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Abstract: Cancer is one of the major leading causes of mortality in the world. The implication of
nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently
address various difficulties associated with conventional drug delivery systems such as non-specific
biodistribution, poor efficacy, and the possibility of occurrence of multi-drug resistance. Amongst a
plethora of nanocarriers for drugs, this review emphasized lipidic nanocarrier systems for delivering
anticancer therapeutics because of their biocompatibility, safety, high drug loading and capability to
simultaneously carrying imaging agent and ligands as well. Furthermore, to date, the lack of inter-
action between diagnosis and treatment has hampered the efforts of the nanotherapeutic approach
alone to deal with cancer effectively. Therefore, a novel paradigm with concomitant imaging (with
contrasting agents), targeting (with biomarkers), and anticancer agent being delivered in one lipidic
nanocarrier system (as cancer theranostics) seems to be very promising in overcoming various hurdles
in effective cancer treatment. The major obstacles that are supposed to be addressed by employing
lipidic theranostic nanomedicine include nanomedicine reach to tumor cells, drug internalization in
cancer cells for therapeutic intervention, off-site drug distribution, and uptake via the host immune
system. A comprehensive account of recent research updates in the field of lipidic nanocarrier loaded
with therapeutic and diagnostic agents is covered in the present article. Nevertheless, there are
notable hurdles in the clinical translation of the lipidic theranostic nanomedicines, which are also
highlighted in the present review along with plausible countermeasures.

Keywords: cancer; multi-drug resistance; enhanced permeation and retention effect; nanotherapeu-
tics; cancer theranostic; clinical translation

1. Introduction

At present, cancer is one of the leading causes of mortality worldwide. As per the
demographic provided by the world health organization (WHO), cancer is accountable
for approximately 10 million deaths in 2020 [1–4]. The emerging area of nanotechnology
has proved very promising in cancer therapeutics [5]. Despite tremendous efforts in the
research area of carcinomas alleviation through nanomedicines, there are a very few ap-
proved nanomedicines such as Doxil®, Myocet®, Abraxane®, Depocyt®, Genexol® [5,6].
The FDA-approved Doxil was thought to be a revolutionary lipidic nanomedicine when
it was successfully developed. However, it was demonstrated in a clinical study that it
exhibited poor therapeutic efficacy [7,8]. Harrington and colleagues conducted a study in
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which they monitored tumor uptake of 111In-labelled poly(ethylene glycol) coated (PEGy-
lated) liposomes in 17 patients with locally advanced cancers [9]. In this study, they were
able to successfully demonstrate the major reason for the therapeutic failure of Doxil [9].
The study outcome revealed a very important and highly ignored aspect of in vivo fate
of nanomedicines, targeting different forms of carcinomas. The study has confirmed that
the accumulation of 111In-liposomes did take place in tumor restricted areas, but the con-
centration of nanoformulation that was retained in the tumor cells varied largely across
different patients and tumor types [9,10]. In cancer patients, it has been established that
enhanced permeation and retention effect (EPR) in which tumor vasculature becomes im-
paired and lymphatic drainage becomes deficient, felicitates drug accumulation in tumor
cells, but that concept cannot be generalized after such findings [9,10]. Several factors affect
nanomedicine accumulation and retention in tumor cells that need substantial considera-
tion, such as tumor heterogeneity that causes diversified uptake of nanomedicines [11,12].
Tumor heterogeneity could be attributed to the distinctive cellular morphology, expres-
sion of efflux or influx transporters such as P-glycoprotein, presence of receptors, gene
expression, metabolism, proliferation, and metastatic potential.

Besides, there is considerable constraint at different levels of nanomedicine adminis-
tration (as shown in Figure 1) journey in vivo that governs the overall therapeutic efficacy
of nanomedicines. When nanomedicine is administered systemically, then it encounters
different physical, chemical, and physiological barriers that hinder its reach to tumor
cells. After getting across these barriers, there are significant hindrances at the tumor
microenvironment level that severely affect drug accumulation [11–13]. These hindrances
include abnormal structure and highly variable density of tumor vasculature that greatly
interfere with the optimal diffusion of nanomedicines. In addition, the pressure exerted
by interstitial fluid and tightly packed tumor cells is very high, which avert the diffusion
of nanomedicines across the tumor milieu. Moreover, a highly dense extracellular matrix
greatly restricts nanoparticle extravasation and interstitial diffusion (Figure 1) [11–13].
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Therefore it was realized that there is a major lacuna in our knowledge of the patho-
physiological complexities and heterogeneity of tumor sites that affect the therapeutic
efficacy of nanomedicines. Those patients are not even identified who are likely to benefit
most from given nanomedicine-based chemotherapy [14].
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Then next, the in vivo nanomedicine behavior knowledge is restricted to animal data
and the animal models used do not mimic the actual in vivo conditions [15–20]. Usually, the
NPs targeted for solid tumors after systemic administration are accumulated in the tumor
through the EPR effect. Nevertheless, several crucial aspects related to EPR interpretation
have been greatly overlooked, such as the influence of nanomedicine–protein interaction,
blood circulation, tumor tissue penetration, and tumor cell internalization. Furthermore,
all these biological processes are greatly affected by nanomedicine properties (for example,
size, geometry, surface features) thus there are so many factors governing EPR effects driven
in vivo nanomedicine behavior that cannot be predicted from animal data for humans. To
date, there is not a single model that can completely replicate the entire facets of human
malignancy [15–17]. This issue can be addressed if diagnosis and therapy can be combined
as one approach in developing lipidic nanomedicines targeting cancers (Figure 2).
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A cancer diagnosis has a very significant role in the context of precision of chemother-
apeutic medication. Diagnosis specifically implicates recognizing the presence of a tumor
in the body and evaluating its extent to identify if it is at its early developmental stage or
re-occurrence case [1,2]. Importantly, identification of precancerous lesions could result in
a successful intervention of cancer and its complete alleviation. Early diagnosis is certainly
life-saving in cancer treatment. Once the existence of cancer is confirmed, diagnostic tools
are implicated in identifying specific molecular abnormalities in tumors that govern the
medications to be provided accordingly. Nowadays, with advances in biomedical technolo-
gies, novel diagnostic approaches are being investigated that will enable the identification
of cancerous and precancerous cells at the molecular level and provide information about
their pathophysiology. The combination of diagnostics with therapeutics makes it easy to
know the progress of treatment and the real-time state of cancer while receiving therapy.
Moreover, imaging agents/drug trackers can help greatly to know the in vivo fate or trav-
eling of a drug in systemic circulation or at the tumor and can also determine the kinetics
aspect of anticancer drug/drug loaded formulation [20,21]. That is why the use of imaging
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biomarkers such as radioactive substances taken up by tumors and visualized through diag-
nostic modalities such as Computed Tomography (CT), Magnetic resonance imaging (MRI),
positron emission tomography (PET), and single-photon emission computed tomography
(SPECT) is attaining a lot of attention in oncology these days. Taking into consideration
the phenomenon of tumor metastases on the way to cancer mortality, the combinatorial
approach of diagnosis and treatment that is theranostic will be of substantial importance for
the assessment of EPR and nanomedicine penetration. The clinical translation of anticancer
nanomedicines could see a breakthrough outcome via the introduction of a theranostic
approach that can intently trace the in vivo fate of drugs and assess the progression of
alleviation of human tumors via encapsulated nanomedicines [18–21].

Therefore, the diagnosis in combination with therapy is quintessential for embarking
on a level of cancer treatment that could offer highly efficacious clinical outcomes. In this
review, an insight of a combination of therapy and diagnosis, which is called theranostic, is
provided, covering the brighter prospects and the challenges accompanied with it. The
lipidic nanomedicine-based theranostic is also the highlight of this present review. A
comprehensive account of different research updates in the field of lipidic nanocarrier
loaded with diagnostic agents is envisaged. Nevertheless, there are notable hurdles in the
clinical translation of the lipidic theranostic nanomedicines, which are also discussed in
the upcoming section of the present review.

2. Significance of Lipid-Based Theranostic Nanoparticles in Cancer Therapy

Early detection of carcinomas is of great pertinence for their successful alleviation.
Firstly the diagnosis of the type of tumor, its metastatic state, and the patient history need to
be identified to initiate the appropriate therapy. Here theranostic plays a crucial role. Once
correctly and profoundly diagnosed, then the nanomedicine-based therapy could be started
relevantly. However, the monitoring of the in vivo fate of nanomedicine is a vital aspect of
assessing the progression and efficacy of cancer therapy. That is why co-encapsulation of
imaging agents and drugs in a single nanocarrier system could contribute significantly in
assessing the progression of treatment and exact and precise state of the response of cancer
towards provided therapy [21–23].

Theranostic nanomedicine could be prepared in multiple manners. The lipid nanocar-
riers have been proven superiority over polymeric and inorganic nanoparticles in terms
of biocompatibility, safety, and biodegradability besides other beneficial considerations
from a cancer theranostic perspective (as summarized in Figure 3) [7–9]. Therefore, in
this review, we are concerned with lipidic theranostic for cancer, and we will be focusing
on the vesicular or micellar lipidic structures. Different shapes and structures can be
formulated depending on the type of lipidic nanocarrier chosen (as shown in Figure 4). In
nanoemulsions, the theranostic agent and drug are entrapped in oil globules targeted for
specific tumor sites. In liposomes, imaging agents can be encapsulated with drugs either in
an aqueous core or bilayer lipidic shell. In solid lipid nanostructure (SLN), the imaging
agent is intercalated in the solidified lipid matrix. Whereas, in nanostructure lipid carrier
(NLC), the drug and the imaging agent are dispersed in the imperfections of oil and solid
lipid hybrid matrix. However, optimizing lipid theranostic nanomedicines with balanced
size, shape, polydispersity index, surface charge, and stability, is a challenging task in itself
that we will discuss in detail in later sections.

The imaging agent that is incorporated with the drug in lipidic vesicles must possess
great compatibility with conventional diagnostic techniques such as X-ray, ultrasound
(US), CT, MRI, PET, or SPECT [24]. The contrasting agents used in theranostic usually
include metals or inorganic agents (such as iron oxide) as they exhibit free electrons whose
excitatory phase can be used as imaging modalities (MRI). Different semiconductor-based
nanoparticulate systems (such as quantum dots) of colloidal dimension are also being
extensively employed in in vivo diagnostics [25]. Fluorescent silicon nanoparticles are also
employed as an imaging agent for foreseeing in vivo prospects [26].
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MRI is one of the most commonly used diagnostic modalities, which depends upon
mobile protons of water molecules for detecting signals. The MRI images can be perceived
via proton concentration in body tissues or else via their longitudinal and transversal
relaxation times, T1 and T2, respectively. A plethora of contrast agents are being used for
MRI. Amongst them, fluorine-containing contrast agents have garnered splendid attention.
Owing to its excellent magnetic property, 100% natural abundance, one-half spin, sensitivity,
and gyromagnetic ratio comparable to a proton, fluorine has become the contrast agent of
choice for MRI. Furthermore, with 19F in vivo tracing and imaging can be accomplished
without any background signals created by endogenous fluorine. Nonetheless, there has
been a limitation with fluorine as its large concentration (10–50 millimolar) is needed for
adequate signal intensity in comparison to other contrast agents [27].

The promising combination of imaging along with nanomedicine-based therapy has
the extremely worthy potential of overcoming the pathophysiological hurdles that under-
mine the efficiency of cancer therapy. The simultaneous examination of nanomedicine reach
to tumor cells, amount of drug release, off-site tumor drug distribution, and uptake via host
immune system are those aspects, which can tremendously affect the therapeutic outcome.

Until recently, the lack of interaction between diagnosis and treatment has hampered
efforts to deal with cancer effectively. This new paradigm with simultaneous multifunc-
tionality of imaging (with contrasting agents), targeting (with biomarkers), and delivering
chemotherapeutic agents in one lipidic nanocarrier system seems to be very promising in
overcoming various hurdles in effective cancer treatment.
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3. Different Types of Lipid Nanoparticles for Cancer Theranostics: An Update of
Recent Studies

Biocompatibility and safety are the major reasons for choosing a lipidic nanocarrier
system as cancer theranostic in this review. Certainly, prolonged in vivo circulation half-
life, high encapsulation capacities for drug and imaging agents, substantial accumulation
at tumor sites, and improvisation susceptibility for multiple functioning are the other
significant advantages with lipidic nanocarrier system [28–30]. Lipidic nanocarriers have
their own sets of advantages, which give them an edge over other nanoformulations.
Recent research studies demonstrated lipidic theranostic nanomedicines to be a promising
and potential approach for raising the efficacy of cancer treatment to a hallmark level, as
discussed hereunder. The different lipidic nanocarriers include liposomes, nanoemulsions,
SLN, NLC, and lipid nanocapsules. However, advanced lipidic nanocarriers such as SLN
and NLC are still unexplored for cancer theranostic as there are very few studies conducted
thus far.

3.1. Nanoemulsion

Nanoemulsions have gained huge attention for the efficient delivery of lipophilic
anticancer drugs. The nanometric size, large surface area, thermodynamic stability, high
drug loading capacity, easy scalability, biocompatibility, favorable drug release profile
are the characteristic attributes of nanoemulsion that make it worthy of profound explo-
ration in chemotherapeutics [31,32]. The nanoemulsions, mostly oil-in-water types, are
optically transparent colloidal dispersion constituted of oil and water, wherein surfactants
and co-surfactants create a stable coating over the dispersed droplets to form a physic-
ochemically stable nanoformulation [32]. The excipients of nanoemulsion are generally
recognized as safe (GRAS) grade making the formulation highly safe to administer with
improved bioavailability and therapeutic efficacy. Different strategies have been reported
of late, wherein contrast and chemotherapeutic agents are entrapped in nanoemulsion for
selectively targeting tumor microenvironment (TME) for both diagnostic and therapeutic
drive [33–37]. Nonetheless, there are many obstacles in their journey from animal models
to afflicted cancer patients, including firstly physicochemical stability of theranostic na-
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noemulsion, subsequently, its in vivo fate, then degradation, and clearance from the system,
along with long-term stability and toxicities concerns. Various attempts have been made
thus far to surmount these hurdles and to entrap chemotherapeutic agents and diagnostic
agents in nanoemulsion, particularly from the perspective of developing an efficient cancer
theranostic agent that is highly capable of clinical translation (Figure 5).
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The major challenge associated with developing lipid theranostic nanomedicine,
which is also the major limitation in their clinical translation, is that the incorporation of
several components in one nanocarrier [38]. This integration of numerous constituents
in nanodispersion causes polydispersity, heterogeneity, and also difficulty in scalability
issues [38]. In an attempt to address these issues, Zhang and coworkers 2020, developed
fluorinated nanoemulsions with remarkably improved fluorescence imaging signals for
selective and sensitive tumor detection [38]. Their theranostic approach was highly ca-
pable of selectively recognizing the specific type of tumor (integrin αvβ3 overexpressed
cancer cells), potential tracing of in vivo fate of nanoemulsion, and offering highly efficient
photodynamic therapy. The meticulous approach averted many ingrained concerns with
conventional nanomedicine, including polydisperse polymers, heterogeneous constituents,
and complex formulation. Importantly, this approach imparted multiple functional aspects
to the nanoparticles with tumor-targeting accompanied with quantitative and sensitive mul-
timodal imaging (FL, 19F MRI, 129Xe hyper-CEST MRI), and PDT with a high therapeutic in-
dex [38]. Huang and associates 2019, designed an integrated system of multimodal imaging
signals and PDT function into a poly(ethylene glycol)-boron dipyrromethene amphiphile
(PEG-F54-BODIPY) with 54 fluorine-19 (19F), as an “all-in-one” nanocarrier [39]. This novel
amphiphile acquired various unique and desirable attributes that make it potential cancer
theranostic agents. The developed nanoemulsion was having distinctive structure-based
fluorescent, photoacoustic, and magnetic resonance properties and prolonged tumor re-
tention time for repeated PDT treatment, and great biocompatibility. The study outcomes
revealed in the melanoma cancer xenograft model, developed nanoemulsion can be effi-
ciently used as an activatable nanoprobe with improved sensitivity of multimodal imaging
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for tumor recognition [39]. One more very interesting attempt was made by Fernandes
and Kolios 2019, to increase the selectivity and targeting of nanomedicine for substantially
afflicting cancer cells without causing any harm to nearby cells and off-tumor areas [40].
The fabricated perfluorohexane nanoemulsions possess the ability to selectively target
cancer cells as these nanoparticles carry therapeutic agents, which have slow release rates
and become vaporized into perfluorohexane bubbles without any rise in temperatures
that could affect normal cellular function. Their ability to use higher concentrations of
theranostic agents could be of significant advantage in improving therapeutic efficacy and
imaging ability in clinical applications. In this study, the ability of nanoemulsions to cart
therapeutic agents, doxorubicin, and paclitaxel, specifically for the treatment of breast
cancer, was investigated. The study outcome revealed that perfluorohexane nanoemulsion
could be efficiently internalized in cancer cells and could cause significant cell death. The
developed nanoemulsion with concurrent laser excitation capability exhibited tremendous
potential for destroying all tumor cells and emerging as a competent theranostic agent
for averting the growth of cancer cells [40]. Furthermore, Zheng and associates, 2019
fabricated a novel nanoemulsion with a porphyrin shell (NewPS), and it was the simplest
yet multifunctional nanoemulsion system developed thus far [41]. The porphyrin salt shell
permitted the encapsulation and stabilization of the oil core, yielding a monodisperse,
spherical nanostructure with excellent colloidal stability. The inherent multimodality of
porphyrins enabled the multifunctionality of NewPS for imaging and phototherapy. More-
over, the oily core felicitates the efficient loading of hydrophobic anticancer molecules. The
study established formable and intelligible, surfactant-free nanoplatforms for theranostic
cancer applications. This novel two-component NewPS served as an innovative avenue for
multimodal cancer imaging, phototherapy, and image-guided drug delivery [41].

In light of such studies, it is anticipated that nanoemulsions-based theranostic could
offer promising opportunities in cancer treatment.

3.2. Liposomes

Liposomes stand tall in the crowd of conventional lipidic nanocarrier systems owing
to their inimitable characteristic attributes. Their unique structure comprised of unilamellar
lipid bilayers that nest an aqueous core offers great flexibility of easy incorporation of
multicomponent. It also provides an option for both hydrophilic and lipophilic chemothera-
peutic drugs and contrast agents. Besides biocompatibility, safety, biodegradability aspects,
liposomes also offer an enormous scope of surface improvisation for selectively targeting
tumor cells [42]. Recent literature highlights that liposomes have been amongst the topmost
area of active research of cancer theranostics. At present, they are being largely investi-
gated for incorporating and targeting cancer via contrast agent such as 64Cu [43] and 14C
isotopes [44], QDs [45], gadolinium (Gd)-based contrast agents [46], super paramagnetic
iron oxide particles (SPIONs) [47], and fluorescent probes [46,48].

The upcoming section will throw light upon the latest research studies that have con-
firmed the substantial potential of liposomes as cancer theranostic that could be successfully
taken to clinics.

Prasad and associates 2021; fabricated liposomal nanotheranostics in which gold
nanoparticles (AuNPs) and emissive graphene quantum dots (GQDs) were encapsulated
along with a chemotherapeutic agent [49]. The surface of the liposome was functionalized
with folic acid for targeted delivery. The prepared targeted liposomal theranostic demon-
strated site-specific tumor diagnosis and photo-triggered tumor extirpation. The study
outcome confirmed specific and enhanced cellular uptake, prolonged internalization in
tumors, and substantial contrasting and therapeutic efficacy of nanotheranostic liposomes
with dual imaging probes. The synergistic effect of anticancer drugs and photothermal
effect exhibited superior tumor impedance, in contrast, to stand-alone therapy. Moreover,
these multicomponent loaded liposomes have good colloidal stability, biocompatibility,
and biodegradability as demonstrated in in vivo imaging. Therefore the developed nano
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hybrid liposome nanotheranostic served as a safe and tremendously potential platform for
multifunctional tumor diagnosis and targeted therapy [49].

Furthermore, Karpuz and associates 2020, investigated the in vivo therapeutic prospect
and contrasting efficacy of paclitaxel and vinorelbine loaded, Tc-99m radiolabeled, folate
targeted nanosized liposomes [50]. The study outcomes demonstrated targeted delivery of
chemotherapeutic agents, which got efficiently lodged in tumor vasculature and resided
there for a prolonged time, causing substantial reduction of tumor growth. The in vivo
images confirmed mitigated off-site accumulation and toxic effect of liposome theranostic
nanomedicines [50].

In another interesting research study, a very serious issue of brain metastasis (BM) and
tyrosine kinase inhibitor (TKI) resistance that are the two major challenges in non-small
cell lung cancer (NSCLC) treatment were addressed [51]. Yin and associates designed a
dual-targeting liposomal system for co-delivery of gefitinib and simvastatin to treat BM of
NSCLC. The study confirmed via fluorescence imaging that dual-targeted liposome could
efficiently cross the blood–brain barrier and is highly capable of reversing drug resistance.
Therefore, the developed liposomal formulation represents a potential strategy for treating
advanced NSCLC patients with BM [51].

Bush and coworkers 2020 also came up with an interesting concept of acoustic cluster
therapy (ACT) that constitutes of co-administration of a formulation containing microbub-
ble constellations, along with regular anticancer drug and local US insonation of the
targeted tumor tissue. The microbubble cluster efficiently resided in the tumor’s mi-
crovasculature [52]. The therapeutic efficacy of ACT with liposomal doxorubicin for the
treatment of triple-negative breast cancer using orthotopic human tumor xenografts in
athymic mice was assessed. The study outcome established substantial increase in the
therapeutic efficacy of Doxil® when combined with ACT [52]. Another crucial study that
encourages the concept of application of liposome in cancer theranostic was conducted
by Prabhakar and Banerjee 2019 [53]. They formulated submicron-sized (528.7 ± 31.7 nm)
nanobubble-paclitaxel liposome (NB-PTXLp) complexes for ultrasound imaging and ultra-
sound responsive drug delivery in cancer cells. The concept resulted in more than 300-fold
higher anticancer activity of NB-PTXLps in the presence of ultrasound in MiaPaCa-2, Panc-
1, MDA-MB-231, and AW-8507 cell lines, in contrast to commercial formulation Abraxane®.
Therefore, the novel NB-PTXLps served to be a promising and triflingly invasive theranostic
scaffold for cancer therapy in the forthcoming scenario [53].

The research studies discussed in this section undoubtedly unveiled enormous oppor-
tunities to facilitate the targeted chemotherapeutic delivery with concomitant in vivo imag-
ing utilizing liposomes. Further research is envisaged to take these studies to clinical trials.

3.3. Solid Lipid Nanoparticles (SLN)

The second-generation lipid nanocarrier includes SLN, which are spherical colloidal
nanoparticles with a solid lipid core comprised of waxes, triglycerides, fatty acids, and
are stabilized by surfactants. Their size usually falls within the 50–100 nm range and is
exclusively known for their biocompatibility, higher susceptibility of lymphatic uptake, and
sustained drug release [54,55]. In cancer, alleviation chemotherapeutics loaded SLN is very
promising [54–56]. Nonetheless, they are capable of efficiently carrying contrast agents
along with anticancer drugs and provide simultaneous treatment and diagnosis, as evident
in outcomes of recent research studies. Kuang and coworkers have demonstrated in their
study that solid lipid nanoparticles (SLNs) conjugated with c(RGDyK) were designed
as efficient carriers to improve the targeted delivery of IR-780 to the tumors [57]. The
multifunctional cRGD-IR-780 SLN significantly improved the tumor-specific targeting,
efficacy of photothermal therapy along with spontaneous imaging of in vivo journey of
SLN incorporated IR-780 iodide nanomedicine [57].

SLNs have been investigated for integrating many contrasting agents, particularly su-
perparamagnetic iron oxide [58], technetium-99 (99mTc), 64Cu [59], and quantum dots [60,61].
Very recently, a research study came up with SLN cancer theranostic wherein SLN was
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encapsulated with QD as a contrast agent [54,62]. The chemotherapeutic agent was the
combination of Paclitaxel and siRNA. The solid lipid matrix was interspersed with pa-
clitaxel and QD whereas siRNA, which was anionic, was electrostatically linked on the
outer cationic surface. The combination of dual therapeutic agent paclitaxel and siRNA
loaded in SLN got efficiently accumulated in lung carcinoma and exhibited synergistic
anticancer activity. Importantly QD fluorescence in SLN made it possible to track higher
in vivo cellular uptake of SLN on-site and mitigated uptake at off-site cancer cells. This
study confirmed the potential theranostic applicability of SLN as a nanocarrier [54,62].

In another interesting research study, Morel and associates have revealed the successful
integration of gadolinium (Gd) (III) complexes in SLN that would be contributing as an
efficient and favorable oral contrast agent for MRI [63]. The percentage of Gd (III) complex
entrapped in SLN was substantially higher as confirmed by average longitudinal relaxivity
for Gd (III) complex in SLN system and pure water (25 ◦C, pH 7, 20 MHz) [63].

Another research study conducted by Andreozzi and associates is clear evidence of
the multifunctional theranostic ability of SLN [59]. They radiolabelled SLN with 64Cu
and assessed its bio-distribution by in vivo quantitative assessment, PET imaging, and ex
vivo gamma counting. The study outcomes validated the simultaneous in vivo imaging
and tumor ablation potential SLN theranostic, which is also safe, biocompatible, and
biodegradable [59].

The research studies conducted thus far are very limited in numbers, and several
other important aspects of SLN also need profound exploration from a cancer theranostic
perspective, such as stimulation of lymphatic absorption by SLN. Whatever literature we
have discussed can corroborate the efficient in vivo imaging and drug delivery utilizing
SLNs along with the safe theranostic application, biocompatibility, and biodegradability, of
developed nanomedicine. The results established that the SLN theranostic nanoformulation
developed is optimistic for hallmark contribution in the field of cancer treatment with
simultaneous diagnosis.

3.4. Nanostructured Lipid Carriers (NLC)

NLC is a smart next-generation nanocarrier with a unique hybrid matrix of solid and
liquid lipids stabilized by surfactants. The imperfect crystalline or amorphous structure
possesses an enormous potential of high drug loading and improvised drug release. Latest
research studies indicate the promising role of NLC in cancer theranostic. Of late, Li and
coworkers successfully developed a multifunctional nanocarrier of Coumarin 6 fluorescent
dye and IR 780 encapsulated CXCR4-targeted NLCs for breast cancer alleviation also
employing photodynamic therapy [64]. The developed system proved to be highly efficient
in debilitating tumor progression and metastasis and concurrently allowing imaging [64].

Olerile and coworkers prepared a NLC loaded with QD and paclitaxel that was highly
capable of monitoring and tracking tumor growth and simultaneously impeding tumor
cells in the murine tumor model of hepatocellular carcinoma [65]. Researchers confirmed
the great cancer theranostic potential of NLC as it was efficiently enabling targeted delivery
with concomitant in vivo imaging [65].

Another very promising approach in the area of cancer theranostic utilizing NLC
was reported. Camptothecin encapsulated-NLC was formulated conjoined with QD and
fluorescent imaging probes that were capable of detecting the lodging, internalization,
cytotoxicity, and biodistribution of NLC nanomedicine [66]. The study outcome established
that NLC coordinated with QDs and an anticancer drug offered efficient tumor imaging and
drug delivery and such accomplishment with a novel nanocarrier system was remarkable
and worth mentioning here [66].

An interesting attempt was made to deliver paclitaxel-loaded NLC with folic acid
dispersed hybrid lipid matrix [67]. The paclitaxel-loaded NLC was radiolabeled with
99mTc(CO)3+. Due to the imperfection in a matrix structure, too many components were effi-
ciently loaded in NLC as reflected by in vitro stability of developed formulation, which was
up to the mark (>90%). Results indicated that 99mTc(CO)3+-radiolabelled paclitaxel NLC



Pharmaceutics 2021, 13, 840 11 of 24

was capable of identifying folate receptors overexpressed in tumor cells. The developed
formulation was successfully localized at the specific targeted tumor areas without any
off-site distribution and the uptake by RES on intravenous administration. The concurrent
imaging efficiently depicted the in vivo fate of paclitaxel-loaded NLC that is very much
desirable for an optimal therapeutic implication [67].

As the data concerning NLC theranostic for cancer is very restricted, there is a
great need for a lot more investigation to be envisaged to explicitly explore multiple
beneficial aspects of advanced lipid nanocarrier and pave the way for their successful
clinical translation.

3.5. Lipid Nanocapsules (LNCs)

LNCs are also amongst the next-generation lipid nanocarrier systems with lipoprotein-
like structures whose size falls within 1–100 nm. The structure of LNCs is a blend amidst
polymeric nanoparticles and liposomes as they have an oily core with an exterior built
of a tensioactive rigid membrane. LNCs are a novel lipid nanocarrier system and can be
prepared via phase inversion of emulsions and organic solvent-free-based procedures [68].

Nevertheless, researchers consider LNCs as an optimistic platform for cancer ther-
anostic as well. A very recent study further confirmed the promising outlook of LNCs
in cancer theranostic. To selectively target tumor cells, QDs-based lipid nanocapsules
(LNCs) encapsulated with celecoxib, and honokiol were designed and investigated. The
study outcome revealed efficient accumulation and intracellular uptake of LNCs in tumor
cells, and their internalization was progressively traceable via fluorescence restoration.
The LNCs established highly improved and superior anticancer efficacy of LNCs against
breast cancer cells. The developed system could be applied as a potential multifunctional
nanotheransotic for imaging and targeted therapy of breast cancer [69].

3.6. Lipid-Based Micelles

Lipid-based micelles are the spherical structure of lipid molecules, in which they
aligned themselves in aqueous solutions. This class of lipid nanocarrier system is un-
explored to date, but it could also serve as a potential and promising therapeutic cum
diagnostic nanomedicine for cancer treatment. In a study, Ma and coworkers developed
a lipid-based micelle encapsulated with docetaxel (M-DOC) that possessed marked an-
ticancer efficacy and mitigated toxicity in the xenograft breast cancer model [70]. The
lipid-based micelles need to be duly explored for their cancer theranostic potential in the
near future.

Table 1 enlists the different lipidic nanomedicine investigated for the theranostic applica-
tions in cancer and summarizes their theranostic outcomes in different experimental models.

Table 1. Theranostic application of lipidic nanomedicines for cancer therapy.

Lipidic Nanocarrier Chemotherapeutic
Agent Diagnostic Agent/Modality Experimental

Model Theranostic Outcome Ref.

Nanoemulsion

PDT

fluorinated cryptophane-A and
porphyrin self-assembled onto the

surface of fluorinated
nanoemulsions-19F MRI and

fluorescence imaging

Xenograft A549
tumor mice.

A high therapeutic efficacy; low
toxicity;

high tumor
accumulation of nanoemulsion

[38]

PDT Fluorescence probe/photoacoustic/19F
magnetic resonance multimodal

A375 melanoma
xenograft model

The remarkable efficiency of PDT on
hypoxic solid tumors via a single
injection of the drug; outstanding

diagnostic ability

[39]

Doxorubicin and
Paclitaxel

Perfluorohexane (PFH) vaporized
bubbles as an Ultrasound contrast agent MCF-7 cells

Markedly enhanced PFH-NEs
targeting and lodging in tumor region

with simultaneous treatment
monitoring.

[40]

Paclitaxel and PDT
Porphyrin NE shell-based photoacoustic

imaging and
fluorescence imaging; CT contrast

Mice bearing
tumors

multimodal cancer imaging,
highly efficient phototherapy and

image-guided drug delivery
[41]
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Table 1. Cont.

Lipidic Nanocarrier Chemotherapeutic
Agent Diagnostic Agent/Modality Experimental

Model Theranostic Outcome Ref.

Liposomes

Doxorubicin HCl
gold nanoparticles (AuNPs) and
emissive graphene quantum dots

(GQDs)

Breast
tumor-bearing
mice models

specific and enhanced cellular uptake,
prolonged internalization in tumor

and substantial contrasting and
therapeutic efficacy

[49]

Paclitaxel and
vinorelbine Tc-99m radiolabeled

NSCLC
tumor-bearing
C57BL/6 mice

Effectively inhibited tumor growth
completely restricted lung metastasis [50]

Gefitinib and
simvastatin Fluorescence imaging

Brain Metastasis
(BM) mouse model

developed by
intracranial

transplant of the
H1975 NSCLC cells

Efficient permeation across the
blood–brain barrier and high
capability of reversing drug

resistance.

[51]

Doxorubicin Acoustic cluster therapy (ACT);
Ultrasound insonition

orthotopic human
tumor xenografts
in athymic mice

Substantial increase therapeutic
efficacy of Doxil® when combined

with ACT
[52]

Paclitaxel and
ultrasound

responsive drug
delivery

Ultrasound imaging
MiaPaCa-2, Panc-1,
MDA-MB-231, and
AW-8507 cell lines

300-fold higher anticancer activity in
contrast to ABRAXANE. [53]

SLN

Paclitaxel and
siRNA Quantum dots A549 cancer cells

Efficient in situ
visualization of intracellular

translocation of SLNs into cancer cells.

[54,
62]

64Cu, PET imaging, and ex vivo gamma
counting Mice

64Cu-radiolabelled SLN and their
biodistribution was efficiently

quantitatively evaluated
[59]

NLC

Paclitaxel Quantum dots
HepG2

cells/Female
Kunming mice

Imaging established splendid
capability of the co-loaded NLC to

specifically target and detect the H22
tumor.

[65]

IR 780 and
Photothermal

therapy
fluorescent probe coumarin 6

4T1-luc cell line in
BALB/c female

mice

Notably enhanced photothermal
anti-tumor effect as well as

anti-metastatic efficacy in vivo
[64]

Camptothecin Quantum dots Melanoma cells camptothecin accumulation in
melanomas increased by 6.4-fold [66]

Paclitaxel 99mTc(CO)3+ Wistar Albino rats. Substantially high cellular uptake and
concurrent imaging [67]

Lipid nanocapsule Celecoxib and
honokiol

fluorescent mercaptopropionic
acid-capped cadmium telluride was

coupled with quantum dots as an
imaging probe

human breast
cancer cells: MCF-7
and MDA-MB-231;

EAT model

Highly improved and superior
anticancer efficacy; Efficiently
traceable LNC internalization

[69]

Lipid-Polymer
Hybrid

Platinum (IV)
(Pt(IV)) prodrug

(glutathione (GSH)-sensitive platinum
(IV) for Ultrasound imaging

αvβ3-
and αvβ5-positive

SKOV3 human
ovarian tumor cells

and αvβ3- and
αvβ5-negative
A2780 human

ovarian
tumor cells

Significant therapeutic efficacy and
limited side effect [71]

4. Advancement in Lipid-Based Nanoparticles for Cancer Theranostics
4.1. Polymer-Lipid Hybrid System

Lipid polymer hybrid is next-generation lipid nanocarriers and has obtained its
foundation from the amalgamation of liposomes and polymeric nanoparticles. They have
a polymeric core enclosed by a lipid bilayer shell kind of structure. Many researchers claim
it to be a very promising nanocarrier for anticancer drug delivery, however, its potential is
not duly tapped and remains unexplored to date. In recent research, Huang and associates
developed multifunctional tumor-targeted polymer-lipid hybrid nanoformulation, which
was loaded with ultrasound contrast agents (glutathione (GSH)) and prodrug (Pt(IV))
for targeted delivery of theranostic nanomedicine against ovarian cancer. The nanosized
formulation was composed of a perfluorohexane (PFH) liquid core, a hybrid lipid-polymer
shell, and an active targeting ligand, which demonstrated improved cellular uptake. The
study findings established Pt(IV) encapsulated lipid-polymer as a novel multimodality
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platform exhibiting excellent anticancer activity and substantially reduced toxicity and
signifying a powerful theranostic nanomedicine for combating ovarian cancer [71]. The
research outcome encourages further exploration of this class of lipidic nanocarriers to be
envisaged for beneficial prospects in the field of cancer theranostic.

4.2. Endogenous High-Density Lipoprotein Derived Nanoparticles

Nanocarrier systems comprising endogenous high-density lipoprotein (HDL) could
emerge as potential lipidic nanocarrier-centered cancer theranostic options owing to their
non-immunogenicity, complete biodegradation, and infrequent reticuloendothelial system
(RES) uptake [72–74]. HDL-like peptide- phospholipid nanovesicles (HPPS) imitate the
structural and functional attributes of plasma-derived HDL [74–77]. He and coworkers
recognized a TfR mAb (monoclonal antibody) tailored nanomedicines for improved tumor
targeting. They demonstrated that drug entrapped HPPS based nanomedicines adapted
with explicit ligands could muddle to receptors on the surface of tumor cells, resulting
in the accretion of nanomedicines on the exterior surface of targeted cells [75–90]. It was
concluded that developed HPPS based nanomedicine holds the potential to strengthen
targeting to tumor cells and attains favored recognition by specific antibodies in a complex
biological setting [91]. Such intricately woven novel research concept needs to be brought
forth and encouraged thus that these kinds of potential research perceptions can be mul-
tiplied. Huge benefits can be extracted from such studies for accomplishing successful
targeting of lipidic cancer theranostic nanomedicine.

Fayad and coworkers presented very interesting work on HDL-based multimodal
nanotheranostic for targeting and imaging tumors [92]. The developed HDL nanoparticles
got non-selectively accumulated and selectively binding to angiogenic active blood vessels.
For targeting such angiogenic endothelial cells, HDL was reconstituted with gadolinium
chelates and fluorescent dyes, and their surface was functionalized with αvβ3-integrin-
specific RGD peptides. The incorporation of such peptides felicitated uptake of HDL-based
nanoparticles by angiogenic endothelial cells as visualized in MRI after administration
of developed nanoparticles in tumor-bearing mice. The study findings demonstrated
the substantial possibility of redirecting HDL from their natural route towards tumor-
ridden blood vessels along with successful imaging and tracing of an entire pathological
process [92].

4.3. Hybrid Lipid-Inorganic Nanomaterials

Most recently, there has been a paramount focus shifted towards an exploration of hy-
brid lipid-inorganic nanomaterials, which combine and multiply the desirable attributes of
both classes of nanocarriers, including lipidic nanocarriers and inorganic nanoparticles. The
lipid nanocarrier system employed for such application includes liposomes, nanoemulsion,
solid lipid nanoparticles, and lipoproteins. In contrast to singly functionalized counterparts,
this hybrid multifunctional system offers many beneficial outcomes in cancer theranostic
such as stimuli-triggered anticancer drug release, photothermal therapy, and bioimag-
ing. The internalization of inorganic material inside the lipid nanocarrier governs their
functional aspects as there are different spatial lodging based on the structure of lipidic
assemblies. The inorganic material can reside in the surface coating of lipid nanocarriers as
surface-bound nanomaterial, or it can be lodged in bilayer lipids lamellae in liposomes,
and certainly, the inorganic material can also be internalized in the core structure of lipidic
nanocarrier [93]. A plethora of investigational studies are reported in which gold (Au) was
used as an inorganic nanomaterial for preparing hybrid lipid-inorganic nanoparticles for
cancer theranostic. The considerably low toxicity, ease of improvising surface chemistry,
tunable size and shape, and substantial electronic property make Au a metal of choice for
preparing inorganic nanoparticles and their hybrid lipid nanoformulations that have great
potential for bioimaging site-specific drug release, and photothermal cancer therapy [93].
Other potential inorganic materials that have been explored for preparing hybrid lipid-
inorganic nanomaterial include silver and palladium nanoparticles. In addition, one of



Pharmaceutics 2021, 13, 840 14 of 24

the most commonly used approaches include SPIONs, which are ideal contrast agent for
MRI owing to their biocompatibility and distinctive magnetic properties [94]. Moreover,
the potential of semiconducting nanoparticles (QDs) is becoming widely accredited in
bioimaging as optical probes over conventional organic dyes [95].

The recent study findings focusing on hybrid lipid-inorganic nanomaterials are clear
evidence of their potential in cancer theranostic. In a study, Kang and Ko have developed a
hybrid lipid inorganic nanomaterial by efficiently incorporating docetaxel in Au nanoparti-
cles and then encapsulating this Au nanoparticle in thermosensitive phospholipid lipid
bilayer coating [96]. The outcome of the study established enhanced cellular uptake, in-
ternalization, and cytotoxicity of hybrid lipid inorganic nanoformulation in comparison
to uncoated drug-loaded Au nanoparticles. The study findings strongly encourage the
implication of drug-encapsulated lipid-coated anisotropic nanoparticles for amplifying
therapeutic prospects of chemotherapy [96]. The recent research concluded the feasibil-
ity of breast cancer cell detection via conformance of the inorganic metal-nanoemulsion
hybrid [97]. An improvisation was made in perfluorocarbon or QD nanoemulsions by incor-
porating N-hydroxysuccinimide modified phospholipids in the surfactant formulation, as
this would enable conjugation of prepared hybrid QD nanoemulsion with the amine groups
in antibodies. Such antibodies targeting growth factors are overexpressed in human breast
cancer cells, which would be easily able to bind with nanoemulsions. The research study
demonstrated the selective linking of hybrid nanoemulsion with its target breast cancer
cell line [97]. Interestingly, low-density lipoprotein (LDL) encapsulating Au nanoparticles
were explored for their biolabeling capability [98]. Administration of dodecanethiolcapped
Au nanoparticles loaded LDL in mice with B16-F10 tumor resulted in selective uptake
by tumor-associated macrophages that play a vital role in metastasis of tumor cells. The
study findings confirmed the substantial potential of hybrid Au-LDL nanoformulation in
in vivo tracking and treating of tumors without causing off-site damage [98]. In another
study by Bao and coworkers, hybrid liposome nanoformulation wherein paclitaxel Au
nanoparticles were embedded in its bilayer lipid lamellae demonstrated remarkably pro-
longed release rate and extended circulation time. The hybrid exhibited notable potential
for enhancing the therapeutic efficacy of incorporated anticancer agents [99]. Mounting
evidence has elucidated the potential of palladium nanoparticles as contrast agents for
photothermal and anticancer therapy. Nevertheless, research works focused on hybrid lipid
assemblies incorporating such palladium nanoparticles established excellent anticancer
activity as well as site-specific uptake and internalization of a therapeutic agent through
these hybrids [100,101]

Certainly, there are serious toxicity concerns with the use of inorganic nanomaterial.
For example, oxidation of silver (Ag) to toxic Ag+ ion in biological milieu can cause toxic
effects that must be controlled. Here hybrid lipid encapsulation could come to the rescue
of such lethal transformation. By tuning the lipidic membrane composition, the release of
Ag+ ions can be prevented. Moreover, studies have established that the physicochemical
features, size, shape, surface, coating, surface area contribute significantly in dictating the
hybrid lipid inorganic nanomaterial toxicity and its biological interactions [102]. Therefore,
skillfully designed hybrid lipid inorganic nanomaterial exhibits the potential of overcoming
the toxicity issue of incorporated metals.

4.4. Cancer Tumor Cell Targeting Theranostic Vector

At present, the active area of targeting circulating tumor cells (CTC) via theranostic
vectors before the homing and progression of carcinomas is largely explored for improving
cancer therapeutic intervention. The CTCs are those cells that are detached from primary
solid tumors and traverse through blood and lymph to form secondary tumors [103]. There-
fore, detection and targeting of CTC may result in early diagnosis and prevention of cancer
and its metastasis. Determination of CTC concentration in blood could provide valuable
information about the diseased state [103]. Therefore, estimating CTC concentration would
contribute significantly in monitoring remission and relapse and assessing response to
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chemotherapy [103]. In a study by Bhattacharyya and associates, antibody-targeted Au
nanoparticles were employed for CTC detection in breast cancer cell line T47D [103]. The
study outcomes established Au nanoparticles as a promising approach for detecting and
capturing CTC in a photoacoustic flowmeter. The study findings established an abundant
scope of diagnosis of disease at an early stage in various solid tumors and its successful
treatment. Such encouraging findings mark a new paradigm for cell-specific molecular
analysis for individualized cancer therapy via capturing of CTC [103].

5. Impact of Physicochemical Attributes of Lipid Nanoparticles in Improving In Vivo
Performance of Cancer Theranostics

A recent study conducted by Tahmasbi and associates established that physicochemi-
cal facade, predominantly shape and size, greatly influences the efficiency of the lipidic ther-
anostic nanomedicines [104]. Mounting literature confirmed that spherical nanomedicines
having a diameter within 20−100 nm lead to optimal tumor accretion owing to the EPR
effect. However, dissimilar EPR attributes have been testified owing to nonspherical
nanostructures (i.e., nanorods) [104,105].

The EPR effect refers to the selective buildup of lipidic theranostic nanomedicine at the
tumor locations through extravasation via endothelial cells from the dripping vasculature.
Accounting to the recent evidence, the physicochemical attributes of the lipidic theranostic
nanomedicine comprising size, shape, charge, etc., possess greater potential in dictating
tumor accumulation in contrast to active targeting on the exterior of nanomedicines [105].
Consequently, lipidic theranostic nanomedicine can be formulated for targeted tissues
as well as for non-specific cell absorption by optimizing their physicochemical prop-
erties in the absence of targeted ligands [105]. Lately, it has been verified that shape
greatly impacts cellular uptake [106,107]. Myriads of studies confirmed the diversified
morphology-dependent anticancer efficacies for the same chemical compositions [108,109].
For the discoidal shape of lipidic nanomedicine having sizes <50 nm, tumor accumulation
efficiency is not explored until recently [110–113]. For lipidic theranostic nanomedicine
greater than 100 nm, needle-like rods have shown the maximum cellular uptake, trailed by
shapes such as spheres, cylinders, and cubes, as evident in supporting studies [104,105].
For sub-100 nm lipidic theranostic nanomedicine, spheres demonstrated enhanced uptake
by tumor cells over rods [104,105].

Nonetheless, the fluidity of lipid membranes can fluctuate with charge (negative or
positive) and may persuade local gelation [104]. Neutral and slightly negative lipidic
theranostic nanomedicine are found to maintain the longest half-life in blood [104,112,113].
Lipidic theranostic nanomedicine that has a positive charge could ensue the issues of
platelet aggregation and hemolysis [104,112,113]. The competence of such a platform
to fine-tune surface charge is another benefit in addition to size and shape adjustment
that plays a crucial role in improvising biological behavior and clinical outcomes of lipid
theranostic nanomedicines [104].

The absence of specificity with inactive targeting determined by the nanosize of lipidic
theranostic nanomedicine has restricted efficiency. Mounting literature revealed that active
targeting to the tumors might augment the intracellular uptake and lessen the lipidic
theranostic nanomedicine’s spread in healthy tissues. A rational approach to attain this
objective is to exploit specific interactions between the targeting molecules on the lipidic
theranostic nanomedicine’s surface and overexpressed receptors of the cancer cells. Few
ligands, namely transferrin, and folate can considerably enhance site-specific targeting [104].
Predominantly, folate has emerged as one of the targeting ligands for selective delivery of
involved diagnostic and therapeutic agents owing to the overexpressed folate receptor (FR)
in a myriad of tumor tissues, including kidney, lung, ovarian, cervical, breast, epithelial,
brain and colon tumors, whereas limited in healthy organs and tissues. Folic acid being
nonimmunogenic, unchanging over wide ranges of temperatures and pH values, can bind
to the folate receptor after pairing with drugs or imaging markers. Consequently, folic acid
has been extensively used as targeted therapy in cancers on account of its high binding



Pharmaceutics 2021, 13, 840 16 of 24

affinity to FR, simplicity of conjugation to different lipidic theranostic nanomedicine, and
the widespread distribution of FR in a substantial portion of human cancers [104]

6. Limitation of Lipid Nanoparticles-Based Cancer Theranostics

The major limitation with lipidic nanoparticles is their tendency to fuse, especially if
the size of prepared nanoformulation is below 100 nm [114]. The fusion, in turn, results
in increased non-uniformity and dispersity in size and escape of encapsulated contents
from the lipid vesicles [114]. However, this issue can be addressed by covering the surface
of lipid nanoparticles with polyethylene glycol coating. Another issue of great concern
with lipidic nanoparticles is their stability over a longer duration of periods. It is certain
that after storage for long periods, apparently intact lipid nanomaterials show a different
biodistribution due to changes in physicochemical characteristics and alterations of the
surface coating attributes [114].

Nonetheless, Carregal-Romero and associates have raised forth this very significant
aspect of the influence of long-term stability of polyethylene glycol coating on contrast
agent encapsulated nanoparticles and its in vivo fate [114]. They investigated the biodis-
tribution of iron oxide nanoparticles, which were employed as dual contrast agents for
MRI and SPECT imaging [114,115]. They developed these theranostic nanoparticles by co-
precipitation of 111In-doped magnetic nanoparticles, followed by coating with polyethylene
glycol [115]. Then they examined the physicochemical characteristics of freshly prepared
nanoparticle solution and an aged nanoprobe solution that was stored for 9 months. The
characteristic evaluation demonstrated comparable results of size distributions, zeta poten-
tials, and morphology. However, after systemic administration of these two nanoparticle
preparation in mice, completely distinct biodistribution pattern were observed [115]. The
freshly prepared nanoprobe solution was mostly internalized in the kidney, whereas the
aged nanoparticles were heavily concentrated in the liver. Therefore, the study outcomes
concluded that there might occur some small level structural changes in polyethylene gly-
col coating that cannot be detected by dynamic light scattering and transmission electron
microscopy, which have led to a remarkable alteration in in vivo behavior. Therefore this
report established a substantial role of long-term stability polyethylene coating in dictating
the biological behavior of theranostic nanoparticles [115].

The size of theranostic nanomedicine is also very crucial in determining its in vivo
fate and clinical outcomes. It has been established in different studies that if the diameter
of nanoparticles is larger than 100 nm then the particles get accumulated in the liver
and spleen, whereas nanoparticles having a diameter smaller than 10–15 nm are usually
eliminated by renal clearance [114]. Therefore nanomedicines with desirable particle
diameters between 10 and 100 nm are supposed to have longer blood circulation times and
accessibility to tumoral tissues and organs [114]. Furthermore, low polydispersity index
(PDI) and size stability are very significant as they avert aggregation of nanoparticles, which
could occur because of an inappropriate surface coating. The aggregated nanoparticle
can be easily engulfed by the RES [114,115]. Nonetheless, polyethylene glycol coating
is very effective in ensuring stability to the nanoparticles and thereby mitigating their
opsonization, macrophage uptake, and RES clearance and increasing the blood circulation
time [114].

Importantly, with every approved lipid nanomedicine, a possibility of intratumoral
heterogeneity and variability of response to chemotherapy is evident. Unquestionably, the
tumor microenvironment contributes largely in dictating how chemotherapeutic agents
interact with cancer cells in that particular microenvironment, which in turn can impact
proliferation, differentiation, morphology, and a range of cellular functions [116]. To envis-
age the clinical outcome of lipid-based theranostic nanomedicine, substantial emphasis
should be given to universal heterogeneity issues with extraordinary conformity in terms of
cancer cells, tumor microenvironment, and pathophysiological architecture [116]. However,
with current theranostic and imaging modalities, complete biological approximation of the
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interaction of native tumor and a chemotherapeutic agent is not possible, which greatly
hampers the accurate mapping and clinical findings.

7. Challenges in Clinical Translation of Lipid Nanoparticles for Cancer Theranostics

An extensive scope has been conveyed by lipidic theranostic nanomedicine in enhanc-
ing the health of humans through providing an understanding of diagnosis, prevention,
and treatment of diseases. Even after substantial technological advancement in this area
(as presented in Table 2), there is still a long way ahead for lipidic cancer nanotheransotic
in becoming a new criterion for the diagnosis and treatment of diseases. Nano-bio interac-
tion is a prime opposition for the transferal of lipidic theranostic nanomedicine to clinics.
Disorders like inflammation, immunoreactions, or related illness can come up when a
contrasting agent in lipidic theranostic nanomedicine interacts with biological material
because of its incompatibility or potential toxicity. The extent of toxicity is immensely
based on some parameters, which include the solubility of the nanoformulation, size, and
zeta-potential [117]. Once entered into a biological system, nanovesicles tend to interact
with proteins, and that results in the development of ‘corona’ on its surface. Such adsorp-
tion, in turn, results in the alteration of their stability, biodistribution, dispersibility, toxicity
profile, pharmacokinetics, and size [118,119]. This has also been shown in many studies
that adverse immunogenic reactions and allergies are happening by nanoparticles [120,121].
Hence, it becomes vital to study the physicochemical characteristics of nanomedicines for
heterogeneity and pathophysiology of human diseases. More importantly, a generalized
size outlook of lipidic theranostic nanomedicine is not possible as chemotherapy is distinct
for every patient, and this may pose a hurdle in clinical translation [122]. Nanomedicines
with good therapeutic efficacy might not be a good diagnostic tool necessarily, as sug-
gested by the evidence. In a recent study, it was found that tumor uptake and tumor
visualization performed with anti-EGFR coated gold nanoparticles with 20 nm size showed
increased tumor uptake, whereas the same gold nanoparticles of 50 nm size illustrated
excellent CT contrast [123]. This study suggested that the size-dependent distribution of
theranostic nanomedicines in tumors limits its use as a theranostic agent [123]. Hence, the
safety profile of nanotheransotic in humans continues to be a major concern for which
long-term monitoring of patients in both early and advanced phases of clinical trials is
required. One more important obstruction for the clinical translation of lipidic theranostic
nanomedicines is the complexity in formulating a reproducible and controllable synthesis
process. Nanomedicines synthesis on a large scale faces challenges like varied physical
and chemical characteristics, low yield, and insufficient batch-to-batch reproducibility.
The complex and laborious manufacturing process of nanomedicines makes it difficult to
focus on physic-chemical attributes as the emphasis is more on quality and cost [122,124].
It becomes a task to produce lipidic theranostic nanomedicines on a large scale as they
constitute more precise chemistry and multifunctional unit. Moreover, control along with
good manufacturing practices are required to boost lipid theranostic medicine’s reach to
clinics from a laboratory.
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Table 2. Lipidic nanocarrier based cancer theranostic in clinical stage of progress.

Lipidic
Nanocarrier Attributes Cancer Type Sponsors Clinical Trial ID/Phase

Liposomes

Evaluating Immunogenic
Chemotherapy

Combined With Ipilimumab
and Nivolumab

in Patients With Metastatic
Luminal B Breast Cancer

Breast Cancer Oslo University
Hospital NCT03409198, Phase 2B

Liposomes

To study the distribution
profile and radiation

dosimetry of
188Re-BMEDAliposomes.

Tumors
Nuclear Energy

Research Institute of
Taiwan.

NCT02271516
Phase 1

Liposomes

To study the MTD of EphA2
siRNA –encapsulated

liposomes, evaluate efficacy in
the tumor cell, which we

cannot be cured by treatment.

Solid Tumors

M.D. Anderson Cancer
Center

National Cancer
Institute

(NCI)

NCT02191878
Phase 3

Lipid-based
Nanoparticles

To study proposes targeted
delivery cytotoxic drugs, via

formulated LTSL activated by
using

focused ultrasound (FUS).

Liver Tumor University of Oxford NCT02181075
Phase 1

Another important issue that is required to be addressed is the extensive gap between
regulatory authorities and the scientific community. Many government agencies are
monitoring the commercialization of nanomedicine based on regulatory issues related to
the safety profile, quality control, patent protection, and manufacturing practices. Lack of
clear regulatory and safety guidelines affects the timely and effective translation of lipidic
theranostic to market [125,126]. Even though the general regulatory standards have been
cleared by the nanomedicines presently available in the market, further revision is required
to be sure of the safety, efficacy, and quality of other nano theranostic for human use since
the present standards might not be sufficient.

Approach to Overcome the Challenges

A lot of research efforts are required to overcome the biological barriers associated
with lipidic cancer nanotheransotic. It is important to have a profound understanding of
the correlation of disease heterogeneity and patient biology with nanomedicine, which is
also the prime reason for the failures of promising nanoformulation in clinical trials. One
of the strategies for mitigating clinical translation failures is the arduous assessment of
nanoformulation in various animal models before starting the clinical trials. Expedient
information regarding the suitability of lipidic theranostic nanomedicine can be obtained
through preclinical studies before treatment and imaging of human subjects [127]. Nanotox-
icology profiles consisting of standardized assay protocols for immunotoxicity, genotoxicity,
and cytotoxicity should be to be implemented and followed to evaluate the potential risk
in patients [128].

Academic laboratories are coming up with nanomedicine-based drug-delivery systems
with great emphasis on new technological and scientific developments that succeed at a
small scale. These laboratories normally know the technical issues, which occur in the
industry for the commercializing processes. A strong collaboration among pharmaceutical
companies and academic laboratory groups is required to be established to bridge this gap.
There is a need to develop modified rules, which will be listed under good manufacturing
practices that are suitable for large-scale synthesis of lipidic theranostic nanomedicines.
To identify the key process and formulation variables for nanomedicine optimization
and address batch-to-batch variation, optimization software such as Aspen (AspenTech,
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Bedford, MA, USA) can be implemented in an industrial setting. For tightly controlled and
robust manufacturing, this might be instrumental [129]. In conclusion, a positive outcome
in manufacturing depends highly on how well the personnel is trained regarding the
challenges, hurdles, and specificities related to the products. There is no doubt regarding
the influence of lipidic theranostic nanomedicines on the health of humans in the clinic
still. If the aforementioned lessons are applied in the early stages of development, it can
help the producers prepare to develop efficient products.

8. Conclusions

The present manuscript brings forth the latest research updates in the field of lipid-
based nanocarriers on cancer theranostic. The study findings are very motivating and
strongly encourage a splendid exploration of lipidic nanocarrier in the area of cancer
theranostic and make the outcomes clinically swappable. Moreover, this review provides
a sound discussion over the impact of physicochemical attributes of lipid nanoparticles
in improving in vivo performance of cancer theranostics. The review also discusses the
limitations and suggests relevant solutions for the successful development of lipid-based
cancer theranostic nanomedicines of improved attributes to pave their way to the clinics.
Additionally, this review will provide a convenient guide for the researcher to know the
significant findings of the recent studies carried out in the field of lipid nano carrier-based
cancer theranostic in the last few years.
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