

Supplementary Material: Biocompatible DNA/5-Fluorouracil-Gemini Surfactant-Functionalized Gold Nanoparticles as Promising Vectors in Lung Cancer Therapy

Rosa M. Giráldez-Pérez, Elia Grueso, Inmaculada Domínguez, Nuria Pastor, Edyta Kuliszewska, Rafael Prado-Gotor and Francisco Requena-Domenech

Supplementary Material S1. Characterization of p-16-Ph-16 cationic gemini surfactant *NMR Characterization*

N,N'-Di-n-hexadecyl-N,N,N',N'-tetramethyl-phenylene-1,4-dimethylenammonium dibromide (p-16-Ph-16). ¹H-NMR (400 MHz, CDCl₃, δ in ppm): 7.79 (s,br, 4 H, H-2 (4x)); 5.10 (s,br, 4 H, H-1' (2x)); 3.51 (s,br, 4 H, H-1'' (2x)); 3.21 (s,br, 12 H, CH₃ (4x)); 1.80 (s,br, 4 H, H-2'' (2x)); 1.35 (s,br, 4 H, H-3'' (2x)); 1.24c (m,br, 48 H, H-4'' to H-15'' (2x)); 0.68 (t, 6 H, J=7.0 Hz, H-16'' (2x)). ¹³C NMR (100 MHz, CDCl₃, δ in ppm): 133.6 (d, C-2 (4x)); 128.7 (s, C-1 (2x)); 66.6 (t, C-1' (2x)); 65.1 (t, C-1'' (2x)); 49.6 (q, CH₃ (4x)); 31.4 (t, C-14'' (2x)); 29.7-29.4 (t (10x), C-4'' to C-13'' (2x)); 28.5 (t, C-3'' (2x)); 26.4 (t, C-2'' (2x)); 22.7 (t, C-15'' (2x)); 14.1 (q, C-16'' (2x)).

Citation: Giráldez-Pérez, R.M.; Grueso, E.; Domínguez, I.; Pastor, N.; Kuliszewska, E.; Prado-Gotor, R.; Requena-Domenech, F. Biocompatible DNA/5-Fluorouracil-Gemini Surfactant-Functionalized Gold Nanoparticles as Promising Vectors in Lung Cancer Therapy. *Pharmaceutics* **2021**, *13*, 423. https://doi.org/ 10.3390/pharmaceutics13030423

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Figure S1. (**A**) Combined COSY (pinc) and TOCSY (blue) spectra of compound m-16-Ph-16 together with the respective ¹H NMR spectrum on both axes. (**B**) Structure of the compound p-16-Ph-16. The numbering is accordance to those used in for the NMR shift data. It is not in accordance to the IUPAC nomenclature, but allows an easy comparison of different shifts in the compound.

Figure S2. Stability for different formulations over time: 1 h (in grey); 48 h (in green); 72 h (in red); 5 days (in blue); 1 week (in black); 2 weeks (in yellow). (A) N₁; (B) N₂; (C) N₃; (D) C₁; (E) C₂ and (F) C₃.

				-		
Nanosystem	1 h	48 h	72 h	5 days	1 week	2 weeks
	$\lambda_{max,SPR}/Abs_{max,SPR}\lambda_{max,SPR}/Abs_{max,SPR}\lambda_{max,SPR}/Abs_{max,SPR}\lambda_{max,SPR}\lambda_{max,SPR}/Abs_{max,SPR}\lambda_{max,S$					
N_1	519 nm/ 0.0155	519 nm/ 0.0153	519 nm/ 0.0149	518 nm/ 0.0137	518 nm/ 0.0137	519 nm/ 0.0142
N2	519 nm/ 0.1201	519 nm/ 0.1222	519 nm/ 0.1176	519 nm/ 0.1173	519 nm/0.1176	519 nm/0.1235
N3	520 nm/ 0.9387	520 nm/ 0.9611	520 nm/ 0.9140	520 nm/ 0.9293	520 nm/ 0.9314	520 nm/0.9407
C1	527 nm/ 0.0226	527 nm/ 0.0218	527 nm/ 0.0207	527 nm/ 0.0216	527 nm/ 0.0217	527 nm/ 0.0239
C ₂	529 nm/ 0.0377	529 nm/ 0.0380	529 nm/ 0.0372	529 nm/ 0.0345	529 nm/ 0.0394	529 nm/ 0.0379
C ₃	529 nm/0.1271	530 nm/ 0.1277	530 nm/ 0.1292	529 nm/ 0.1369	530 nm/ 0.1327	530 nm/ 0.1364

Table S1. Stability of the nanosystems over time after preparation of different formulations. Absorbance measurements were carried out at the maximum SPR band of gold nanosystem in each case.

Figure S3. Loading assay for C₁ nanocomplexes. The UV-vis spectra recorded on the solution of 5-Fu was measured before and after complexation in nanoparticles and 1 h of stabilization and dialysis. All the formulations were prepared at 19X concentrations to easily visualization of the spectra (see section 2.1.2 and 2.1.3 of the paper for more details). (**A**) free 5-Fu,1 drug in C₁ formulation (in red); DNA corrected C₁ spectrum for C₁ formulation (in green); N₁ spectrum for C₁ formulation (in blue); C₁ formulation. (**B**) free 5-Fu,2 drug in C₂ formulation. (**C**) free 5-Fu,3 drug in C₃ formulation (in red); DNA corrected C₃ spectrum for C₂ formulation. (**C**) free 5-Fu,3 drug in C₃ formulation (in red); DNA corrected C₃ spectrum for C₃ formulation (in green); N₃ spectrum for C₃ formulation. (**D**) 5-Fu calibration curve used for measuring loaded-drug in different C₄ formulations.

Figure S4. Release assay for C_i nanocomplexes. The spectra of $C_1 + N_1$ systems are displayed immediately after mixing (in blue) and after stabilization of the nanosystem and complete 5-Fu release (in red). The fluorescence spectra recorded on the solution of free 5-Fu (in black) was measured for comparative purpose. All the formulations were prepared as described in section 2.1.2 and 2.1.3 of the paper. (A) C_1 release in the presence of N_1 nanoparticles; (B) C_2 release in the presence of N_2 nanoparticles; (C) C_3 release in the presence of N_3 nanoparticles; (D) 5-Fu calibration curve used for measuring released-drug in different C_i formulations.

Figure S5. In vitro release profile of 5-Fu from Ci compacted nanosystems upon addition of Ni formulations. (**A**) 5-Fu release from C₁; (**B**) 5-Fu release from C₂; (**C**) 5-Fu release from C₃.

Figure S6. (A,B) TEM image of free Au@16-Ph-16 gold nanoparticles. (C) Size distribution of Au@16-Ph-16 in water.

Figure S7. EDS spectrum of Au@16-Ph-16 nanoparticles. Elemental mapping results indicate the distribution of Gold element on the particles. Bear in mind that the presence of copper ion is due to the use of copper grid coated with a carbon film needed for TEM measurement.

Figure S8. The emission spectra of 5-Fu alone and DNA/5-Fu in the absence and the presence of Au@16-Ph-16. Black spectrum corresponds to 5-Fu alone. Red spectrum corresponds to DNA/5-Fu complex in the absence of gold nanoparticles. Blue spetra corresponds to DNA/5-Fu titration at different gold nanoparticle concentrations. $C_{5-Fu} = 41.7 \,\mu M$ and $C_{DNA} = 50.0 \,\mu M$ were fixed, and the precursor concentration $C_{Au@16-Ph-16}$ was ranged from 0.187 to 51.6 nM in blue spectra.

Figure S9. AFM topography image of DNA in extended-coil conformation adsorbed on APTES modified mica surface in cacodylate buffer (ionic strength = 1.63 mM, pH = 7.4), $C_{DNA} = 0.3 \mu M$.

Figure S10. Zeta potential of Au@16-Ph-16 nanoparticles at different $C_{Au@16-Ph-16}$ concentrations in water. The three Au@16-Ph-16 formulations designated as N_i in abbreviated form. (A) N₁, $C_{Au@16-Ph-16}$ = 1.94 nM; (B) N₂, $C_{Au@16-Ph-16}$ = 7.69 nM; (C) N₃, $C_{Au@16-Ph-16}$ = 54 nM. All the samples were prepared at 19X concentration (19 times concentrated respect to that described).

Figure S11. Zeta potential of Au@16-Ph-16/DNA-5-Fu compacted nanosystems for different formulations in water. The three Au@16-Ph-16/DNA-5-Fu formulations designated as C_i in abbreviated form. (**A**) C₁, C_{5-Fu} = 0.25 μ M, C_{DNA} = 0.30 μ M, and C_{Au@16-Ph-16} = 0.011 nM; (**B**) C₂, C_{5-Fu} = 1.00 μ M, C_{DNA} =1.19 μ M, and C_{Au@16-Ph-16} = 0.045 nM; and (**C**) C₃, C_{5-Fu} = 7.5 μ M, C_{DNA} = 8.9 μ M, and C_{Au@16-Ph-16} = 0.33 nM. All the samples were prepared at 19X concentration (19 times concentrated respect to that described).

Figure S12. DLS size distribution by number of Au@16-Ph-16 nanosystems at different C_{Au@16-Ph-16} concentrations in water. The three Au@16-Ph-16 formulations designated as N_i in abbreviated form. (**A**) N₁, C_{Au@16-Ph-16} = 1.94 nM; (**B**) N₂, C_{Au@16-Ph-16} = 7.69 nM; (**C**) N₃, C_{Au@16-Ph-16} = 54 nM. All the samples were prepared at 19X concentration (19 times concentrated respect to that described).

Figure S13. DLS size distribution by number of Au@16-Ph-16/DNA-5-Fu compacted nanosystems for different formulations in water. The three Au@16-Ph-16/DNA-5-Fu formulations designated as C_i in abbreviated form. (A) C₁, C_{5-Fu} = 0.25 μ M, C_{DNA} = 0.30 μ M, and C_{Au@16-Ph-16} = 0.011 nM; (B) C₂, C_{5-Fu} = 1.00 μ M, C_{DNA} =1.19 μ M, and C_{Au@16-Ph-16} = 0.045 nM; and (C) C₃, C_{5-Fu} = 7.5 μ M, C_{DNA} = 8.9 μ M, and C_{Au@16-Ph-16} = 0.33 nM. All the samples were prepared at 19X concentration (19 times concentrated respect to that described).

Figure S14. Zeta potential of Au@16-Ph-16 nanoparticles at different $C_{Au@16-Ph-16}$ concentrations in PBS solution diluted at 0.1x concentration (ionic strength = 1.63 mM, pH = 7.4). The three Au@16-Ph-16 formulations designated as N_i in abbreviated form. (**A**) N₁, $C_{Au@16-Ph-16} = 1.94$ nM; (**B**) N₂, $C_{Au@16-Ph-16} = 7.69$ nM; (**C**) N₃, $C_{Au@16-Ph-16} = 54$ nM. All the samples were prepared at 19X concentration (19 times concentrated respect to that described).

Figure S15. Zeta potential of Au@16-Ph-16/DNA-5-Fu compacted nanosystems for different formulations in PBS solution diluted at 0.1x concentration (ionic strength = 1.63 mM, pH = 7.4). The three Au@16-Ph-16/DNA-5-Fu formulations designated as C_i in abbreviated form. (**A**) C₁, C_{5-Fu} = 0.25 μ M, C_{DNA} = 0.30 μ M, and C_{Au@16-Ph-16} = 0.011 nM; (**B**) C₂, C_{5-Fu} = 1.00 μ M, C_{DNA} =1.19 μ M, and C_{Au@16-Ph-16} = 0.045 nM; and (**C**) C₃, C_{5-Fu} = 7.5 μ M, C_{DNA} = 8.9 μ M, and C_{Au@16-Ph-16} = 0.33 nM. All the samples were prepared at 19X concentration (19 times concentrated respect to that described).

Figure S16. DLS size distribution by number of Au@16-Ph-16 nanosystems at different $C_{Au@16-Ph-16}$ concentrations in PBS solution diluted at 0.1x concentration (ionic strength = 1.63 mM, pH = 7.4). The three Au@16-Ph-16 formulations designated as N₁ in abbreviated form. (A) N₁, $C_{Au@16-Ph-16}$ = 1.94 nM; (B) N₂, $C_{Au@16-Ph-16}$ = 7.69 nM; (C) N₃, $C_{Au@16-Ph-16}$ = 54 nM. All the samples were prepared at 19X concentration (19 times concentrated respect to that described).

Figure S17. DLS size distribution by number of Au@16-Ph-16/DNA-5-Fu compacted nanosystems in PBS solution diluted at 0.1x concentration (ionic strength = 1.63 mM, pH = 7.4). The three Au@16-Ph-16/DNA-5-Fu formulations designated as C_i in abbreviated form. (**A**) C₁, C_{5-Fu} = 0.25 μ M, C_{DNA} = 0.30 μ M, and C_{Au@16-Ph-16} = 0.011 nM; (**B**) C₂, C_{5-Fu} = 1.00 μ M, C_{DNA} = 1.19 μ M, and C_{Au@16-Ph-16} = 0.045 nM; and (**C**) C₃, C_{5-Fu} = 7.5 μ M, C_{DNA} = 8.9 μ M, and C_{Au@16-Ph-16} = 0.33 nM. All the samples were prepared at 19X concentration (19 times concentrated respect to that described).

Figure S18. DLS size distribution by number of Au@16-Ph-16 nanoparticles at different $C_{Au@16-Ph-16}$ concentrations in PBS solution diluted at 0.1x concentration (ionic strength = 1.63 mM, PH = 7.4). The three Au@16-Ph-16/DNA-5-Fu formulations designated as C_i in abbreviated form. (A) C₁, C_{5-Fu} = 0.25 μ M, C_{DNA} = 0.30 μ M, and C_{Au@16-Ph-16} = 0.011 nM; (B) C₂, C_{5-Fu} = 1.00 μ M, C_{DNA} = 1.19 μ M, and C_{Au@16-Ph-16} = 0.045 nM; and (C) C₃, C_{5-Fu} = 7.5 μ M, C_{DNA} = 8.9 μ M, and C_{Au@16-Ph-16} = 0.33 nM.

Figure S19. DLS size distribution by number of Au@16-Ph-16/DNA-5-Fu compacted nanosystems in PBS solution diluted at 0.1x concentration (ionic strength = 1.63 mM, pH = 7.4). The three Au@16-Ph-16/DNA-5-Fu formulations designated as C_i in abbreviated form. (**A**) C₁, C_{5-Fu} = 0.25 μ M, C_{DNA} = 0.30 μ M, and C_{Au@16-Ph-16} = 0.011 nM; (**B**) C₂, C_{5-Fu} = 1.00 μ M, C_{DNA} =1.19 μ M, and C_{Au@16-Ph-16} = 0.045 nM; and (**C**) C₃, C_{5-Fu} = 7.5 μ M, C_{DNA} = 8.9 μ M, and C_{Au@16-Ph-16} = 0.33 nM.

Figure S20. Confocal photomicrographs showing control of internalization of nanosystems in cells over the time. (**A–D**) Control, cells without treatment; (**E–H**) 1 h with Au@16-pH-16; (**I–L**) 1 h with Au@16-pH-16/DNA-5Fu; (**M–O**) 2 h with Au@16-pH-16; (**P–S**) 2 h with Au@16-pH-16/DNA-5Fu; (**T–X**) 4 h with Au@16-pH-16; (**Y–AB**) 4 h with Au@16-pH-16/DNA-5Fu; (**AC–AF**) 6 h with Au@16-pH-16; (**AG–AJ**) 6 h with Au@16-pH-16/DNA-5Fu; (**AK–AN**) 8 h with Au@16-pH-16; (**AÑ–AQ**) 8 h with Au@16-pH-16/DNA-5Fu; (**AR–AU**) 24 h with Au@16-pH-16; (**AV–AZ**) 24 h with Au@16-pH-16/DNA-5Fu. First column Cells labeled with DAPI; Second column presence or absence of N₃ or C₃ nanoparticles with fluorescence; Third column transmitted light; Fourth column shows the result of Merge. Dashed lines mark the cell contours. Arrows indicate nanoparticles on the cell exterior and arrow heads show nanoparticles internalized in cells.