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Abstract: Thousands of microorganisms coexist within the human microbiota. However, certain
conditions can predispose the organism to the overgrowth of specific pathogens that further lead
to opportunistic infections. One of the most common such imbalances in the normal oral flora is
the excessive growth of Candida spp., which produces oral candidiasis. In immunocompromised
individuals, this fungal infection can reach the systemic level and become life-threatening. Hence,
prompt and efficient treatment must be administered. Traditional antifungal agents, such as polyenes,
azoles, and echinocandins, may often result in severe adverse effects, regardless of the administration
form. Therefore, novel treatments have to be developed and implemented in clinical practice. In this
regard, the present paper focuses on the newest therapeutic options against oral Candida infections,
reviewing compounds and biomaterials with inherent antifungal properties, improved materials for
dental prostheses and denture adhesives, drug delivery systems, and combined approaches towards
developing the optimum treatment.

Keywords: fungal infections; oral candidiasis; antifungal drugs; anti-Candida compounds; antifun-
gal biomaterials

1. Introduction

The oral microbiota is a normal part of the oral cavity, including several hundred
to several thousand different microorganisms. Its role is to protect against colonization
of extrinsic infectious agents, which could affect the overall health [1]. However, under
certain circumstances, oral infections can occur. Poor oral hygiene, malnutrition, use of
antibiotics, trauma, endocrinopathies, and use of removable prosthesis are only a few of
the factors that favor infections by invasive fungal pathogens [2–4].

Candida species represent a class of such pathogens. In healthy individuals, Candida
is a harmless organism found in the mucous membranes such as ears, eyes, nose, mouth,
gastrointestinal tract, reproductive organs, and skin. In immunocompromised patients,
it becomes overgrown, causing opportunistic infections, with symptoms varying from
mild localized rashes to severe disseminated infections. Candida infections are known
as candidiasis (sometimes found in the literature as candidosis), the Candida infections
localized in the oral cavity being generally termed oral candidiasis [4–8].

Oral candidiasis affects the intraoral, pharyngeal, and perioral regions, being a fre-
quent source of discomfort, pain, loss of taste, and aversion to food [9,10]. Moreover,
when the immune system is weakened or a disruption in the host environment, there is a
risk of tracheal or esophageal extension and even systemic dissemination, which may be
life-threatening [6,11,12].
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Oral candidiasis treatment consists of the administration of conventional antifungal
agents. Nonetheless, the efficiency of this approach is impaired by the emergence of
drug-resistant Candida species. Hence, new therapeutic strategies have to be developed [7].

In this respect, this paper reviews oral candidiasis from the perspectives of causative
pathogens, risk factors, and classic treatment options, further focusing on novel alternatives
against Candida infections. Specifically, there are extensively described intrinsic anti-Candida
compounds and biomaterials, replacements for classic prostheses and adhesives materials,
controlled release drug-delivery systems, and combinations of these strategies to obtain
optimum treatment.

This review aims to thoroughly present the state of the art of oral candidiasis to set a
clear context for future research. Explicitly, through a deep understanding of the current
and developing treatment options, better solutions can be envisaged for preventing the
overgrowth of drug-resistant Candida species.

2. Causative Pathogens and Risk Factors

Candida is a genus of yeast fungus belonging to the division Ascomycota [13] that
can exist both as a commensal organism and an opportunistic pathogen in the human
body [10,14–16]. Candida species are normal microbiota components of the mucosal oral
cavity, gastrointestinal system, and genitourinary tracts [17]. When there is an imbal-
ance in the normal oral flora, the overgrowth of Candida spp. may occur, thus producing
oral candidiasis [5]. Candida spp. are present as yeasts in a healthy state, but under cer-
tain conditions, may transform into a pathogenic hyphael form [10]. The predisposing
factors of oral candidiasis development include immune dysfunctions, immune suppres-
sant drugs, prolonged antibiotic therapy, xerostomia, diabetes, human immunodeficiency
virus (HIV) infection, chemotherapy, radiotherapy, alcohol and tobacco use, and dental
prostheses [10,17–19] (Figure 1).

Figure 1. Classification of risk factors associated with oral candidiasis development. Created based
on information from literature references [6,10,17–20].

Candida is one of the most common causes of fungal infections worldwide, being
responsible for more than 400,000 infections annually [21]. The incidence of candidiasis
has increased recently due to the aging population and growing numbers of immunocom-
promised patients [22].
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Out of the Candida species, Candida albicans is considered the primary causative
pathogen of oral candidiasis [14,17,23]. This is due to its high capability of adherence
to oral tissues and denture surfaces, resulting in biofilm formation [14,24]. C. albicans is
also the most virulent pathogenic Candida species, accounting for 70–80% of isolates from
oral mucosal lesions [25].

Oral candidiasis can be also caused by non-albicans Candida species. Microorgan-
isms like C. glabrata, C. guillermondii, C. krusei, C. parapsilosis, C. pseudotropicalis, C. stel-
latoidea, C. tropicalis, C. keyfr, and C. dubliniensis are also responsible for oral infections,
becoming more prevalent and important opportunistic pathogens in immunocompromised
patients [5,14,22,26–29] (Figure 2). Moreover, some of these species have intrinsic resistance
to antifungals (e.g., C. glabrata and C. krusei) and/or rapidly develop such resistance (e.g.,
C. parapsilosis and C. tropicalis) [12,30].

Figure 2. Candida spp. causing oral candidiasis. Created based on information from literature
references [5,10,14,17,22,26–28].

Identifying the responsible pathogen for the infection is essential for choosing the
best-suited antifungal agent, as susceptibility to different drugs varies between Candida
species (Table 1).

Besides, Candida spp. may further interact with various microorganisms within the
mouth, leading to a complex and mixed biofilm with an organized structure that is difficult
to remove [24]. Pathogens accumulation on the host’s mucous membranes, acrylic surfaces
of removable orthodontic devices, and denture prostheses results in the production of
proteolysis enzymes that damage mucosal cells [18]. Hence, there is created a dangerous
focus of inflammation that increases the risk of cerebral strokes, decompensated glycemia,
and focal and autoimmune diseases [17]. Coupled with their drug resistance, biofilms lead
to challenges in developing therapeutic approaches to prevent and cure oral infections [13].

Severe fungal infections have been especially reported in HIV infected individuals,
patients undergoing hematopoietic stem cell transplantation, and those receiving intensive
chemotherapy and radiotherapy. In particular, the latter factors facilitate fungal over-
growth as they modify the physiology and microbial ecology of the oral environment to
prolonged xerostomia and hyposalivation. Moreover, due to the compromised immune
defense mechanisms, systemic infections may occur, thus resulting in significant patient
morbidity [29]. To avoid infection generalization, prophylaxis treatment against Candida
can be provided to predisposed patients. However, it must be proceeded with care as, in
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hematological malignancies and stem cell transplant recipients, a microbiota imbalance
may occur, and Aspergillus and other molds may overgrow to produce dangerous fungal
infections instead [31].

Table 1. Comparison of in vitro susceptibilities of different Candida species to conventional antifungal agents. Adapted from [29], BMC
Infectious Diseases, 2018.

Candida Species

Antifungal Agent Amphotericin Fluconazole Anidulafungin Caspofungin
MIC Range MIC50 MIC90 MIC Range MIC50 MIC90 MIC Range MIC50 MIC90 MIC Range MIC50 MIC90

C. albicans 0.016–16 1 4 0.063–64 0.5 8 0.008–0.25 0.031 0.125 0.008–8 0.25 1
C. dubliniensis 0.063–0.125 0.031 2 0.063–0.125 0.125 0.125 0.008–0.125 0.125 0.25 0.25–2 0.5 2

C. glabrata 0.016–4 1 2 0.25–64 8 64 0.016–1 0.063 1 0.008–2 0.5 2
C. krusei 0.063–2 0.5 1 0.25–64 8 64 0.016–0.25 0.125 0.25 0.063–4 2 4

C. tropicalis 0.031–2 1 2 0.063–8 4 8 0.008–0.063 0.063 0.063 0.031–8 0.5 8
C. keyfr 0.016–1 0.5 1 0.25–32 4 32 0.031–0.063 0.063 0.5 0.125–0.05 0.25 0.5

MIC—minimum inhibitory concentration (µg/mL).

3. Classic Treatment Options

In denture wearers, oral candidiasis’ current management relies on good hygiene
practices, close attention to proper denture fit with tissue conditioners/liners/rebases,
and administration of antifungal drugs [20]. Immunocompetent patients respond well to
topical or oral medications, but there is a high risk of systemic infection in the case of the
elderly and medically or immunologically compromised patients [4].

Depending on the affected tissues, oral candidiasis can be classified into primary and
secondary. Primary candidiasis refers to infections that only involve oral or perioral tissues,
while secondary candidiasis is a systemic Candida infection that collaterally affects the oral
cavity [6]. Based on the clinical manifestations, primary oral candidiasis can be further
divided into several subclasses, as presented in Figure 3.

Figure 3. Types of oral candidiasis. Created based on information from literature references [6,14,32].

Depending on the type of oral candidiasis, several treatment options can be employed
(Table 2). The most conventional and efficient currently available drugs for treating oral
candidiasis are polyenes (e.g., amphotericin B and nystatin), azoles (e.g., miconazole,
clotrimazole, fluconazole, itraconazole, voriconazole, posaconazole, and ketoconazole),
and echinocandins (e.g., anidulafungin, caspofungin, and micafungin). These antifungal
agents can be administered either locally or systemically, in various forms ranging from oral
suspensions, ointments, creams, gels, and troches, to tablets, pastilles, and even intravenous
infusions. However, due to their toxicity, adverse side effects, and acquired resistance,
these therapeutics action is often hindered [7,8,15,19,22,27,33–35].
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Table 2. Antifungal medication.

Drug Form Dose Indication Adverse Effects Refs.

Amphotericin B Infusion 100–200 mg/6 h
Intraoral candidiasis,
chronic erythematous

candidiasis

Renal, cardiovascular,
spinal and

neurological effects
[10,36,37]

Nystatin
Suspension 4–6 mL/6 h Intraoral candidiasis Well tolerated [10,36]
Ointment 2–4 applications/day Angular cheilitis Well tolerated [10,36]

Tablets/Pastilles 2 every 8 h Denture stomatitis
Uncommon effects:
nausea, vomiting,

gastrointestinal effects
[36,38]

Fluconazole
Tablets 50–100 mg/day

Pseudomembranous
candidiasis, acute

erythematous
candidiasis, chronic

hyperplastic
candidiasis

Nausea, vomiting,
diarrhea, abdominal

pain
[36,37]

Suspension 10 mg/mL Oropharyngeal
candidiasis

Nausea, vomiting,
diarrhea, abdominal

pain
[36,37,39]

Miconazole Gel/cream 100 mg/6 h
Angular cheilitis,

chronic erythematous
candidiasis

Uncommon effects:
burning, irritation,
nausea, diarrhea

[10,36,37]

Ketoconazole
Gel/cream 3 times/day Angular cheilitis Nausea, vomiting [10,36]

Tablets 200 mg, 2–2/day

Pseudomembranous
candidiasis, acute

erythematous
candidiasis, chronic

hyperplastic
candidiasis

Abdominal pain [36,37]

Clotrimazole
Gel/cream 3 times/day Angular cheilitis

Occasional effects:
skin irritation, burning

sensation
[10,36]

Tablets/troches 5 times/day Intraoral candidiasis
Occasional effects:

skin irritation, burning
sensation

[10,36]

Betamethasone
dipropionate
clotrimazole

Cream 4 times/day Chronic angular
cheilitis Local irritation [10,40–42]

Itraconazole Capsules 100–200 mg/day

Pseudomembranous
candidiasis, acute

erythematous
candidiasis, chronic

hyperplastic
candidiasis

Nausea, vomiting,
diarrhea, abdominal

pain
[36,37]

Voriconazole
Infusion

First day: 6 mg/kg
once every 12 h

Rest of the treatment:
4 mg/kg once every 12 h

Intraoral candidiasis Neuropsychiatric and
gastrointestinal effects [37,40,43,44]

Tablets

First day: 200–400 mg
once every 12 h

Rest of the treatment:
100–200 mg once every

12 h

Intraoral candidiasis Neuropsychiatric and
gastrointestinal effects [37,40,43,44]

Posaconazole Oral suspen-
sion/Tablets

First week: 200 mg,
4 times/day

Rest of the treatment:
400 mg, 2 times/day

Oropharyngeal
candidiasis

Headaches,
gastrointestinal effects [37,40,45]
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Table 2. Cont.

Drug Form Dose Indication Adverse Effects Refs.

Anidulafungin Infusion

First day: 3 mg/kg/day
(max 200 mg)

Rest of the treatment:
1.5 mg/kg/day (max

100 mg)

Invasive candidiasis

Occasional effects:
anemia, diarrhea,
pyrexia, vomiting,

hypokalemia

[19,46,47]

Caspofungin Infusion
First day: 70 mg/day
Rest of the treatment:

50 mg/day
Invasive candidiasis

Occasional effects:
phlebitis, fever,
abdominal pain,
nausea, diarrhea,
headache, rash,

leukopenia,
hypokalemia

[19,47]

Micafungin Infusion 1–2 mg/kg/day (max
100 mg/day) Invasive candidiasis

Occasional effects:
fever, nausea,

headache, rash
[19,47]

Conventional local oral delivery formulations usually exhibit an initial burst release
that rapidly decreases to subtherapeutic concentrations [8], whereas regular antifungal
systemic drugs result in severe side effects [48]. Therefore, novel treatment options must be
considered for improving anti-Candida medicine efficiency while protecting the organism
from potentially harmful effects.

An alternative to medication is the use of antiseptic mouthwashes for preventing oral
candidiasis development [49]. Their inclusion in oral hygiene practices helps avoid exces-
sive colonization of fungal pathogens and delay Candida biofilm formation. Particularly,
mouthwashes containing cetyl pyridinium chloride or chlorhexidine were shown effective
against both planktonic and biofilm embedded fungal cells [50].

4. Novel Treatment Options

As oral candidiasis’ current treatment is becoming rather ineffective due to the emer-
gence of resistant strains, there is an increased research interest towards novel treatment
options. The investigated strategies include the use of intrinsic anti-Candida materials,
antimicrobial nanoparticles, and natural antifungal essential oils and extracts, replacing
traditional prosthesis materials and denture adhesives with biomaterials capable of pre-
venting biofilm formation, including regular antifungal agents into targeted and controlled
release delivery systems, and combined approaches towards developing the optimum
treatment [3,4,48,51–53] (Figure 4).

4.1. Intrinsic Anti-Candida Biomaterials/Compounds

Several materials inherently have antifungal properties that can be exploited in de-
veloping superior treatments for oral candidiasis. In this respect, polymeric materials,
inorganic nanoparticles, and natural products with intrinsic anti-Candida activity are fur-
ther discussed.
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Figure 4. Schematic representation of different biomaterial strategies to combat surface-associated Candida biofilms.
Reproduced from [21], Frontiers in Microbiology, 2020.

4.1.1. Polymeric Materials

Chitosan is a natural polymer possessing several beneficial properties, such as biode-
gradability, biocompatibility, fungicidal, antimicrobial, and antitumor activities [54–57].
It is considered a promising component of mouthwashes and denture adhesives for pre-
venting oral candidiasis [55]. Moreover, low-molecular-weight chitosan solution can be
effectively used as an antifungal denture cleanser, showing a significant reduction in C. albi-
cans viability in biofilms formed on polymethyl methacrylate [58]. Recently, Ikono et al. [59]
examined chitosan nanoparticles of 20–30 nm in diameter for their ability to inhibit C. al-
bicans biofilm growth following initial cell attachment. After 3 h of incubation, a greater
than 50% reduction in biofilm mass was reported, concluding that chitosan nanoparticles
possessed inherent antibiofilm activity but could not entirely inhibit or disrupt Candida
biofilms [21].

Nylon-3 polymers have been proven to have significant activity against pathogenic
strains of C. albicans that are resistant to conventional medication. Particularly, nylon-3
polymers with β-amino residues (βNM) in their backbone structure attracted more interest
due to their resemblance to proteins that induce biocompatibility [60–63]. Moreover, such
nylon-3 polymers can be easily prepared, being promising as clinical antifungal agents [60].
Liu et al. [60] have reported that poly-βNM with 20-mer average length displayed strong
and selective activity against C. albicans strain K1, while only very little hemolysis or toxicity
toward 3T3 fibroblasts was detected. Rank et al. [62] have also researched the antifungal
activity of nylon-3 polymers. They have evaluated the action of a host defense peptide-like
nylon-3 copolymer, obtaining efficacy levels comparable to those of amphotericin B and
fluconazole, displaying only mild to moderate toxicity toward mammalian cells.

Guanidines are another class of cationic polymers that can be used as antiseptics
and antimicrobials. Particularly, polyhexamethylene guanidine hydrochloride (PHMGH)
was evaluated for its antifungal properties [61,64–66]. Choi et al. [67] reported a more
potent antifungal activity of PHMGH than amphotericin B, with no hemolytic and lactate
dehydrogenase release activities. The researchers also investigated the mechanism of action
against C. albicans, proving that PHMGH exerts its fungicidal effect by forming pores in the
cell membrane. Martini Garcia et al. [64] tested an aqueous solution containing PHMGH
against mature Candida biofilms formed on denture liner specimens. They registered a total
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fungal elimination after 10 min of contact without affecting the mechanical properties of
the denture liners.

4.1.2. Inorganic Nanoparticles

Silver nanoparticles (AgNPs) are some of the most studied inorganic nanoparticles, be-
ing widely utilized for their antimicrobial activity [68,69]. Due to their unique physicochem-
ical properties, beneficial interactions with living structures, and nontoxicity for healthy hu-
man tissues, AgNPs may represent key components in developing novel biomedical strate-
gies [21,70–77]. Researchers have reported considerable antifungal activity against Candida
spp., with potent antibiofilm and cell disruption ability [13,27,78–80]. Monteiro et al. [81]
indicated that AgNPs could be used in the treatment of denture stomatitis. The researchers
noticed a higher antifungal activity against C. glabrata than against C. albicans, and more
effective action in inhibiting Candida biofilm formation than in controlling mature biofilms.

Selenium nanoparticles (SeNPs) have recently gained attention for their antimicrobial
properties [21,82]. Shakibaie et al. [83] have demonstrated the anti-Candida effects of
nanoscale biogenic elemental Se, stating that the mechanism of action requires additional
investigation. Guisbiers et al. [84] have synthesized pure SeNPs that successfully inhibited
C. albicans biofilm formation by adhering to the biofilm, penetrating into the pathogen,
and consequently damaging the cell structure by substituting sulfur with selenium. These
nanoparticles were able to reduce by 50% the fungal burden in mature biofilms at a
concentration of only 25 ppm.

Several nanoscale metal oxides have also been observed to have antifungal properties.
Nanoparticles of iron oxide [85–88], zinc oxide [89–93], magnesium oxide [93–96], calcium
oxide [94,97], copper oxide [98–100], titanium dioxide [101–104], bismuth oxide [105,106],
and silver oxide [107] display fungistatic and/or fungicidal activities that are useful in the
treatment and prevention of oral candidiasis.

4.1.3. Natural Products

Natural products represent a great source of various useful chemical compounds that
can be included in diverse biomedical applications [108]. Recently, there is an increased
interest in using natural essential oils and extracts as a safer and more efficient alternative
to classic antifungal drugs [18,109,110].

Basil extracts have potential use against Candida spp. [111,112]. Roozbehani et al. [18]
evaluated the effect of basil extracts on C. albicans and C. dubliniensis adhesion to acrylic
surfaces of removable orthodontic appliances. The researchers concluded that such extracts
could inhibit the growth, adherence, and formation of biofilms, having great potential as
antifungal solutions or mouthwashes.

Equisetum giganteum, popularly known as ‘horsetail’ is another plant of antifungal
importance [113–115]. Martins Almeida et al. [116] have incorporated E. giganteum hy-
droethanolic extracts into denture adhesives, interfering in the development of C. albicans
biofilm. This plant extract significantly minimized pathogen colonization and reduced its
metabolism, being a promising solution for treating and preventing denture stomatitis.

Coriandrum sativum essential oil has also been shown to have inhibitory effects on
Candida spp., acting similarly to nystatin and amphotericin B [110,117,118]. The results
obtained by Furletti et al. [119] indicate the potential use of crude C. sativum oil in the
prevention and treatment of oral candidiasis, as it demonstrated strong activity against
both Candida spp. planktonic cells and C. albicans biofilm.

Curcumin is an important compound that can be extracted from turmeric [120]. Its
antifungal activity is exhibited through various mechanisms, such as targeting metabolic
paths, inducing apoptosis, and increasing reactive oxygen species. These properties of
curcumin are effective in the design of drug formulations with fewer side effects and
superior performance [53,121–124]. Narayanan et al. [125] have evaluated curcumin’s
inhibitory action against C. albicans, C. parapsilosis, C. glabrata, and C. dublieniensis, proving
its potential as a therapeutic alternative to conventional antifungals.
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Cinnamon essential oils, cinnamon extracts, and pure compounds also show sig-
nificant antimicrobial activities against oral pathogens [126]. The antifungal properties
of cinnamon are more pronounced than its antibacterial activity, indicating potential
use in candidiasis treatments either as the main or a complementary agent [127–130].
De Araujo et al. [131] analyzed the efficacy of mouthwash and spray containing essential
oil of Cinnamomum zeylanicum Blume for the treatment of oral candidiasis. A mycological
analysis demonstrated a reduction of 61% and 33% of Candida spp., isolated from oral
mucosa and dentures, respectively. C. tropicalis elimination was reported in both sites.

Propolis is another natural product presenting anti-Candida activity [9]. Ota et al. [132]
performed an in vivo study on patients with full dentures who used a hydroalcoholic
extract of propolis as a mouth-rinse. The researchers studied the antifungal activity of
propolis by sensitivity tests on 80 strains of Candida yeasts (20 strains of C. albicans, 20 strains
of C. tropicalis, 20 strains of C. krusei, and 15 strains of C. guilliermondii). A clear antifungal
activity was reported, with the order of sensitivity C. albicans > C. tropicalis > C. krusei >
C. guilliermondii. Siquiera et al. [9] have also reported the susceptibility to red propolis
alcoholic extract of C. albicans, C. tropicalis, and C. glabrata isolated from chronic periodonti-
tis cases.

Camellia sinensis and Hypericum havvae possess exceptional anti-Candida properties
and can be used for developing alternative antifungal medication. Camellia sinesis has
been shown effective against C. albicans, C. parapsilosis, C. tropicalis, and C. glabrata, while
Hypericum havvae is a promising agent against C. glabrata, C. kreusei, C. parapsilosis, C. guil-
liermondii, and C. tropicalis [133].

4.2. Biomaterials for Oral Prosthesis and Denture Adhesives

Candida spp. have been shown to form biofilms on the surface of various medical de-
vices made of PMMA, silicone elastomer, polyurethane, polyvinyl chloride, polypropylene,
and polystyrene, among others [27]. Additionally, the use of denture adhesives, besides
their functional and psychological advantages, has been reported to predispose wearers to
oral candidiasis [134]. Hence, these two elements could hold great improvement potential
in synergy with fungicidal or fungistatic materials [135].

By coating or functionalizing currently used materials, the oral prosthesis can inherit
antifungal properties. As PMMA is one of the most commonly used polymers for fabricat-
ing a broad range of dental appliances, most of the studies found in the literature focus on
enhancing this material’s biocompatibility and functionality [27,48,136–141].

Jung et al. [20] have reported a novel fungal repelling multilayer coating for PMMA-
based denture materials. The researchers created an alternating structure through layer-
by-layer (LBL) self-assembly. Specifically, amphiphilic quaternary ammonium chitosan
was employed as the positive antimicrobial layer, whereas sodium alginate was used as
the negative layer to create LBL multilayers on the substrate material. The final composite
material was shown to be biocompatible toward mammalian cells and resist under shaking
and repeated brushing, indicating a novel long-term strategy in controlling fungal biofilms
formation on denture biomaterials.

Different attempts have been made aiming to modify and improve the mechanical
properties of PMMA by incorporating various metal oxide fillers and fibers [139]. For
instance, studies have proven that adding zirconia nanoparticles (ZrO2 NPs) to PMMA
denture base increases the density and reduces porosity, leading to enhanced flexural
strength, tensile strength, and fracture toughness [48]. Moreover, Gad et al. [142] have
demonstrated that the addition of ZrO2 NPs to cold-cured acrylic resin reduces Candida
adhesion due to its denser and less porous lattice. Gowri et al. [143] have attributed the
inhibitory activity of ZrO2 NPs against fungal strains to their interference in cell function
and resulting deformation in fungal hyphae. Hence, these nanoparticles could be included
in the material for repairing denture bases and in the PMMA removable prostheses as a
possible strategy for preventing denture stomatitis.
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Mahmudi et al. [144] proposed the addition of nano-zirconia into the denture adhesive
instead of the base material. The researchers observed C. albicans growth inhibition at
concentrations higher than 31 µg/mL. Therefore, ZrO2 NPs can be added to the denture ad-
hesives to reduce the possible occurrence and reduce the incidence of C. albicans. However,
the formulation is effective for prevention purposes only, as it did not cause pathogens
death. Alternatively, Namangkalakul et al. [22] stated that high-molecular-weight water-
soluble chitosan can serve as an antifungal adhesive to prevent and treat denture stomatitis.
Besides, denture adhesives could be used as delivery systems for antifungal agents without
affecting their adhesion capacity [134].

A significant reduction of C. albicans adherence was also noticed in PMMA imbedded
with spherical Ag NPs. Acosta-Torres et al. [140] have evaluated the flexural properties of
PMMA-Ag NPs material, showing that they fit within standard required values. Moreover,
the obtained biomaterial can be used as a biocompatible antifungal PMMA denture base
material that does not affect metabolism and proliferation and does not cause genotoxic
damage to cells. A similar strategy was approached by Nam et al. [145]. When combined
with Ag NPs at 20 wt %, the researchers reported that the resin displayed antifungal activity
while maintaining appropriate physical properties. Nonetheless, it was concluded that
color stability must be improved for clinical use.

PMMA behavior can also be improved by the addition of zinc oxide nanoparticles
(ZnO NPs). In this respect, Cierech et al. [138] have reported a four-fold higher inhibitory
activity on C. albicans growth for a 7.5% concentration of ZnO NPs, evaluating the efficacy
of nanocomposites PMMA-ZnO-NPs and sputtered ZnO nanoparticles on the PMMA
layer. The mechanism through which the antifungal effect is exerted is not completely
understood, but it is supposed to happen due to increased concentration of intracellular
singlet oxygen, leading to oxidative stress. Kamonkhantikul et al. [141] have also made
use of ZnO NPs. The researchers evaluated antifungal, optical, and mechanical properties
of heat-cured PMMA incorporated with various amounts of ZnO NPs with or without
methacryloxypropyltrimethoxysilane modification. At the same concentration of ZnO
NPS, silanized groups resulted in a greater reduction in C. albicans than the non-silanized
ones. The best outcomes were reported for PMMA incorporated with 2.5% silanized ZnO
NPs, which showed greater antifungal activity, less color difference, and opacity than non-
silanized nanoparticles while preserving the mechanical properties of the base material.

Another interesting approach to modifying PMMA is to reinforce this polymer with
nanodiamond (ND). Mangal et al. [139] have reported significant improvement in the
mechanical properties of PMMA with the incorporation of as little as 0.1 wt% ND resulting
in a more than 20% increase in flexural strength over unmodified PMMA. Moreover, the
researchers observed pronounced resistance to C. albicans and a significant reduction in the
formation of salivary biofilm.

4.3. Drug Delivery Systems

As several commonly used antifungal drugs present limited water solubility, poor
oral bioavailability, and limited formulation approaches, there is a strong need to develop
innovative drug delivery systems [146].

For the treatment of oral candidiasis, sustained drug release is required so that the
medication is retained in the oral cavity and produces an antifungal effect for a prolonged
time [8]. One patient-friendly option is to elute drugs from biomaterials in order to treat
and prevent the fungal infections associated with the use of dental prostheses [27]. In this
regard, nanofiber-based scaffolds have recently become popular due to their remarkable
properties such as low density, large specific surface areas, high porosity, and very small
pore sizes [8].

Another promising possibility is to use nanoparticles for drug delivery, as they im-
prove the biopharmaceutical and pharmacokinetic properties of antifungal agents. These
characteristics are further reflected in a greater pharmacodynamic potential, lower toxicity,
and prolonged action [147]. In particular, polymeric nanoparticles are attractive due to their
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two-fold role: drug nanocarrier and intrinsic antimicrobial agent [52]. As reported in the
literature, biodegradable polymers such as poly-lactic-glycolic acid (PLGA), chitosan, and
liposomes promote a slow, sustained drug release, thus diminishing the medicine dosage
and its associated toxicity. Hence, adverse effects are reduced without compromising the
therapeutic fungicidal action [15].

Lipid-based nanoparticles are also promising moieties for penetrating the biofilm
matrix and targeting fungal cells [21]. Al-Maghrabi et al. [148] have successfully encapsu-
lated miconazole into solid lipid nanoparticles (SLNs). According to the researchers, the
susceptibility of C. albicans to miconazole-loaded SLNs using a well-diffusion technique
indicated that the antifungal activity was enhanced when incorporated into the SLNs.
Similarly, lipid-based formulations of amphotericin B showed a significant decrease in side
effects (i.e., nephrotoxicity) while preserving its broad-spectrum antifungal activity [146].

4.4. Combined Approaches

Regardless of their individual efficacy, the above presented biomedical strategies work
best in synergy. In this regard, several researchers have investigated combined approaches
between them or studied the effects of novel treatment options in association with classic
antifungal drugs.

Karlsson et al. [135] have reported the fabrication of multilayered polyelectrolyte thin
films (PEMs) that promote the surface-mediated release of an antifungal beta-peptide.
Specifically, the researchers have incorporated a fluorescently labeled antifungal beta-
peptide into the structures of PEMs fabricated from poly-L-glutamic acid and poly-L-lysine
manufactured through a layer-by-layer process. The obtained materials showed promising
ability in inhibiting the growth of C. albicans on film-coated surfaces.

Tonglairoum et al. [8] developed clotrimazole (CZ)-loaded microemulsion-containing
nanofiber mats. They have successfully fabricated these mats by electrospinning a mix-
ture of different CZ-microemulsion formulations polymer solutions. The researchers
reported an initial burst release, followed by a sustained release of CZ. The mats presented
remarkable antifungal properties, while the toxicity remained low. Nonetheless, it was
concluded that further in vivo studies are required for material evaluation for the treatment
of oral candidiasis.

Kong et al. [11] proposed a different approach by designing a bioadhesive hydrox-
ypropyl methylcellulose hydrogel formulation of Histatin-5 for topical application against
oral candidiasis. Histatin-5 was chosen due to its potency in killing C. albicans, without
inducing resistance. The topical delivery through bioadhesive hydrogels is considered
ideal as it provides extended release of the therapeutic agents, a desired characteristic for
treating infections. Taking also into account the lack of toxicity, anti-inflammatory, and
wound-healing properties of histatin-5, the findings of this study confirm the usefulness
and commercial feasibility of this therapeutic strategy.

Another approach is offered by Nagrath et al. [149], who attempted to repurpose
PMMA for 3D printing along with functionalization of the tissue surface using the con-
trolled release of polycaprolactone (PCL) microspheres loaded with amphotericin B. The
researchers obtained promising results as the 3D printed dentures presented comparable
mechanical properties to conventionally fabricated ones, while the PCL-PMMA surface
released the drug over sustained periods, actively reducing C. albicans colonization in a
biomass assay.

Tejada et al. [26] mixed gelatin (GEL) and chitosan (CH) in various ratios to create
natural polymeric blend-based nanoparticles aimed to deliver miconazole nitrate and
lidocaine chlorohydrate. A faster release was observed when the GEL/CH ratio was
higher, possibly due to GEL solubilization in the medium that led to the erosion of the
polymer matrix and release of encapsulated drugs. Nanoparticle-encapsulation conducted
to a sustained release for 24 h, indicating the potential of such systems to be included in
a buccal film or a buccal tablet to obtain an alternative therapeutic formulation for the
treatment of C. albicans.
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5. Conclusions

To summarize, oral candidiasis can be a life-threatening infection for immunocom-
promised individuals, requiring strong antifungal drugs. The classic therapeutic approach
implies the administration of different polyenes, azoles, or echinocandins, while prevention
is ensured through good hygiene practices and attention to proper denture fit. To avoid
Candida spp. overgrowth and limit the adverse effects associated to traditional antifungal
agents, advances have been made for developing anti-Candida biomaterials.

By making use of inherently fungistatic or fungicidal polymeric, inorganic, and natural
products, several strategies can be developed to prevent and fight these oral infections.
Coating, functionalizing, and/or incorporating them into denture base materials are all
considered efficient novel treatment options for oral candidiasis. Besides, delivering classic
drugs via controlled delivery systems helps reducing adverse effect without hampering
the therapeutic performance. Nonetheless, the alternatives combining several biomaterials
approaches have been proven remarkably successful.

Therefore, the current and underdevelopment treatment options presented in this
review can stand as inception points for further research. Considering the characteristics
of each of the previously described compounds, biomaterials, and delivery methods,
better oral hygiene products, prosthesis materials, denture adhesives, and therapeutic
formulations can be created.

To conclude, there is an increased research interest towards developing innovative
Candida-inhibiting biomaterials. However, despite the significant progress that has been
made towards finding better oral candidiasis treatment strategies, there is still room for
improvement. Particularly, most of the tested compounds and biomaterials have not yet
advanced beyond preclinical testing, and special attention must also be given to currently
understudied complex and mixed biofilms.
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