted by adding the appropriate volume of AE buffer (30–50 μL), and samples were finally centrifuged at 14,000 rpm for 1 min. The DNA concentration (ng/μL) of all samples was determined spectrophotometrically (NanoDrop2000, Thermo Fisher Scientific, Waltham, MA, USA).




2.6. MSI Fragment Analysis


Alterations in the MSI status were studied in three colorectal (DLD-1, HT-29, and LS174T) and two prostate (PC-3 and DU-145) human cancer cell lines upon treatment with KA39. Briefly, cells were seeded in a 6-well plate at a density of 3 × 105 cells/well and cultured for 24 h at 37 °C in a humidified 5% CO2 atmosphere. After 24 h of cell growth, the culture medium was replaced by fresh medium and cells were subsequently treated with KA39 at the TGI concentration and IC50 (μΜ) for 48 h (Figure 1; Table 1). Following 48 h of drug exposure, the culture medium was discarded and cells were collected after being washed twice with ice-cold PBS (pH 7.4) (Sigma-Aldrich, St. Louis, MO, USA) and detached enzymatically with standard trypsinization. Afterward, cells were centrifuged twice at 2000 rpm for 5 min, while one further centrifugation was carried out in a microcentrifuge at 3000 rpm for 15 min. DNA was extracted and then subjected to multiplex PCR with fluorescently labeled primers obtained from Thermo Fisher Scientific (Waltham, MA, USA) [24] (Table 3). PCR was carried out using the commercial QIAGEN Multiplex PCR Kit (Qiagen, Hilden, Germany). Furthermore, MSI analysis was performed according to the NCI panel (Bethesda panel), which consists of two mononucleotide (BAT25 and BAT26) and three dinucleotide (D5S346, D17S250, and D2S123) repeats [25]. Following the manufacturer’s recommendations, each 20 μL of the PCR multiplex reaction mix was composed of the following: 12.5 μL of 2× Qiagen multiplex PCR master mix (HotStarTaq DNA Polymerase (5 units/µL), 6 mM MgCl2, pH (8.7), and dNTP mix (dATP, dCTP, dGTP, dTTP)), 2.5 μL of 10× MSI primer mix, template DNA whose volume was variable depending on the concentration of DNA isolated (ng/μL), and RNase-free water, which was added to reach a total volume of 20 μL. In the negative control, DNA was replaced by water. The PCR amplification program started with an activation step of HotStarTaq DNA Polymerase at 95 °C for 15 min, followed by 40 cycles of 30 s at 95 °C (denaturation), 90 s at 51 °C (annealing), and 60 s at 72 °C (extension), and a final extension step of 30 min at 60 °C (Veriti™ 96-Well Thermal Cycler; Thermo Fisher Scientific, Waltham, MA, USA). To ascertain whether the amplification of the expected amplicons was successful, PCR products were analyzed by capillary electrophoresis. More specifically, the PCR products, stained with ethidium bromide, were loaded on 2% agarose gel in 1× TAE buffer, run at 97 V for 45 min (electrophoresis system; Bio-Rad Laboratories, Hercules, CA, USA) and finally visualized using the MiniBis Pro (DNR Bio-Imaging Systems Ltd., Jerusalem, Israel). For fragment analysis, the PCR products were denatured by adding 14.5 μL of a mixture composed of GeneScan™ 500 LIZ™ Size Standard (Thermo Fisher Scientific, Waltham, MA, USA) and Hi-Di™ Formamide (Thermo Fisher Scientific, Waltham, MA, USA) to 1 μL of each diluted PCR product. To achieve DNA denaturation, samples were incubated at 95 °C for 3 min (Veriti™ 96-Well Thermal Cycler; Thermo Fisher Scientific, Waltham, MA, USA) and subsequently cooled down in the freezer for 3 min. DNA fragments were analyzed on the GeneScan 500 LIZ Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA), and data analysis was conducted using GeneMapper 4.0 software version 4.0 (Applied Biosystems, Foster City, CA, USA). MSI analysis was conducted by quantifying all DNA fragments per nanogram of DNA input in PCR.




2.7. Tumor Mutation Burden Assay


The TMB was determined in three colorectal cancer cell lines (DLD-1, HT-29, and LS174T) treated with KA39 at IC50 (μΜ) for 48 h (Figure 1; Table 1). The TMB was assessed by the Oncomine™ Tumor Mutation Load Assay (Thermo Fisher Scientific, Waltham, MA, USA), a targeted next-generation sequencing (NGS) assay that covers 1.65 Mb of genomic space, of which 1.2 Mb is exonic region and 0.45 Mb intronic. It analyzes 409 genes, providing accurate quantitation of somatic mutations used for TMB calculation in FFPE tissues (Table 4). From all samples, 19.2 ng of the DNA extracted was used as input for NGS library preparation (according to the manufacturer’s instructions, a minimum of 20 ng is required). Briefly, target regions were amplified using the 5× Ion AmpliSeq™ HiFi Mix (Thermo Fisher Scientific, Waltham, MA, USA) and Oncomine™ Tumor Mutation Load Assay (2×) manual library preparation primer pools 1 and 2 (Thermo Fisher Scientific, Waltham, MA, USA). Once target amplification reactions were completed, amplicons were digested with FUPA reagent and subsequently barcoded with the IonCode™ Barcode Adapters 1–384 Kit (Thermo Fischer Scientific, Waltham, MA, USA). The NGS libraries obtained were purified using Agencourt™ AMPure™ XP Reagent (Beckman Coulter, Life Sciences, Indianapolis, IN, USA) and quantified by qPCR using the Ion Library TaqMan® Quantitation Kit (Thermo Fisher Scientific, Waltham, MA, USA). Libraries were diluted to 50 pM before loading. Afterward, the libraries were combined by loading pools of 6 libraries on one Ion 550™ chip and sequenced on the Ion Gene Studio S5 Prime System (Thermo Fisher Scientific, Waltham, MA, USA). NGS data analysis was performed using Ion Reporter™ 5.10.1.0 software directly from within Torrent Suite™ 5.10.1 software (Thermo Fisher Scientific, Waltham, MA, USA), followed by manual inspection, along with the commercial analysis software Sequence Pilot version 4.3.0 (JSI medical systems, Ettenheim, Germany). The Ion Reporter pipeline, according to which the TMB was calculated, uses custom variant calling and germline variant filtering to accurately determine the number of exonic somatic mutations per megabase (Oncomine Tumor Mutation Load—w2.0—DNA—Single Sample).




2.8. Statistical Analysis


Student’s t-test was used to compare the level of significance between the experimental groups. Differences with a p-value less than 0.05 were considered statistically significant. Microsoft Excel version 2010 (Microsoft Hellas, Athens, Greece) was used.





3. Results


MSI, PD-L1 Expression, and TMB Analysis in Human Colorectal and Prostate Cancer Cells upon Treatment with KA39


KA39 induced the most significant cytostatic and cytotoxic effects on the five tested human cancer cell lines (Table 1). However, XK71 and XK57 displayed low in vitro anticancer activity in the tested cancer cell lines, and no significant alterations in MSI and PD-L1 expression were impelled (p > 0.01) The alignment of cancer cell sensitivity to KA39 was DLD-1 > PC-3 > DU-145 > HT-29 > LS174T, with DLD-1 cells being more and LS174T less sensitive (p < 0.01). All results concerning the in vitro anticancer activity and changes in MSI and PD-L1 expression induced by XK71 and XK57 are provided as Supplementary Materials (Table S21–S23; Figures S22 and S23).



On DLD-1 cells, PD-L1 expression levels significantly increased by 55.8% upon treatment with KA39 at a concentration of 9 μΜ (IC50) for 48 h (p < 0.05) (Figure 2A; Figures S1–S5; Tables S1–S5; Table 5). MSI analysis indicated that treatment with KA39, at both the TGI concentration (5 μΜ) and IC50 (9 μΜ) for 48 h, trigger a considerable increase in DNA fragments in the five major microsatellite markers, BAT-26, BAT-25, D5S346, D17S250, and D2S123 (p < 0.01) (Figure 3A). The increase in oligonucleotides was recorded as 3-fold higher in BAT-26, 4- to 5-fold higher in BAT-25, 2.5-fold higher in D5S346, and 3-fold higher in D17S250 and D2S123 microsatellites as compared to controls. Oligonucleotides also increased in the four additional regions by 4-fold in 0–50 bp (TGI and IC50; p < 0.01), from 3- to 5-fold in 50–75 bp (TGI and IC50; p < 0.05 and p < 0.01, respectively), 2-fold in 245–300 bp (IC50; p < 0.05), and 5-fold in 338–400 bp (TGI; p < 0.01) (Figure 4A). Regarding the TMB, no considerable alterations were demonstrated in the number of non-synonymous mutations when DLD-1 cells were treated with KA39 at IC50 (μM) for 48 h. However, a significant increase from 31.18 Muts/Mb in untreated to 80.93 Muts/Mb in treated cells was induced at the synonymous mutation number in DLD-1 cells (Table 6).



With respect to the HT-29 cancer cell line, treatment with KA39 increased PD-L1 expression by 313% and 304.9% when cells were treated at IC50 and the TGI concentration for 72 h, respectively (p < 0.01) (Figure 2B; Figures S6–S10; Tables S6–S10; Table 5). As MSI DNA fragment analysis suggests, a considerable increase in oligonucleotides was induced by KA39 in all five microsatellites (BAT-26, BAT-25, D5S346, D17S250, and D2S123). Cell treatment at the TGI concentration for 48 h led to augmentation of DNA fragments by 1.5-fold in BAT-26 (p < 0.05) and D2S123 (p < 0.05) and 2-fold in BAT-25 (p < 0.05). Exposure to both IC50 and the TGI concentration for 48 h increased oligonucleotides by 1.5- and 2-fold in D5S346 and D17S250 microsatellites, respectively (p < 0.05) (Figure 3B). Except the reference panel (Bethesda panel), DNA fragments were also elevated, upon treatment at the TGI concentration for 48 h, in the following seven regions: 0–50 bp (2.5-fold; p < 0.01), 50–75 bp (2-fold; p < 0.05), 300–338 bp (4-fold; p < 0.05), 338–400 bp (1.5-fold; p < 0.05), and 450–490 bp (2-fold; p < 0.05) (Figure 4B). Similar to DLD-1 cells, no alterations in the TMB was demonstrated after treatment of HT-29 cells with KA39 at IC50 for 48 h (Table 6).



The KA39-induced increment in PD-L1 expression was demonstrated in the DU-145 cancer cell line as well. Cell exposure to KA39 at IC50 for 72 h elevated PD-L1 expression levels by 19.86% (p < 0.05), whereas no considerable changes were observed under the remaining treatment conditions (p > 0.05) (Figure 2C; Figures S11–S15; Tables S11–S15; Table 5). Regarding MSI, treatment at both concentrations (TGI = 8 μΜ and IC50 =10.3 μΜ) for 48 h significantly increased oligonucleotides in all five microsatellites of the Bethesda panel as follows: 2 to 5 times in BAT-26 (TGI and IC50; p < 0.01 and p < 0.05, respectively), 2 to 3 in BAT-25 (TGI and IC50; p < 0.01 and p < 0.05, respectively), 2.5 to 3 in D5S346 (TGI and IC50; p < 0.01), 2 to 5 in D17S250 (TGI and IC50; p < 0.01 and p < 0.05, respectively), and 4 in D2S123 (TGI; p < 0.01) (Figure 3C). In addition to the Bethesda panel, oligonucleotides increased 40-fold in 0–50 bp (TGI and IC50; p < 0.01), 20-fold in 50–75 bp (TGI and IC50; p < 0.01), 10-fold in 75–100 bp (TGI and IC50; p < 0.01), 6-fold in 246–300 bp (TGI; p < 0.01), 5-fold in 300–340 bp (TGI; p < 0.01), and 4-fold in 340–400 bp (TGI; p < 0.01) (Figure 4C).



In the PC-3 cancer cell line, treatment with KA39 at IC50 for 72 h resulted in a significant increase in PD-L1 expression (27.28%; p < 0.05) (Figure 2D; Figures S16–S20; Tables S16–S20; Table 5). As demonstrated in Figure 3D and Figure 4D, a considerable increase in DNA fragments was impelled when PC-3 cells were treated with KA39 at the TGI concentration for 48 h, elevating oligonucleotides by 1.5-fold in BAT-25 (p < 0.05) and D17S250 (p < 0.05) microsatellites, as well as in the regions of 300–340 bp (p < 0.05) and 450–490 bp (p < 0.01) in which DNA fragments increased by 1.5- and 2-fold, respectively.



MSI and TMB alterations induced by KA39 were also studied in the LS174T human cancer cell line. Treatment at the TGI concentration for 48 h increased DNA fragments by 1.5-fold in D5S346 (p < 0.05), 2-fold in D17S250 (p < 0.05), and 1.5-fold in D2S123 (p < 0.05) microsatellites (Figure 3E). Beyond the Bethesda panel, increased oligonucleotides, as compared with untreated cells, were detected in the regions of 0–50 bp (1.5-fold higher; p < 0.05), 50–75 bp (2.5-fold higher; p < 0.05), 245–300 bp (2-fold higher; p < 0.05), 300–338 bp (2-fold higher; p < 0.05), and 338–400 bp (2-fold higher; p < 0.05) upon exposure to KA39 under the same treatment condition (Figure 4E). With reference to the TMB, no significant alterations were recorded upon treatment with KA39 at IC50 for 48 h, according to the TMB values (Table 6).



Among all human cancer cell lines included in our experimental studies, DLD-1, DU-145, and PC-3 cells were the most sensitive to KA39, as TGI and IC50 values indicate (Table 1). Nevertheless, HT-29 cancer cells, the cell line less susceptible to KA39, exhibited the most outstanding increase in PD-L1 expression levels in comparison with DLD-1, DU-145, and PC-3 cells. However, MSI appeared to be significantly enhanced in DLD-1 and DU-145 cancer cells in which KA39 generated a higher cytostatic and cytotoxic effect. Comparing with DLD-1 and DU-145 cells, less meaningful but statistically significant MSI enhancement was detected in HT-29, LS174T, and PC-3 cells. With reference to TMB assay and non-synonymous mutations, no considerable alterations were displayed by the tested cancer cell lines, as shown by the TMB values of untreated and treated cancer cells.





4. Discussion


PD-L1, also termed as CD274 or B7-H1, is the physiological ligand of the PD-1 receptor, and both are most important immune checkpoints. PD-L1 expressed by tumor cells is bound to PD-1, which is located on activated T cells. Cancer cells, through PD-L1/PD-1 interaction, are capable of suppressing the tumor-reactive T cells and evading cancer immune surveillance [26,27]. Even though chemotherapy provides important therapeutic benefits, harmful effects may be induced on anticancer immunity, such as the drug-induced PD-L1 expression in cancer cells. To the best of our knowledge, current studies are addressing the effects of anticancer agents on PD-L1 expression in a variety of cancers, including pancreatic, ovarian, and breast [27,28]. Moreover, there appears to be a dose-dependent relationship between PD-L1 upregulation and chemopreventive or cytotoxic agents as, for example, in decitabine and cisplatin administered in leukemia and hepatoma cells, respectively [28,29]. Qin et al. [29] showed that PD-L1 is overexpressed in H22 hepatoma cells following exposure to cisplatin at a concentration less than IC50. According to our findings, all four cancer cell lines treated with KA39 showed significantly elevated PD-L1 expression levels, though the most impressive increase was induced in HT-29 cancer cells (Figure 2A–D). HT-29 cells were less sensitive to KA39 with the TGI concentration and IC50 being approximately 2-fold higher compared to those of DLD-1, DU-145, and PC-3 cells (Table 1). PD-L1 overexpression in the treated HT-29 cells occurred in a dose-dependent manner.



It is suggested that oncogenic signaling pathways such as RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, JAK-STAT, and NF-κB are strongly involved in the anticancer agent-mediated PD-L1 expression probably by a signaling crosstalk. In view of the PI3K-AKT-mTOR pathway, inhibition of either PI3K or its downstream signaling molecule AKT leads to repression of PD-L1 expression in tumor cells [30,31,32]. On the contrary, as shown in experimental studies using breast cancer cell lines, loss of phosphatase and tensin homolog (PTEN), due to mutation or depletion, leads to PI3K activation, which, in turn, upregulates the expression of PD-L1 [31,32]. Regarding the PTEN-deficient PC-3 cell line [21], KA39-induced PD-L1 expression was barely higher than in PTEN wild-type DU-145 cells; however, it was not as notable as in HT-29 and DLD-1 cells (both PTEN wild type), in which PD-L1 was upregulated to a far greater extent (Figure 2A,B). Moreover, taking into consideration that the KA39 derivative behaves as an AKT inhibitor [6], downregulation of PD-L1 would be expected. Nevertheless, our results support an acceleration of PD-L1 expression in response to KA39 exposure irrespective of the PTEN status and AKT inhibition, signifying a distinct mechanism of action.



Accumulating evidence suggests that PD-L1 upregulation may occur in the context of DNA-damage-induced signaling in tumor cells [33]. As we have previously reported, KA39 induces topIIα inhibition as well [5]. TopIIα inhibitors, as DNA-damaging agents, stimulate the expression of type I IFNs and other cytokines via the activation of the cGAS-STING-TBK1-IRF3 pathway [34]. Furthermore, an association of the cGAS-STING pathway with PD-L1 upregulation has been reported [35]. Wang et al. [34] also found an immune response impelled by the topoisomerase II inhibitor, in particular teniposide-induced PD-L1 expression in multiple cancer cells in vitro. Mechanically, the cytoplasmic DNA, caused by exposure to topII inhibitors, serves as a DNA damage signal, which can be sensed by cyclic GMP-AMP synthase (cGAS). cGAS binding to cytosolic DNA promotes the synthesis of the second messenger cyclic GMP-AMP (cGAMP), which binds to the adaptor protein Stimulator of IFN Gene (STING). The activated STING recruits a signaling cascade that triggers the transcription of type I IFNs genes [36]. It is thought that type I INFs regulate PD-L1 expression through the JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis, with IRF1 being bound to the PD-L1 promoter and hence triggering its production [33,34,37].



The MSI phenomenon emerges from a deficient mismatch repair (dMMR) mechanism, which is responsible for the accumulation of mutations in the genome’s short tandemly repeats (STRs), termed as microsatellites [9]. There are three distinct types of MSI phenotypes linked to MMR functionality: (1) MSI-H associated with a dMMR system, (2) low microsatellite instability (MSI-L), and (3) MSS, with the last two being related to pMMR status [38]. The MSI-H phenotype appears in several sporadic cancers, including colorectal, gastric, small intestine, urothelial, endometrial, and, more rarely, prostate [9,39]. Loss of MMR function contributes to enhanced chemoresistance as dMMR cells are less sensitive to commonly used chemotherapeutic drugs such as alkylating agents, platinum compounds, topoisomerase poisons, and purine analogues [40]. However, anti-PD-1 and anti-PD-L1 immunotherapies are much more efficient in dMMR/MSI-H tumors. Concurrent coexistence of neoantigens produced by MMR mutations, with PD-L1 immune checkpoint expression, provides a breeding ground for MSI-H tumors to be treated with anti-PD-L1 therapy [38,41,42,43].



The MSI condition is linked to an impaired MMR mechanism whose dysfunctionality results from mutations, either germline or spontaneous, in MMR genes [12]. The MMR pathway, responsible for the maintenance of genomic integrity, undertakes the repair of postreplicative DNA base mismatches as well as inserted/deleted loops incorporated into microsatellites. Four key genes support MMR’s functionality: mutL homologue 1 (MLH1), postmeiotic segregation increased 2 (PMS2), mutS homologue 2 (MSH2), and mutS6 (MSH6) [44]. The MMR mechanism is initiated with the mismatch being recognized by the MutSα heterodimer (MSH2/MSH6). Afterward, MutSα interacts with the MutLα complex (MLH1/PMS2), forming a “sliding clamp” that moves up and down on the DNA sequence that contains the mismatch. This sliding clamp acts in an ATP-hydrolysis-dependent manner [45]. Once the daughter strand has been identified, the MutSα/MutLa complex guides DNA Exonuclease 1 (EXO1) in order to carry out an excision at the mismatch site. The repair process is completed once the removed DNA sequence is replaced by DNA polymerase δ and the remaining gaps are sealed by DNA ligase I [46,47]. Microsatellites are known for their extreme vulnerability to errors that arise from DNA replication, recombination, or external sources such as radiation or chemical agents [44].



Our study points out a considerable accumulation of oligonucleotides in all five cancer cell lines treated with the anticancer agent KA39, comprising dMMR as well as pMMR cancer cells. Nonetheless, augmentation of DNA fragments, impelled by KA39, was remarkably higher in dMMR DLD-1 and DU-145 cells than in pMMR HT-29 and PC-3 cells, even in dMMR LS174T cells. Furthermore, it is noteworthy that MSI was enhanced in terms of quantity, as more oligonucleotides resulted from KA39 exposure, whereas no alterations were revealed in the relocation of DNA fragments. Each MSI-H cancer cell line carries specific MMR deficiencies (Table 2). DLD-1 cells are dMMR cancer cells bearing a missense mutation in the MSH6 gene, which is responsible for complete loss of the protein. In the absence of the MSH6 protein, single-base mismatches cannot be repaired, though the MMR pathway retains its functionality in general terms. The lack of MSH6 expression does not influence the other MutS proteins, as MSH2 counterbalances its loss by binding to MSH3 [48]. Thus, it can be suggested that in DLD-1 cells, the MMR pathway maintains its recognition activity to a certain extent. With respect to dMMR DU-145 cells, the MutLα heterodimer is completely absent, as both MLH1 and PMS2 proteins are lacking, and consequently the MMR repair activity is significantly diminished. It is interesting to note that the loss of the MLH1 protein has a crucial impact on the MMR mechanism as it leads to inactivation of MutLα’s endonuclease activity, degradation of PMS2, and, hence, an extreme accumulation of errors [17,18,49]. With regard to dMMR LS174T cells, all proteins (MSH2, MSH6, PMS2, and MLH1) are expressed at low levels. However, studies have shown that MLH1 appears to a far lesser extent, probably indicating an attenuated activity of the MutLa complex [50]. Presumably, the KA39 agent further deteriorated the MMR mechanism, mainly in dMMR cells, by disrupting the recognition or repair activity of the MMR mechanism. Nevertheless, the exact molecular mechanism through which KA39 disrupts the MMR pathway is unclear. MSI-H cancer cell lines such as DLD-1 (MSH6 deficiency) and DU-145 (MLH1 and PMS2 deficiencies) cells showed a greater susceptibility to KA39 than the MSS cancer cell line HT-29, pointing out a kind of synthetic lethality. However, the genetic and molecular profile of a cell line influence its cellular response to an anticancer drug; MSS PC-3 and MSI-H LS174T cells share similar sensitivity to KA39 as MSI-H DU-145 and MSS HT-29 cells, respectively (Table 1).



Studies related to the MMR pathway support an association of MMR deficiency with resistance to topII inhibitors, though the findings around this area are controversial [51,52]. In pMMR cancer cells, the cleavage complex, induced by a topII inhibitor, is recognized by the MMR pathway, activating eventually the apoptotic procedure. In contrast, the genomic instability of dMMR cells increases the mutation rates in the topII gene, leading, as a consequence, to mutated topII unable to be bound to a topII inhibitor [53,54]. As previously discussed, our results regarding the drug sensitivity to KA39 exhibit heterogeneity, which may be attributable to their specific characteristics.



A growing body of evidence supports the implication of AKT in the MMR pathway via PMS2, a component of the MutLα heterodimer. More particularly, binding of the phosphorylated AKT Ser473 to PMS2 leads to the degradation of MutLα’s component, inducing genomic instability and DNA damage. By contrast, inhibition of AKT ensures the stability and nuclear localization of PMS2. It appears that cells with hyperactivated AKT carry ineffective MMR responsible for enhanced accumulation of mutations, drug resistance, and inactivation of the apoptotic procedure [55,56]. Even though KA39 acts as a potent AKT inhibitor as well [6], the MMR pathway was significantly impaired, pointing out that KA39 is not a pure AKT inhibitor. Probably, KA39 targets other elements of the repair mechanism.



The TMB represents the number of exonic non-synonymous mutations per megabase (Mb) [57]. Given that the TMB serves as a measure of somatic coding mutations, the volume of neoantigens can be evaluated and, by extension, the responsiveness to ICB therapy can be predicted. It is interesting to note that a higher number of mutations signifies higher response rates, as shown in MSI-H tumors known for their immunogenicity, which is associated with an increasing TMB [42,58]. KA39 produced no direct alterations on the TMB and on the non-synonymous mutation number in the tested cancer cell lines independent of their MMR status. However, a significant increase (>2-fold) of unknown importance was induced at the synonymous mutation number in DLD-1 cells, which bear an MSH6 deficiency (Table 6).




5. Conclusions


The impact of the KA39 triazolo[3,4-b]thiadiazole derivative was investigated on three predictive biomarkers for cancer immunotherapy: PD-L1, MSI, and TMB. According to our findings, a notable increase in PD-L1 expression and MSI was demonstrated, presumably in the context of DNA damage introduced by KA39, while no changes in the TMB were induced. Conclusively, KA39 cannot be considered a mutagenic agent, and microsatellite errors were accumulated by destabilizing the MMR mechanism during cancer cell treatment. Altogether, the significant in vitro anticancer activity in combination with PD-L1 upregulation and MSI enhancement implies that KA39 is a promising anticancer agent able to be developed for cancer chemo-immunotherapy.
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Figure 1. Chemical structure of the tested triazolo[3,4-b]thiadiazole derivatives (TATDAD), 2-((6-(2,5-dinitrophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)methyl)-4,5-dimethoxy-N,N-dimethylbenzene sulfonamide (KA39). 
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Figure 2. Percentage alterations in PD-L1 expression levels (mean ± SEM) induced by the KA39 triazolo[3,4-b]thiadiazole derivative. All four cancer cell lines were treated at IC50 (µM) for 48 and 72 h, as well as at the TGI concentration (μM) for 72 h. (A–D) illustrate the PD-L1 expression levels in DLD-1, HT-29, DU-145, and PC-3 cancer cells, respectively. The dotted line represents the control values defined as 100% of PD-L1 expression in each cancer cell line. Statistical significance level: * p < 0.05 and ** p < 0.01. 






Figure 2. Percentage alterations in PD-L1 expression levels (mean ± SEM) induced by the KA39 triazolo[3,4-b]thiadiazole derivative. All four cancer cell lines were treated at IC50 (µM) for 48 and 72 h, as well as at the TGI concentration (μM) for 72 h. (A–D) illustrate the PD-L1 expression levels in DLD-1, HT-29, DU-145, and PC-3 cancer cells, respectively. The dotted line represents the control values defined as 100% of PD-L1 expression in each cancer cell line. Statistical significance level: * p < 0.05 and ** p < 0.01.
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Figure 3. MSI alterations (mean ± SEM) induced by the KA39 triazolo[3,4-b]thiadiazole derivative (per ng DNA) in five human cancer cell lines. (A–E) demonstrate the MSI alterations in DLD-1, HT-29, DU-145, PC-3, and LS174T cancer cells, treated with KA39 at the TGI concentration and IC50 (μΜ) for 48 h, respectively. Quantitative MSI fragment analysis conducted in the Bethesda panel (BAT-26, BAT-25, D5S346, D17S250, and D2S123). Statistical significance level: * p < 0.05 and ** p < 0.01. 
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Figure 4. MSI alterations (mean ± SEM) induced by the KA39 triazolo[3,4-b]thiadiazole derivative (per ng DNA) in five human cancer cell lines. (A–E) represent the MSI alterations in DLD-1, HT-29, DU-145, PC-3, and LS174T cancer cells, treated with KA39 at the TGI concentration and IC50 (μΜ) for 48 h, respectively. Quantification of DNA fragments was carried out in eight additional regions (except the Bethesda panel), i.e., 0–50, 50–75, 75–100, 245–300, 300–338, 338–400, 400–450, 450–490 bp, which are considered by-products generated during GeneScan analysis. Statistical significance level: * p < 0.05 and ** p < 0.01. 
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Table 1. GI50, TGI, and IC50 values of KA39, defined according to MTT assay, in human prostate and colorectal cancer cell lines.
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	Cancer Cell Lines
	GI50 (μΜ)
	TGI (μΜ)
	IC50 (μΜ)





	DLD-1
	3 ± 0.52
	5 ± 0.76
	9 ± 0.76



	HT-29
	11.5 ± 0.8
	15.9 ± 0.55
	19.5 ± 0.9



	LS174T
	12 ± 1.52
	16.5 ± 1.25
	21.5 ± 1.5



	PC-3
	5 ± 0.15
	8.4 ± 0.1
	12 ± 0.1



	DU-145
	5.8 ± 0.2
	8 ± 0.4
	10.3 ± 1.8
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Table 2. Description of histotypes and MMR protein expression of the five human cancer cell lines included in our study.
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	Cancer Type
	Human Cell Line Designation
	MSI Status
	MMR Deficiency
	PTEN
	References





	Colorectal adenocarcinoma, Dukes’ type C
	DLD-1
	MSI-H
	MSH6 deficiency
	Wild type
	[10,11,12]



	Colorectal adenocarcinoma
	HT-29
	MSS
	-
	Wild type
	[10,11,13]



	Colorectal adenocarcinoma, Dukes’ type B
	LS174T
	MSI-H
	MLH1 deficiency
	Wild type
	[10,11,14,15]



	Prostate carcinoma
	DU-145
	MSI-H
	PMS2 and MLH1 deficiency
	Wild type
	[14,16,17,18,19]



	Prostate adenocarcinoma,

grade IV
	PC-3
	MSS
	-
	PTEN deficiency

(homologous deletion)
	[16,20,21]
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Table 3. Primers and characteristics of microsatellite loci.
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Repeat Type

	
Chromosomal Location

	
Repeat Motif

	
Primer Sequence (5′→3′)

	
Size (bp)






	
Mononucleotide

	

	

	

	




	
BAT25

	
4q12

	
TTTT.T.TTTT.(T)7.A(T)25

	
TCGCCTCCAAGAATGTAAGT

	
~90




	
TCTGCATTTTAACTATGGCTC




	
BAT26

	
2p

	
(T)5…..(A)26

	
TGACTACTTTTGACTTCAGCC

	
~80–100




	
AACCATTCAACATTTTTAACCC




	
Dinucleotide (non-complex)

	

	

	

	




	
D5S346 (APC)

	
5q21/22

	
(CA)26

	
ACTCACTCTAGTGATAAATCG

	
96–122




	
AGCAGATAAGACAGTATTACTAGTT




	
Dinucleotide (complex)

	

	

	

	




	
D17S250 (Mfd15CA)

	
17q11.2-q12

	
(TA)7………………(CA)24

	
GGAAGAATCAAATAGACAAT

	
~150




	
GCTGGCCATATATATATTTAAACC




	
D2S123 (AFM093xh3)

	
2p16

	
(CA)13TA(CA)15(T/GA)7

	
AAACAGGATGCCTGCCTTTA

	
197–227




	
GGACTTTCCACCTATGGGAC
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Table 4. List of all genes contained in the Oncomine Tumor Mutation Load assay.
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	ABL2
	CD79A
	EPHB1
	GRM8
	LIFR
	MYH9
	PMS1
	SOX2
	WAS
	GNAS
	ATRX
	TSC2





	ACVR2A
	CD79B
	EPHB4
	GUCY1A2
	LPHN3
	NCOA1
	POT1
	SSX1
	WHSC1
	HFN1A
	BAP1
	WT1



	ADAMTS20
	CDC73
	EPHB6
	HCAR1
	LPP
	NCOA2
	POU5F1
	STK36
	WRN
	HRAS
	CDK12
	



	AFF1
	CDH1
	ERCC1
	HIF1A
	LRP1B
	NCOA4
	PPARG
	SUFU
	XPA
	IDH1
	CDKN2A
	



	AFF3
	CDH11
	ERCC3
	HLF
	LTF
	NFKB1
	PPP2R1A
	SYK
	XPC
	IDH2
	CDKN2B
	



	AKAP9
	CDH2
	ERCC4
	HOOK3
	LTK
	NFKB2
	PRDM1
	SYNE1
	XPO1
	JAK2
	CEBPA
	



	APC
	CDH20
	ERCC5
	HSP90AA1
	MAF
	NIN
	PRKAR1A
	TAF1
	XRCC2
	KOR
	CHEK1
	



	ARID2
	CDH5
	ERG
	HSP90AB1
	MAFB
	NKX2-1
	PRKDC
	TAF1L
	ZNF384
	KIT
	CHEK2
	



	ARNT
	CDK8
	ETS1
	ICK
	MAGEA1
	NLRP1
	PSIP1
	TAL1
	ZNF521
	KRAS
	CREBBP
	



	ATF1
	CDKN2C
	ETV1
	IGF1R
	MAGl1
	NOTCH4
	PTGS2
	TBX22
	ABL1
	MAP2K1
	DNMT3A
	



	AURKA
	CIC
	ETV4
	IGF2
	MALT1
	NSD1
	PTPRD
	TCF12
	AKT1
	MAP2K2
	FANCA
	



	AURKB
	CKS1B
	EXT1
	IGF2R
	MAML2
	NUMA1
	PTPRT
	TCF3
	AKT2
	MAP2K4
	FANCD2
	



	AURKC
	CMPK1
	EXT2
	IKBKB
	MAP3K7
	NUP214
	RALGDS
	TCF7L1
	AKT3
	MAPK1
	FBXW7
	



	BAI3 COL
	COL1A1
	FAM123B
	IKBKE
	MAPK8
	NUP98
	RARA
	TCF7L2
	ALK
	MET
	MLH1
	



	BCL10
	CRBN
	FANCC
	IKZF1
	MARK1
	PAK3
	RECQL4
	TCL1A
	AR
	MPL
	MSH2
	



	BCL11A
	CREB1
	FANCF
	IL2
	MARK4
	PARP1
	REL
	TET1
	AXL
	MTOR
	MSH6
	



	BCL11B
	CRKL
	FANCG
	IL21R
	MBD1
	PAX3
	RHOH
	TFE3
	BRAF
	MYC
	NBN
	



	BCL2
	CRTC1
	FANCJ
	IL6ST
	MCL1
	PAX5
	RNASEL
	TGFBR2
	CBL
	MYCN
	NF1
	



	BCL2L1
	CSMD3
	FAS
	IL7R
	MDM2
	PAX7
	RNF2
	TGM7
	CCND1
	NFE2L2
	NF2
	



	BCL2L2
	CTNNA1
	FH
	ING4
	MDM4
	PAX8
	RNF213
	THBS1
	CDK4
	NRAS
	NOTCH1
	



	BCL3
	CTNNB1
	FLCN
	IRF4
	MEN1
	PBRM1
	RPS6KA2
	TIMP3
	CDK6
	NTRK1
	NOTCH2
	



	BCL6
	CYLD
	FLl1
	IRS2
	MITF
	PBX1
	RRM1
	TLR4
	CSF1R
	NTRK3
	NPM1
	



	BCL9
	CYP2C19
	FLT1
	ITGA10
	MLL
	PDE4DIP
	RUNX1T1
	TLX1
	DDR2
	PDGFRA
	PALB2
	



	BCR
	CYP2D6
	FLT4
	ITGA9
	MLL2
	PDGFB
	SAMD9
	TNFAIP3
	EGFR
	PDGFRB
	PIK3R1
	



	BIRC2
	DAXX
	FN1
	ITGB2
	MLL3
	PER1
	SBDS
	TNFRSF14
	ERBB2
	PIK3CA
	PMS2
	



	BIRC3
	DCC
	FOXL2
	ITGB3
	MLLT10
	PGAP3
	SDHA
	TNK2
	ERBB3
	PIK3CB
	PTCH1
	



	BIRC5
	DDB2
	FOXO1
	JAK1
	MMP2
	PHOX2B
	SDHB
	TOP1
	ERBB4
	PTPN11
	PTEN
	



	BLM
	DDIT3
	FOXO3
	JAK3
	MN1
	PIK3C2B
	SDHC
	TPR
	ERCC2
	RAF1
	RADSO
	



	BLNK
	DEK
	FOXP1
	JUN
	MRE11A
	PIK3CD
	SOHD
	TRIM24
	ESR1
	RET
	RB1
	



	BMPR1A
	DICER1
	FOXP4
	KAT6A
	MTR
	PIK3CG
	SEPT9
	TRIM33
	EZH2
	ROS1
	RUNX1
	



	BRD3
	DPYD
	FZR1
	KAT6B
	MTRR
	PIK3R2
	SGK1
	TRIP11
	FGFR1
	SF3B1
	SETD2
	



	BTK
	DST
	G6PD
	KDM5C
	MUC1
	PIM1
	SH2D1A
	TRRAP
	FGFR2
	SMO
	SMARCA4
	



	BUB1B
	EML4
	GATA1
	KDM6A
	MUTYH
	PKHD1
	SMAD2
	TSHR
	FGFR3
	SRC
	SMARCB1
	



	CARD11
	EP300
	GATA2
	KEAP1
	MYB
	PLAG1
	SMAD4
	UBR5
	FGFR4
	ARID1A
	STK11
	



	CASC5
	EP400
	GATA3
	KLF6
	MYCL1
	PLCG1
	SMUG1
	UGT1A1
	FLT3
	ASXL1
	TET2
	



	CCND2
	EPHA3
	GDNF
	LAMP1
	MYD88
	PLEKHG5
	SOCS1
	USP9X
	GNA11
	ATM
	TP53
	



	CCNE1
	EPHA7
	GPR124
	LCK
	MYH11
	PML
	SOX11
	VHL
	GNAQ
	ATR
	TSC1
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Table 5. The absolute values of PD-L1 expression as defined by flow cytometric analysis in untreated (control) and treated cells with the KA39 derivative at IC50 (μΜ) for 48 and 72 h, as well as at the TGI concentration (μΜ) for 72 h. The units of measurements are expressed as the mean of immunofluorescence intensities counted per cell.






Table 5. The absolute values of PD-L1 expression as defined by flow cytometric analysis in untreated (control) and treated cells with the KA39 derivative at IC50 (μΜ) for 48 and 72 h, as well as at the TGI concentration (μΜ) for 72 h. The units of measurements are expressed as the mean of immunofluorescence intensities counted per cell.





	
Cancer Cell Lines

	
PD-L1 Expression




	

	
Control 48 h

	
KA39 IC50 48 h

	
KA39 IC50 72 h

	
Control 72 h

	
KA39 TGI 72 h






	
DLD-1

	
12.92 ± 0.64

	
20.14 ± 1.0

	
12.3 ± 0.61

	
23.19 ± 1.39

	
22.27 ± 1.11




	
HT-29

	
19.56 ± 1.36

	
20.13 ± 1.61

	
80.82 ± 4.04

	
19.4 ± 1.35

	
78.56 ± 5.49




	
DU-145

	
27.99 ± 1.67

	
24.48 ± 2.2

	
33.55 ± 2.34

	
23.46 ± 1.17

	
23.02 ± 1.61




	
PC-3

	
25.91 ± 1.81

	
27.66 ± 2.7

	
32.98 ± 3.2

	
23.93 ± 1.91

	
28.21 ± 2.53
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Table 6. TMB values in untreated (control) and treated colorectal cancer cells with the KA39 derivative at IC50 (μΜ) for 48 h.
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Cancer Cell Lines

	
Tumor Mutation Burden (TMB)




	
Control 48 h

	
KA39 IC50 (μΜ) 48 h




	
Non-Synonymous Mutations

	
Synonymous Mutations

	
Non-Synonymous Mutations

	
Synonymous Mutations






	
DLD-1

	
204.17 Muts/Mb

	
31.18 Muts/Mb

	
198.28 Muts/Mb

	
80.93 Muts/Mb




	
HT-29

	
10.05 Muts/Mb

	
1.67 Muts/Mb

	
10.01 Muts/Mb

	
1.67 Muts/Mb




	
LS174T

	
67.48 Muts/Mb

	
3.48 Muts/Mb

	
68.06 Muts/Mb

	
3.62 Muts/Mb
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