Self-Encapsulation of Biomacromolecule Drugs in Porous Microscaffolds with Aqueous Two-Phase Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Partition of Protein Drugs in the Aqueous Two-Phase System (ATPS)
2.2.2. Preparation of Porous Microscaffolds
2.2.3. Characterization of Porous Microscaffolds
2.2.4. Protein Drug Loading and Pore-Closing Process
2.2.5. Porosity of Microscaffolds
2.2.6. Determination of Loading Efficiency
2.2.7. In Vitro Release
2.2.8. Integrity of Protein Drug
2.2.9. Activity of α-Amylase
2.3. Statistical Analysis
3. Results and Discussion
3.1. Investigation on Aqueous Two-Phase Systems and Protein Drugs
Formulation | ATPS | NaCl (w/v) | Protein (1 mg/mL) | Log K |
---|---|---|---|---|
1 | PEG4000/potassium phosphate (15%: 10%) | 0 | α-amylase | −0.45 |
2 | PEG4000/potassium phosphate (15%: 10%) | 0.8% | α-amylase | −0.09 |
3 | PEG4000/potassium phosphate (15%: 10%) | 1.2% | α-amylase | −0.21 |
4 | PEG4000/ammonium sulfate (15%: 20%) | 0 | α-amylase | 0.30 |
5 | PEG4000/ammonium sulfate (15%: 20%) | 0.8% | α-amylase | 0.24 |
6 | PEG4000/ammonium sulfate (15%: 20%) | 1.2% | α-amylase | 0.29 |
7 | PEG4000/ammonium sulfate (15%: 20%) | 0 | BSA | −0.71 |
8 | PEG4000/ammonium sulfate (15%: 20%) | 0.8% | BSA | −0.69 |
9 | PEG4000/ammonium sulfate (15%: 20%) | 1.2% | BSA | −0.69 |
3.2. Characterization of Porous Microscaffolds
3.3. Determination of Loading Amount
3.4. Release In Vitro
3.5. Size Exclusion Chromatography
3.6. Activity of α-Amylase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.J.; Han, Z.W.; Duan, K.; Mu, Y.D.; Weng, J. Multilayered pore-closed PLGA microsphere delivering OGP and BMP-2 in sequential release patterns for the facilitation of BMSCs osteogenic differentiation. J. Biomed. Mater. Res. A 2018, 106, 95–105. [Google Scholar] [CrossRef][Green Version]
- Sinha, V.; Trehan, A. Biodegradable microspheres for protein delivery. J. Control. Release 2003, 90, 261–280. [Google Scholar] [CrossRef]
- Wei, Z.; Volkova, E.; Blatchley, M.R.; Gerecht, S. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Adv. Drug Deliv. Rev. 2019, 149–150, 95–106. [Google Scholar] [CrossRef]
- Varanko, A.; Saha, S.; Chilkoti, A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv. Drug Deliv. Rev. 2020, 156, 133–187. [Google Scholar] [CrossRef] [PubMed]
- Kip, C.; Tosun, R.B.; Alpaslan, S.; Kocer, I.; Celik, E.; Tuncel, A. Ni(II)-decorated porous titania microspheres as a stationary phase for column chromatography applications: Highly selective purification of hemoglobin from human blood. Talanta 2019, 200, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Whitely, M.; Rodriguez-Rivera, G.; Waldron, C.; Mohiuddin, S.; Cereceres, S.; Sears, N.; Ray, N.; Cosgriff-Hernandez, E. Porous PolyHIPE microspheres for protein delivery from an injectable bone graft. Acta Biomater. 2019, 93, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, S.E.; Desai, K.G.H.; Zhang, L.; Olsen, K.F.; Schwendeman, S.P. Self-Healing Microencapsulation of Biomacromolecules without Organic Solvents. Angew. Chem. Int. Ed. 2012, 51, 10800–10803. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.-G.H.; Schwendeman, S.P. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J. Control. Release 2013, 165, 62–74. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, H.K.; Chung, H.J.; Park, T.G. Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J. Control. Release 2006, 112, 167–174. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Li, S.; Liu, H.; Li, K.; Liu, F. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J Chromatogr. A 2005, 1082, 143–149. [Google Scholar] [CrossRef]
- Balasubramaniam, D.; Wilkinson, C.; Van Cott, K.; Zhang, C. Tobacco protein separation by aqueous two-phase extraction. J. Chromatogr. A 2003, 989, 119–129. [Google Scholar] [CrossRef]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.; et al. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 18. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Seo, H.; Nam, C.; Kim, E.; Son, J.; Lee, H. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation. ACS Appl. Mater. Interfaces 2020, 12, 55467–55475. [Google Scholar] [CrossRef]
- Shibata, C.; Iwashita, K.; Shiraki, K. Salt-containing aqueous two-phase system shows predictable partition of proteins with surface amino acids residues. Int. J. Biol. Macromol. 2019, 133, 1182–1186. [Google Scholar] [CrossRef]
- Kang, J.; Schwendeman, S.P. Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Mol. Pharm. 2007, 4, 104–118. [Google Scholar] [CrossRef]
- Asenjo, J.A.; Andrews, B.A. Aqueous two-phase systems for protein separation: A perspective. J. Chromatogr. A 2011, 1218, 8826–8835. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Park, S.; Jeon, J.; Choi, J.K.; Khang, Y. Application of an S-layer protein as a self-aggregating tag for cost-effective separation of recombinant human and yeast D-amino acid oxidases in the aqueous two-phase system. Biotechnol. Lett. 2020, 42, 241–248. [Google Scholar] [CrossRef]
- Assis, R.C.; Mageste, A.B.; de Lemos, L.R.; Orlando, R.M.; Rodrigues, G.D. Application of aqueous two-phase system for selective extraction and clean-up of emerging contaminants from aqueous matrices. Talanta 2021, 223, 121697. [Google Scholar] [CrossRef]
- Akamatsu, K.; Kurita, R.; Sato, D.; Nakao, S.I. Aqueous Two-Phase System Formation in Small Droplets by Shirasu Porous Glass Membrane Emulsification Followed by Water Extraction. Langmuir 2019, 35, 9825–9830. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Jiang, X. Quantitative analysis of protein in thermosensitive hydroxypropyl chitin for biomedical applications. Anal. Biochem. 2020, 599, 113745. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Yoon, J.J.; Lee, D.S.; Park, T.G. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials 2006, 27, 152–159. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef][Green Version]
- Lee, J.; Choi, Y.C. Pore Structure Characteristics of Foam Composite with Active Carbon. Materials 2020, 13, 4038. [Google Scholar] [CrossRef]
- Ghose, T. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ali, S.; Hassan, A.; Tahir, H.M.; Mumtaz, S.; Mumtaz, S. Biosynthesis and industrial applications of α-amylase: A review. Arch. Microbiol. 2021. [Google Scholar] [CrossRef]
- Gündüz, U.; Korkmaz, K. Bovine serum albumin partitioning in an aqueous two-phase system: Effect of pH and sodium chloride concentration. J. Chromatogr. B Biomed. Sci. Appl. 2000, 743, 255–258. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Wan, J.; Cao, X. Study of Microbial Transglutaminase Partitioning in Thermo-pH–Responsive Aqueous Two-Phase Systems. Appl. Biochem. Biotechnol. 2020, 192, 1176–1190. [Google Scholar] [CrossRef] [PubMed]
- Amaral, Y.M.S.; da Silva, O.S.; de Oliveira, R.L.; Porto, T.S. Production, extraction, and thermodynamics protease partitioning from Aspergillus tamarii Kita UCP1279 using PEG/sodium citrate aqueous two-phase systems. Prep. Biochem. Biotechnol. 2020, 50, 619–626. [Google Scholar] [CrossRef]
- Sediq, A.S.; Waasdorp, S.K.D.; Nejadnik, M.R.; van Beers, M.M.C.; Meulenaar, J.; Verrijk, R.; Jiskoot, W. A Flow Imaging Microscopy-Based Method Using Mass-to-Volume Ratio to Derive the Porosity of PLGA Microparticles. J. Pharm. Sci. 2017, 106, 3378–3384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qin, L.; Su, J.; Sun, Y.; Zhang, L.; Li, J.; Beck-Broichsitter, M.; Muenster, U.; Chen, L.; Mao, S. Engineering large porous microparticles with tailored porosity and sustained drug release behavior for inhalation. Eur. J. Pharm. Biopharm. 2020, 155, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Homayun, B.; Choi, H.J. Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals. Int. J. Pharm. 2020, 579, 119152. [Google Scholar] [CrossRef] [PubMed]
- Hachem, F.; Andrews, B.; Asenjo, J. Hydrophobic partitioning of proteins in aqueous two-phase systems. Enzym. Microb. Technol. 1996, 19, 507–517. [Google Scholar] [CrossRef]
- Asenjo, J.; Schmidt, A.; Hachem, F.; Andrews, B. Model for predicting the partition behaviour of proteins in aqueous two-phase systems. J. Chromatogr. A 1994, 668, 47–54. [Google Scholar] [CrossRef]
- Cascone, O.; Andrews, B.; Asenjo, J. Partitioning and purification of thaumatin in aqueous two-phase systems. Enzym. Microb. Technol. 1991, 13, 629–635. [Google Scholar] [CrossRef]
- Beletsi, A.; Panagi, Z.; Avgoustakis, K. Biodistribution properties of nanoparticles based on mixtures of PLGA with PLGA–PEG diblock copolymers. Int. J. Pharm. 2005, 298, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Park, T.G. Surface Stabilization of Diblock PEG-PLGA Micelles by Polymerization of N-Vinyl-2-pyrrolidone. Macromol. Rapid Commun. 2002, 23, 26–31. [Google Scholar] [CrossRef]
- Paik, D.H.; Choi, S.W. Entrapment of protein using electrosprayed poly(D,L-lactide-co-glycolide) microspheres with a porous structure for sustained release. Macromol. Rapid Commun. 2014, 35, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
Formulation | Ammonium Sulfate (w/v) | PEG4000 (w/v) | Microscaffolds | Loading Amount (w/w) |
---|---|---|---|---|
1 | 20% | 10% | PEG | 1.67 ± 0. 23% |
2 | 20% | 0 | PEG | 9.67 ± 6.28% |
3 | 20% | 0 | NO PEG | 1.21 ± 0.52% |
4 | 0 | 0 | PEG | 0.16 ± 0.10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Cai, Y.; Wu, Z.; Wang, S.; Yuan, W.-E. Self-Encapsulation of Biomacromolecule Drugs in Porous Microscaffolds with Aqueous Two-Phase Systems. Pharmaceutics 2021, 13, 426. https://doi.org/10.3390/pharmaceutics13030426
Kang J, Cai Y, Wu Z, Wang S, Yuan W-E. Self-Encapsulation of Biomacromolecule Drugs in Porous Microscaffolds with Aqueous Two-Phase Systems. Pharmaceutics. 2021; 13(3):426. https://doi.org/10.3390/pharmaceutics13030426
Chicago/Turabian StyleKang, Jian, Yunpeng Cai, Ziwei Wu, Siyi Wang, and Wei-En Yuan. 2021. "Self-Encapsulation of Biomacromolecule Drugs in Porous Microscaffolds with Aqueous Two-Phase Systems" Pharmaceutics 13, no. 3: 426. https://doi.org/10.3390/pharmaceutics13030426