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Received: 15 March 2021

Accepted: 8 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA;
hzhang@houstonmethodist.org (H.Z.); azhang@houstonmethodist.org (A.Z.);
aagupte@houstonmethodist.org (A.A.G.)

2 Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
3 Molecular Biology Research in Medicine, Houston Methodist Research Institute,

Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
4 Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
* Correspondence: djhamilton@houstonmethodist.org; Tel.: +1-(713)-441-4483

Abstract: Melanoma is one of the most malignant skin cancers that require comprehensive therapies,
including chemotherapy. A plant-derived drug, plumbagin (PLB), exhibits an anticancer property
in several cancers. We compared the cytotoxic and metabolic roles of PLB in A375 and SK-MEL-28
cells, each with different aggressiveness. In our results, they were observed to have distinctive
mitochondrial respiratory functions. The primary reactive oxygen species (ROS) source of A375 can
be robustly attenuated by cell membrane permeabilization. A375 cell viability and proliferation,
migration, and apoptosis induction are more sensitive to PLB treatment. PLB induced metabolic
alternations in SK-MEL-28 cells, which included increasing mitochondrial oxidative phosphorylation
(OXPHOS), mitochondrial ATP production, and mitochondrial mass. Decreasing mitochondrial
OXPHOS and total ATP production with elevated mitochondrial membrane potential (MMP) were
observed in PLB-induced A375 cells. PLB also induced ROS production and increased proton leak and
non-mitochondria respiration in both cells. This study reveals the relationship between metabolism
and cytotoxic effects of PLB in melanoma. PLB displays stronger cytotoxic effects on A375 cells,
which exhibit lower respiratory function than SK-MEL-28 cells with higher respiratory function,
and triggers cell-specific metabolic changes in accordance with its cytotoxic effects. These findings
indicate that PLB might serve as a promising anticancer drug, targeting metabolism.
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1. Introduction

Cutaneous melanoma, mainly caused by exposure to ultraviolet light, is the most
dangerous skin cancer. It accounts for 1% of skin cancer diagnoses but results in 90% of
deaths from all skin cancers [1]. Surgery is generally considered a typical treatment for
localized melanoma. Multidisciplinary approaches, including chemotherapy, immunother-
apy, and radiation therapy, are performed in advanced cases to improve the prognosis
since advanced melanomas display high aggressiveness and a metastatic characteristic [2].
With current evidence-based treatment, cutaneous melanoma with lymph node and distant
metastasis is reported to have 66.2% and 27.3% five-year survival rates, respectively, in the
United States compared with up to 99% survival for localized melanoma [3]. Accordingly,
it is necessary to explore novel treatments in the management of melanomas with different
aggressiveness. A375 and SK-MEL-28 are two human melanoma cell lines with the BRAF
mutation at V600E; they were selected as representative models according to the Melanoma
Aggressiveness Score (MAGS). A375 has a higher MAGS than SK-MEL-28 because of the
great differences in cell proliferation, migration, invasion, cell-doubling time, and other
aggressive phenotypes [4].
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Several natural phytochemical compounds with high anticancer potential are promis-
ing drugs in cancer therapy, including the treatment of melanoma [5–7]. Plumbagin (PLB),
a naphthoquinone derivative mainly extracted from the plant, exhibits anticancer potential
in different cancers, including inhibition of invasion and metastasis, induction of autophagy
and apoptosis, and alteration of the cell cycle [8–11]. PLB is also considered a potent sup-
pressor of cellular glutathione and an inducer of ROS [9,12]. Furthermore, PLB shows an
anticancer effect on breast cancer depending on NQ01 activity [13], an inhibiting effect on
mitochondrial electron transport, and an Nrf-2-mediated antioxidative response in several
cancer cell lines [14]. It indicates the latent role of PLB on energy metabolism and mito-
chondrial bioenergetics. PLB has been proven to have anti-invasion and anti-metastasis
effects via MAPK pathways [15] and the effect of triggering mitochondrial apoptosis by
ROS and c-Jun N-terminal kinase pathways in melanoma cells [12].

However, little is known about the metabolic effect of PLB on human melanoma cells
with different aggressiveness. This study aims to investigate the phenotypic alteration of
cancer progression and energy metabolic changes in melanoma cell lines with different
aggressiveness by applying the PLB treatment in vitro.

2. Materials and Methods
2.1. Chemicals and Reagents

Plumbagin from Plumbago indica (P7262), superoxide dismutase (SOD, S8409), L-
glutamic acid (49449), L-malic (M1000), adenosine 5′-diphosphate monopotassium salt di-
hydrate (A5285), pyruvate (P2256), succinate (S2378), digitonin (D5628), oligomycin (O4876),
carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP, C2920), rotenone (R8875),
antimycin A (A8674), L-glutamine solution (200mM, 59202C), D-(+)-glucose (G7021),
H2O2 solution, 323381), and propidium iodide (PI, 11348639001) were purchased from
Sigma (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM, 30-2002),
Eagle’s minimum essential medium (EMEM, 30-2003), dermal cell basal medium (PCS-200-
030), and the Adult Melanocyte Growth Kit (PCS-200-042) were obtained from American
Type Culture Collection (ATCC, Manassas, VA, USA). Sodium pyruvate solution (1136-070)
was obtained from Gibco (Grand Island, NY, USA). Horseradish peroxidase (A22188),
Amplex UltraRed (AmR, A36006), MitoTracker Green dye (M7514), and Hoechst 33,258
(H3569) were purchased from Invitrogen (Foster City, CA, USA). Total OXPHOS human
WB antibody cocktail (MS601) was purchased from Abcam (Cambridge, UK). GAPDH rab-
bit antibody (2118) was purchased from Cell Signaling Technology (Danvers, MA, USA).
Goat anti-rabbit IgG-HRP (sc-2004) and goat anti-mouse IgG-HRP (sc-2005) were obtained
from Santa Cruz BioTechnology (Dallas, TX, USA); 4–20% protein gels (456-1096) were
purchased from BioRad (Hercules, CA, USA). A nonradioactive cell proliferation MTS
assay (G6521) was purchased from Promega (Madison, WI, USA). XF DMEM base medium
(102353-100), a Seahorse XF cell Mito Stress Test kit (103015-100), and a Seahorse XF
Real-Time ATP Rate Assay kit (103592-100) were obtained from Agilent (Santa Clara, CA,
USA). A MiR05 kit (60101-01) was purchased from Oroboros (Innsbruck, Austria). An-
nexin V-FITC (556419) and 10X Annexin V binding buffer (556454) were purchased from
BD Biosciences (San Jose, CA, USA).

2.2. Cell Culture

Human melanoma cell lines A375 (ATCC-CRL-1619), with higher aggressiveness,
SK-MEL-28 (ATCC-HTB-72), with lower aggressiveness, and normal human primary epi-
dermal melanocytes (HEMa, ATCC-PCS-200-013) were purchased from ATCC. A375 cells
were cultured in DMEM and SK-MEL-28 cells were cultured in EMEM; both kinds of
the medium were supplemented with 10% fetal bovine serum, 100 IU/mL penicillin,
and 100 µg/mL streptomycin. HEMa cells were cultured in dermal cell basal medium
supplemented with an Adult Melanocyte Growth Kit. Cells were maintained at 37 ◦C in
a humidified incubator with 5% CO2. A 0.25% (w/v) trypsin-0.53mM EDTA solution was
used to detach and collect the cells for subculturing or further experiments.
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2.3. Dose–Response Curve Analysis

PLB was dissolved in DMSO at a series of stock concentrations and 1:1000 diluted
to specific concentrations for cell treatments. The control group had the same volume of
DMSO added during the treatment. A375 and SK-MEL-28 cells were seeded in a 96-well
plate at the density of 1 × 104 cells/well, A375 cells were treated with DMSO and PLB with
concentrations of 1, 2, 2.5, 3, 3.5, 4, 6 µM, while DMSO and 1, 2, 4, 6, 7, 8, and 10 µM PLB
were added to the SK-MEL-28 wells four times to repeat for each condition. HEMa cells
were seeded at 5 × 104 and treated with DMSO and 1, 2, 4, 6, 7, 8 µM PLB to test its
cytotoxic effect on normal cells. An MTS assay was applied to assess the number of viable
cells after 48 h incubation with different concentrations of PLB. Briefly, 20 ul of MTS
solution was added to each well with 100 µL of renewed medium. After 2 h incubation
at 37 ◦C in a humidified, 5% CO2 atmosphere, the absorbance was measured at 490 nm
using a microplate reader (BioTek Instruments, Winooski, VT, USA). The IC50 values were
calculated by GraphPad Prism 8.1.0 (GraphPad Software Inc., San Diego, CA, USA).

A375 and SK-MEL-28 cells were seeded at the density of 6× 104 and 4× 104 cells/well,
respectively, in the 12-well plate and treated with DMSO and 1 and 3 µM PLB. Each condi-
tion was repeated twice. Trypan blue was used to determine viable cells. The cell numbers
were counted at the same time each day within the following 4 days.

2.4. Determination of Cell Migration

Cell migration was measured by the wound-healing method. After two cell lines
reaching confluence in 6-well culture plates, sterile P-1000 pipette tips were used to make
artificial parallel scratches on the cell layer, and the floating cells were washed twice with
PBS, which was finally replaced with complete culture medium containing DMSO or 1 or
3 µM PLB. The distance of migration was photographed with a microscope at different time
points and quantified with ImageJ software (US National Institutes of Health, Bethesda,
MA, USA), and the migration inhibition rate was calculated by the formula below:

migration inhibition rate =
distance o f PLB− distance o f DMSO

distance o f initial scratch

2.5. Apoptosis Analysis

The percentage of apoptotic A375 and SK-MEL-28 was quantified by Annexin V-
FITC/PI double-staining. Briefly, cells were pretreated with varying doses of PLB (control,
1 and 3 µM) for 48 h. Harvested cells were resuspended in 100 µL 1X binding buffer
and labeled for 15 min with 5 µL Annexin V-FITC and 1 µL of the 50 µg/mL PI at room
temperature in the dark. A positive control group was conducted by heating cells at 55 ◦C
for 16 min. The green (FITC) and red (PE-Texas Red) fluorescence were evaluated by flow
cytometric analysis (FACSAria™ II, BD Biosciences, San Jose, CA, USA).

2.6. Seahorse Real-Time Cell Metabolic Analysis

Two melanoma cell lines were seeded in seahorse XF96 cell culture microplates at
the density of 20,000 per well the day before the experiment. After 24 h of incubation,
cells were rinsed and replaced with 180 µL of XF DMEM base medium supplemented with
1 mM pyruvate, 2 mM glutamine, and 25 mM glucose for A375 or 5.56 mM glucose for
SK-MEL-28, with pH adjusted to 7.4, and incubated in a 37 ◦C, non-CO2 incubator for at
least 1 h. The cellular oxygen consumption rate (OCR) and the extracellular acidification
rate (ECAR) were measured by the Seahorse XF96e extracellular flux analyzer (Agilent,
Santa Clara, CA, USA), during which the Seahorse XF cell Mito Stress Test Kit, consisting of
oligomycin (Oligo), FCCP, and a mixture of ROT and AA, was added in turn to reach 1,
2, 0.5, and 0.5 µM final concentration; specifically, DMSO and 1, 3, and 6 µM PLB were
injected acutely prior to the Oligo in control and PLB treatment groups. The ATP assay with
acute injection consisted of DMSO or 1, 3, or 6 µM PLB, 1 µM Oligo, and the combination
of 0.5 µM ROT and 0.5 µM AA. Each sample was run in triplicates at least. An Agilent
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Seahorse XF Mito Stress Test Report Generator (Agilent, Santa Clara, CA, USA) was applied
to data analysis.

2.7. High-Resolution Respirometry and ROS Production Analysis

Cells were exposed to the DMSO or PLB treatment the day prior to the experiment,
then harvested and resuspended with complete culture medium or MiR05 buffer at pH 7.4.
The oxygen consumption and H2O2 production rates were measured with a high-resolution
Oroboros respirometer (Oroboros Instruments Corp., Innsbruck, Austria). After calibration
with H2O2 solution, each of the two chambers of the Oroboros machine was filled with
2 mL of the cell suspension along with SOD (2 µL, 5 kU/mL), HRP (4 µL, 500 U/mL),
and AmR (2 µL, 10 mM). After 5 to 10 min stabilization, the oxygen consumption rate
(OCR) and the H2O2 production rate were monitored dynamically by series of injections
with substrates and inhibitors, the order of which was as the following: L-glutamate (10 µL,
2 M), malate (5 µL, 0.8 M), ADP (10 µL, 0.5 M), pyruvate (5 µL, 2 M), succinate (5 µL,
1 M), digitonin (3 µL, 8.1 mM), Oligo (3 µL, 5 mM), an inhibitor of ATPase synthetase,
FCCP (3 µL, 1 mM), an oxidative phosphorylation (OXPHOS) uncoupler, ROT (1 µL,
1 mM), a complex I inhibitor, and AA (1 µL, 5 mM), a complex III inhibitor. Data were
normalized by cell number and analyzed by DatLab 4 software (OROBOROS Instruments
Corp., Innsbruck, Austria).

2.8. Mitochondria Mass Assessment

A MitoTracker Green probe that was able to diffuse across the cell membrane and
accumulate in active mitochondria was used to assess mitochondria mass. Hoechst and
PI were used to distinguish live from dead cells. In short, cells were seeded in a 4-well
chamber slide at a density of 5 × 104 (A375) or 2 × 104 (SK-MEL-28) with DMSO or 1 µM
PLB treatment. After 24 h incubation, cells were labeled with 50 nM MitoTracker Green
dye and 2 µg/mL Hoechst in PBS at 37 ◦C for 25 min, protected from light. After washing
with PBS, cells were covered and sealed on the slide. Fluorescence imaging was performed
using a fluorescence microscope (Eclipse Ti, Nikon, Tokyo, Japan), and the intensity of
fluorescence was quantified by ImageJ software (version 1.53e, National Institutes of Health,
Bethesda, MD, USA).

2.9. Measurement of Mitochondria Membrane Potential

JC-1 dye, a kind of mitochondria membrane potential probe, was applied to measure
the polarization changes due to the PLB treatment. After pretreated with DMSO or 1 or
3 µM PLB for 48 h, A375 and SK-MEL-28 cells were collected and resuspended with PBS
consisting of 2 µM JC-1 dye. FCCP and JC-1 dye, both with 2 µM working concentration,
were applied successively to the positive control cells. All the samples were incubated
in the dark at room temperature for 15 min. To assess the attached cells with treatment
for 24 h, cells were processed as we described in the Mitochondria Mass Assessment
section and stained with 2 µM JC-1 dye and 2 µg/mL Hoechst, with 15-min incubation
in a cell culture incubator at 37 ◦C. Thereafter, cells were washed once with PBS before
measurement. Stained cells were examined through flow cytometry and a fluorescence
microscope in FITC (green) and PE Texas-Red (red) channels.

2.10. Western Blotting

Proteins were extracted from DMSO and 1 and 3 µM PLB pretreated melanoma cells
by RIPA buffer with protease inhibitor. After measuring the protein concentration, an equal
volume of protein samples with equal concentration were loaded to 4–20% protein gels and
transferred onto polyvinylidene difluoride membranes. The membranes were then blocked
with 5% fatty-acid-free milk and incubated with total OXPHOS human WB antibodies
(1:500) at 4 ◦C overnight. Next, the membranes were incubated with corresponding
secondary antibodies (1:2000) for 1.5 h. The chemiluminescence bands were detected
by ECL Western blotting substrate. To normalize the expression of the target protein,
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we stripped the membrane and incubated it with the GAPDH antibody. Following the
steps we described above, the control bands were obtained. The expression of target
proteins was measured by ImageJ software.

2.11. Statistical Data Analysis

The data were analyzed by GraphPad Prism 8 and displayed as mean ± standard
deviation. To compare the data between the two groups, a t-test was used. Analysis of
variance (ANOVA) was performed in the comparison of more than two groups, followed by
Tukey’s test for posthoc analysis. p < 0.05 was considered statistically significant.

3. Results
3.1. A375 and SK-MEL-28 Melanoma Cells Display Comparative Mitochondria Respiratory
Phenotypes

SK-MEL-28 cells displayed a stronger mitochondrial oxygen consumption rate (OCR)
with the injection of different substrates and blockers compared to the A375 cells (Figure 1a–c).
After using digitonin to permeabilize the cell membrane in the Oroboros machine, the basal
mitochondria OCR increased in both A375 and SK-MEL-28 cells since the substrates of
the mitochondrial complex I (Cx I) and complex II (Cx II), including L-glutamate, L-malic,
pyruvate, and succinate, along with adenosine diphosphate (ADP), entered the cells and
were oxidized by mitochondria in the mitochondria respiration buffer (MiR05; Figure 1a,b).
Oligomycin (Oligo), an inhibitor of adenosine triphosphate (ATP) synthase, blocks the
proton channel of complex V (Cx V). The comparative mitochondrial proton leak in SK-
MEL-28 cells was higher than in A375 cells, as determined by assessing the difference of
the OCR between oligomycin and antimycin A (AA) (Figure 1c). ATP-linked respiration,
the value of digitonin (Digi) minus the value of Oligo, was higher in SK-MEL-28 cells
(Figure 1d). FCCP, a mitochondrial OXPHOS uncoupler that facilitates the proton transfer
across the mitochondrial inner membrane by bypassing the F0 subunit of the Cx V pathway,
increased the OCR to the maximum in both cells. The maximum mitochondrial respiration
in A375 cells was inferior to SK-MEL-28 cells (Figure 1e). The respiratory control ratio
(RCR) is defined as the ratio of ADP-stimulated respiration (State 3) to leak respiration
when ATP production is shut off by Oligo (State 4 oligo). The RCR of A375 cells was higher
than SK-MEL-28 cells (Figure 1f), indicating a high capacity for substrate oxidation [16].

3.2. H2O2 Production Rates Vary in A375 and SK-MEL-28 Cells

AmR fluorescence was recorded concurrently with OCR, as above (Figure 2a,b).
A375 cells displayed a higher H2O2 production rate than SK-MEL-28 cells at the base-
line without the addition of digitonin. Surprisingly, the H2O2 production rate dropped
significantly, with no response to the addition of any blockers to A375 cells after cell mem-
brane permeabilization occurred with the injection of digitonin. By contrast, digitonin has
no effect on the H2O2 production rate in SK-MEL-28 cells, which were unresponsive to the
blockers (Figure 2a,b).

3.3. H2O2 Production Triggered Differentially by PLB in A375 and SK-MEL-28

Melanoma cells were pretreated with DMSO and 0.5 and 1 µM PLB and subsequently
injected into the chambers of Oroboros. Before digitonin application, PLB induced H2O2
production in both intact A375 and SK-MEL-28 cells. The increased H2O2 production rate
in the DMSO group and PLB groups declined in A375 cells permeabilized with digitonin
(Figure 2c). Conversely, the rate in permeabilized SK-MEL-28 cells slightly increased and
was amplified by PLB treatment (Figure 2d).
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Figure 1. Comparative mitochondria phenotypes in melanoma cell lines. A375 and SK-MEL-28 cells
were counted and placed in the Oroboros respiratory chambers, with sequential injections of Cx I
and Cx II substrates ( 1© L-glutamate; 2© L-malic; 3© ADP; 4© pyruvate; 5© succinate), Digi (8.1 mM),
Oligo (5 mM), FCCP (1 mM), ROT (1 mM), and AA (5 mM). (a) The O2 concentration (blue line)
and OCR for per million A375 and SK-MEL-28 cells (red line) were monitored in real-time. (b) The
stable OCR values for per million A375 and SK-MEL-28 cells, measured by Oroboros, are displayed
in the bar graph (n = 3). The data accessed from Oroboros was further calculated. The results
are shown as (c) proton leak, (d) ATP-linked respiration, (e) maximum respiration, and (f) RCR,
which means the State 3 over State 4 oligo. Results are expressed as mean ± SD. * p < 0.05, ** p < 0.01.
Cx I, complex I; Cx II, complex II; ADP, adenosine diphosphate; Digi, digitonin; Oligo, oligomycin;
FCCP, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone; ROT, rotenone; AA, antimycin A;
OCR, oxygen consumption rate; ATP, adenosine triphosphate; RCR, respiratory control ratio; SD,
standard deviation.

3.4. Inhibitory Effects of PLB on Cell Viability and Proliferation Are Robust in A375 Cells

Metabolically active cells were able to react with the MTS assay, a number of which
were positively related to the absorbance value detected by the microplate reader. The dose–
response curves were displayed in Figure 3a. Based on this, the 50% inhibitory concen-
tration (IC50) of PLB was calculated. The results revealed that PLB inhibited cell viability
and proliferation in A375 cells (IC50 = 2.790 µM) more effectively than in SK-MEL-28 cells
(IC50 = 3.872 µM). PLB has no cytotoxic effect on normal melanocytes (HEMa). On the
contrary, we found an increasing survival rate of HEMa cells with PLB treatment, even in
high concentrations, compared with the DMSO group (Figure S1). Moreover, time and
dose–response of the PLB treatment were also determined by cell number counting. In the
control group, A375 cells displayed a stronger exponential growth pattern than SK-MEL-28
cells over time. The growth of A375 cells was significantly inhibited by 1 µM PLB, and the
inhibition effect was even stronger in the 3 µM PLB group (Figure 3b). However, PLB’s in-
hibitory effect on SK-MEL-28 was not as strong compared with that on A375 cells with the
1 and 3 µM PLB treatments (Figure 3c).
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Figure 2. H2O2 production rate for whole and permeabilized melanoma cells at basal and PLB
induced levels. A375 and SK-MEL-28 cells were counted and placed in the Oroboros respiratory
chambers, with sequential injections of Cx I and Cx II substrates ( 1© L-glutamate; 2© L-malic; 3© ADP;
4© pyruvate; 5© succinate), Digi (8.1 mM), Oligo (5 mM), FCCP (1 mM), ROT (1 mM), and AA (5 mM).

H2O2 signals were detected by Amplex UltraRed. (a) The H2O2 level (black line) and H2O2 flow for
per million A375 and SK-MEL-28 cells (green line) were monitored in real-time. The red dashed box,
along with a red arrow, highlights the H2O2 production drop in A375 cells compared to SK-MEL-28
cells. (b) The stable H2O2 flow values for per million A375 and SK-MEL-28 cells are displayed in
the bar graph. (n = 3) The H2O2 production rates for whole and permeabilized (c) A375 cells and
(d) SK-MEL-28 cells with DMSO and 1 and 3 µM PLB treatments are represented as the H2O2 flow
before and after digitonin is applied (n = 3). Results are expressed as mean± SD. * p < 0.05, ** p < 0.01.
DMSO, dimethyl sulfoxide; PLB, plumbagin.

Figure 3. Differential inhibition effects of PLB on cell viability and migration in A375 and SK-MEL-28.
(a) A375 and SK-MEL-28 cells were seeded in the 96-well plate at the density of 1 × 104 cells/well
and treated with PLB (DMSO and 1, 2, 2.5, 3, 3.5, 4, and 6 µM PLB for A375 cells; DMSO and 1, 2, 4,
6, 7, 8, and 10 µM PLB for SK-MEL-28 cells) for two days. Viable cell numbers were measured by
MTS assay. The IC50 of A375 and SK-MEL-28 cells were 2.790 and 3.872 µM, respectively (n = 3).
(b) A375 cells and (c) SK-MEL-28 cells treated with DMSO and 1 and 3 µM PLB were counted
for 5 days (n = 2). (d) Two cell lines were seeded in a 6-well plate, and the migration status was
displayed by different treatments (DMSO and 1 and 3 µM PLB) and time points (0, 6, 12, 24, and 48 h).
The migration inhibition rates in the 1 and 3 µM PLB groups were compared with the DMSO group.
Scale bar = 0.1 mm. (e) Migration inhibition rate of A375 cells. (f) Migration inhibition rate of SK-
MEL-28 cells (n = 3). Results are expressed as mean ± SD. MTS, nonradioactive cell proliferation
assay; IC50, 50% inhibitory concentration.
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3.5. Inhibitory Effects of PLB on A375 and SK-MEL-28 Cell Migration

The migration results of two melanoma cell lines with DMSO or 1 or 3 µM PLB treat-
ment, monitored by microscopy at different time points (0, 6, 12, 24, and 48 h), are exhibited
in Figure 3d. The inhibition of migration is defined as the difference of cell migration
distance between DMSO and PLB groups, which is divided by the width of scratch at the
beginning for each condition, respectively. In A375 cells, PLB had a relatively parallel
inhibitory effect at concentrations of 1 and 3 µM (Figure 3e), while only a 21.8% inhibition
of migration was seen in SK-MEL-28 cells with the 3 µM treatment. A low concentration of
PLB treatment in SK-MEL-28 cells was unable to induce a similar suppression effect as in
A375 cells (Figure 3f).

3.6. PLB-Induced Apoptosis in A375 But Not SK-MEL-28 Cells

According to the cells without staining, we drew the gate for flow cytometric analysis
to differentiate the positive group from the negative group. Both late apoptosis or necrosis
and early apoptosis were obviously induced in the 3 µM PLB group compared with the
DMSO and 1 µM PLB groups in A375 cells. There was no significant difference between
the DSMO group and the 1 µM group in A375 cells (Figure 4a,b). Neither 1 nor 3 µM PLB
had any visible and statistical apoptotic effect on SK-MEL-28 cells (Figure 4a,c).

Figure 4. Differential effects of PLB on inducing A375 and SK-MEL-28 apoptosis. A375 and SK-
MEL-28 cells pretreated with DMSO and 1 and 3 µM PLB were stained with Annexin V-FITC and
PI. Cells heated at 55 ◦C for 16 min were the positive controls. (a) Cells with fluorescence were
detected by flow cytometry. (b) The percentage of late apoptotic or necrotic and early apoptotic A375
cells in DMSO and 1 and 3 µM PLB groups. (c) The percentage of late apoptotic or necrotic and
early apoptotic SK-MEL-28 cells in DMSO and 1 and 3 µM PLB groups. Results are expressed as
mean ± SD (n = 3). ** p < 0.01. PI, propidium iodide.

3.7. Distinct Mitochondrial Responses to PLB Treatment in A375 and SK-MEL-28 Cells

The injection of PLB (DMSO and 1, 3, and 6 µM) triggered dose-dependent increases
of the basal OCR and proton leak in both melanoma cell lines (Figure 5a–c). The maximum
respiratory rate in SK-MEL-28 cells directly increased with the increasing PLB doses. On the
contrary, the maximum respiration decreased in the high concentration group (3, 6 µM
PLB) in A375 cells (Figure 5d). Furthermore, the percentage of spare respiratory capacity
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declined in A375 cells (Figure 5e). Nonmitochondrial respiration was enhanced in both
cell lines with increased dose titration (Figure 5f). The energy maps showed that the OCR
and the extracellular acidification rate (ECAR) were induced in both cell lines with PLB.
The energy metabolism in SK-MEL-28 cells transited to aerobic respiration with increasing
doses of PLB, while no change was observed in A375 cells within groups (Figure 5g,h).
The results from Western blotting show that the expression of the nicotinamide adenine
dinucleotide hydride (NADH): ubiquinone oxidoreductase subunit B8 (NDUFB8), a major
subunit supporting proton pumping in Cx I, was enhanced in the 3 µM PLB group in
A375 cells. There was no difference in the expression of NDUFB8 in SK-MEL-28 cells with
different doses of PLB (Figure 5i).

Figure 5. Mitochondrial respiratory function alternations due to PLB treatment. Melanoma cells were seeded in the seahorse
XF96 cells culture microplates at a density of 2 × 104. DMSO and 1, 3, and 6 µM PLB were acutely applied in the Seahorse
machine with the following injection of Oligo, FCCP, ROT, and AA (n = 3–8). (a) OCR of A375 cells. (b) OCR of SK-MEL-28
cells. (c) Proton leak. (d) Maximum respiration. (e) Percentage of spare respiratory capacity. (f) Nonmitochondrial
respiration. (g) Energy map of A375. Red arrow shows the direction of PLB-induced energy change. (h) Energy map of
SK-MEL-28. Red arrow shows the direction of PLB-induced energy change. (i) Western blot results show the expression of
NDUFB8 subunit of mitochondrial Cx I with DMSO and 1 and 3 µM PLB treatment. The bar figure displays the normalized
results compared with the expression of GAPDH (n = 3). Results are expressed as mean± SD. * p < 0.05, ** p < 0.01. GAPDH,
glyceraldehyde 3-phosphate dehydrogenase. NDUFB8, ubiquinone oxidoreductase subunit B8.
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3.8. Alternation of ATP Production with PLB Treatment

Total ATP production in A375 cells decreased in the 3 and 6 µM PLB groups but
increased in SK-MEL-28 cells with 1, 3, and 6 µM PLB when compared with the DMSO
group (Figure 6a,b). The energy map for the ATP production rate quantitated the proportion
of mitochondria-derived ATP and glycolysis-derived ATP from total ATP. For A375 cells,
the points representing the 3 and 6 µM PLB-treated groups moved towards the lower-left
corner, which indicated that both the mitochondrial ATP production rate and the glycolytic
ATP production rate slowed in parallel (Figure 6a,c). As for SK-MEL-28 cells, the boosted
total ATP production rate was mainly attributed to the dose-dependent increase of the
mitochondrial ATP production rate (Figure 6b,d). However, no significant alternation for
the expression of ATP synthase subunit alpha (ATP5A) in the 1 and 3 µM PLB groups
was observed in Western blot data in comparison to the control group in the two cell lines
(Figure 6e).

Figure 6. PLB induced alternations of ATP production. Melanoma cells were seeded in the seahorse
XF96 cell culture microplates at the density of 2 × 104. DMSO and 1, 3, and 6 µM PLB were acutely
applied in the Seahorse machine with the following injection of Oligo, ROT, and AA (n = 3–8). (a) The
bar figure shows the absolute value of ATP production contributed by mitochondria and glycolysis
in A375 cells. The significance for each experimental group was compared with the DMSO group.
Asterisks in black, purple, and light blue represent total glycolysis and mitochondrial ATP production.
(b) The bar figure shows the absolute value of ATP production contributed by mitochondria and
glycolysis in SK-MEL-28 cells. The significance for each experimental group was compared with the
DMSO group. Asterisks in black, purple, and light blue represent total glycolysis and mitochondrial
ATP production. (c) ATP production map in A375 cells. The red arrow represents the trend of ATP
production with the increasing concentrations of PLB. (d) ATP production map in SK-MEL-28 cells.
The red arrow represents the trend of ATP production with the increasing concentrations of PLB.
(e) Western blot result shows the expression of ATP5A, a subunit of mitochondrial Cx V in two cell
lines with DMSO and 1 and 3 µM PLB treatment. The bar figure displays the normalized results
compared with the expression of GAPDH (n = 3). Results are expressed as mean ± SD. * p < 0.05,
** p < 0.01. ATP5A, ATP synthase subunit alpha; Cx V, complex V.



Pharmaceutics 2021, 13, 706 11 of 15

3.9. Effects of PLB on the Mitochondria Mass and Mitochondrial Membrane Potential (MMP)

The intensity of green fluorescence reflects the mitochondria mass, which was signifi-
cantly augmented in SK-MEL-28 cells following the 1 µM PLB treatment. There was no
difference in A375 cells under PLB treatment (Figure 7a,c). Furthermore, MMP alternation
was confirmed with JC-1 staining in both fluorescence microscopy and flow cytometry.
We display the ratio of red to green fluorescence, which is positively related to MMP; 3 µM
PLB treatment resulted in a massive increase of MMP in A375 cells, whereas there was no
difference within groups for SK-MEL-28 cells (Figure 7b,d). Similar results were found in
flow cytometry: a low concentration of PLB (1 µM) was unable to trigger increasing MMP
in A375 cells. However, there was a significant difference between the DMSO group and
the 3 µM PLB group in A375 cells but similar MMP in SK-MEL-28 cells among the dosage
groups (Figure 7e,f).

Figure 7. Mitochondrial mass and membrane potential. (a) Melanoma cells were seeded in the 4-well chambers with DMSO
and 1 µM PLB, treated, and stained by 50 nM Mitotracker Green and 2 µg/mL Hoechst dye. The figure set displays the
fluorescence images under a 60X microscope. Scale bar = 10 µm. (b) Melanoma cells were seeded in the 4-well chambers
with DMSO and 3 µM PLB, treated, and stained by 2 µM JC-1 and 2 µg/mL Hoechst dye. The figure set displays the
fluorescence images under a 60X microscope. Scale bar = 10 µm. (c) The intensity of Mitotracker Green. (d) The ratio of red
to green intensity of JC-1. (e) Melanoma cells with DMSO and 1 and 3 µM PLB treatment were stained with 2 µM JC-1 and
2 µg/mL Hoechst dye and detected by flow cytometry. No staining and FCCP-treated groups were negative and positive
control. (f) The ratio of cells with red fluorescence to cells with green fluorescence. Results are expressed as mean ± SD.
* p < 0.05, ** p < 0.01.

4. Discussion

Drug treatment is widely used in the treatment of malignant melanoma, the most fatal
form of skin cancer, to improve the survival rate after surgery, especially in melanomas
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with high aggressiveness [17]. Since some melanomas with the BRAFV600E mutation are
prone to become resistant to targeted inhibitors and therapeutic chemicals [18], new targets
and substances are required in melanoma treatment. A plant-derived small molecular
compound, PLB, was reported to have latent anticancer properties by carrying out cyto-
toxicity, inducing ROS production, and altering metabolism-related pathways in multiple
cancer types, including melanoma [9,12,14]. This study further explored the cytotoxic and
metabolic roles of PLB played in two melanoma cell lines with different aggressiveness
and metabolic phenotypes.

Although both A375 and SK-MEL-28 cells harbor the BRAF mutation at V600E, they ex-
hibit distinct aggressive biological natures, with high aggressiveness in A375 cells and low
levels of aggressiveness in SK-MEL-28 cells [4]. BRAFV600F-mutated melanoma cells are
associated with upregulated aerobic glycolysis and suppressed OXPHOS [19,20]. However,
in line with the differences in aggressiveness, these two cell lines display different metabolic
phenotypes. The results of our study document enhanced mitochondrial oxygen consump-
tion in SK-MEL-28 cells compared with A375 cells, which harbor a more efficient basal and
maximum mitochondria respiratory rate linked to ATP respiration. Proton leak respiration,
which represents decreased efficiency, is higher in SK-MEL-28 cells. Previous research
has also documented a relationship between high mitochondrial activity and indolent
tumor behavior [21,22]. In contrast, regarding the relative OCR percentage due to ATP
synthesis, as compared to proton leak, A375 cells exhibit more ATP-linked respiration and
less proton leak, as indicated by the higher RCR in A375. This emerging evidence suggests
that A375 cells with high aggressiveness have more advanced mitochondrial efficiency
than SK-MEL-28 cells despite the lower OCR, which may contribute to cancer cell survival
under hypoxia. We can speculate that these metabolic differences in two melanoma cell
lines may cause variations in response to some cancer treatments.

The cytotoxic effects of PLB are proven in several cancer types, such as inhibiting
proliferation and invasion and inducing apoptosis and cell cycle arrest [8–10]. We identified
that the cytotoxic effects of PLB in A375 and SK-MEL-28 cells are consistent with previous
studies. Surprisingly, the cytotoxic anticancer effects exhibit significant distinctions within
these two melanoma cells in cell viability and proliferation, migration, and apoptosis.
Based on the IC50 value in A375 cells and SK-MEL-28 cells, we find that PLB has more
potent inhibition effects on cell viability and proliferation in the more aggressive A375
cells. The inhibitory rate of migration in SK-MEL-28 cells with low concentration (1 µM) of
PLB treatment is inferior to the rate in A375 cells and high-concentration (3 µM)-treated
SK-MEL-28 cells. Furthermore, 3 µM PLB can accelerate the transformation of a fair
percentage of living A375 cells into early and late apoptotic cells, but not in SK-MEL-28
cells. Therefore, the distinctive cytotoxic anticancer effects of PLB in melanoma cells with
different aggressiveness and metabolic phenotypes imply a potent metabolic-targeted role
of PLB treatment.

Recent findings suggest that drug anticancer sensitivity can be affected by the altered
metabolism of cancer cells. For one thing, differential metabolic phenotypes in cancer cells
can positively impact the anticancer effects of some drugs. Therapies combined fasting-
mimicking diet and other anticancer medicines, for example, metformin, have synergistic
cytotoxic effects as a result of the metabolic alteration caused by fasting-mimicking di-
ets [23,24]. For another, there is evidence proving metabolic-related drug resistance [25].
In BRAFV600E-mutated melanoma cells, upregulated OXPHOS and mitochondrial respira-
tion, increased ROS levels, and attenuated glucose metabolism are associated with drug
resistance to BRAF inhibitors [19,20,26]. Our results represent distinct metabolic profiles
as well as different sensitivities to PLB in A375 and SK-MEL-28 cells: SK-MEL-28 cells,
with an increased mitochondrial OCR, display low cytotoxic response to PLB. A375 cells
are exactly the opposite, which implies the cell-specific and metabolic-specific anticancer
sensitivity of PLB.

To expand the relationship between PLB and these two melanoma cells a little fur-
ther, we investigated the metabolic alteration in PLB-treated A375 and SK-MEL-28 cells.
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PLB increases the respiratory rate in SK-MEL-28 cells mainly by inducing mitochondrial
respiration, yet no obvious response was found in the mitostress energy map of A375
cells. Nevertheless, the increase of proton leak and decrease of maximum respiration, as
well as spared respiration in A375 cells with PLB treatment, implies the negative effects
of PLB in A375 cells. In SK-MEL-28 cells, the effects are positive despite the increase of
proton leak because of the increased maximum respiration and stabilized spared respi-
ration. The spared respiration, also called reserve respiration, is decreased by oxidative
stress, the depletion of which, if exceeding the threshold of the basal respiration, can cause
cell death [27,28]. Furthermore, we surprisingly found that mitochondria-independent
respiration was stimulated by PLB in both cells. Nonmitochondrial respiration is generated
from several pathways, including NADPH oxidases and lipoxygenases [27]. An elevated
ROS level is also responsible for nonrespiration [29]. In our study, we first evaluated the
innate abilities for ROS (H2O2) production, which are higher in A375 cells. Interestingly,
after permeabilization, the ROS production rate declined sharply in A375 cells and in-
creased a little bit in SK-MEL-28 cells. The results reveal that the major source of ROS in
A375 cells may be outside the mitochondria, not mainly from the electron transport chain.
Then, we confirmed that PLB induced ROS production, which is consistent with previous
cancer research [9–11]. The reduction of ROS production due to cell permeabilization was
enhanced by PLB in A375 cells. We can speculate that some oxidative enzymes, for example,
the NADPH enzyme [30], may be involved in PLB-induced ROS production in A375 cells.
ROS production in SK-MEL-28 cells is more dependent on mitochondrial respiration.

Our study demonstrates that PLB reduced ATP synthesis in A375 cells from both
mitochondria and glycolysis, whereas mitochondrial ATP production in SK-MEL-28 cells
was accelerated by PLB in a dose-dependent manner, which implies a degree of consistency
with the results above. However, the expression of ATP5A basically remains stable, with or
without PLB, in the two cell lines. As we described above, PLB-treated A375 cells display
attenuated mitochondrial respiration; hence, more heat is generated, caused by leak-
related respiration compared with ATP production [31]. Therefore, mitochondrial ATP
production does not depend on the expression of ATP5A. Interestingly, we observed that
MMP in A375 cells exceedingly increases with a lethal dose (3 µM) of PLB treatment.
No significant MMP change was recorded in the SK-MEL-28 cells. Previous studies suggest
a negative correlation between MMP and ATP production [32]. Consistently, the increase
in MMP, accompanying diminished ATP production in A375 cells, is also proven in our
experiments. Such an increase is reported in apoptosis and cancer [33,34]. The NDUFB8
subunit, located in the transmembrane domain of mitochondrial Cx I, functions as the
proton pump to elevate MMP [35]. In our Western blotting results, the expression of
NDUFB8 significantly increased in A375 cells under the 3 µM PLB treatment, which can
be another explanation for the increased MMP. In addition, mitochondrial intensity is
strengthened by PLB in SK-MEL-28 cells and unchanged in A375 cells. The results indicate
an increased mitochondrial mass [31,36] and provide support for enhanced mitochondrial
OXPHOS and bioenergetic capacity in the PLB-treated SK-MEL-28 cells we discussed
above [29,37]. Based on our data and other research, PLB may also cause mitochondrial
biogenesis to increase or mitophagy to decrease [38].

This investigation of melanoma cells, with different levels of aggressiveness and
metabolic phenotypes, documents differential cytotoxic and metabolic responses when
exposed to plumbagin. The study provides initial evidence that plumbagin, acting as a
REDOX altering agent, might be utilized as an adjunct to melanoma therapy. Further stud-
ies on the anticancer characteristic of PLB could focus on specific molecular pathways,
related gene expressions, and drug combination therapies.
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