

Supplementary Material: Understanding the Salt-Dependent Outcome of Glycine Polymorphic Nucleation

Guangjun Han, Pui Shan Chow and Reginald B.H. Tan

Supplementary Materials–Properties and PXRDs of α -, β - and γ -glycine polymorphs

1. Properties of α -, β - and γ -glycine polymorphs

Some of the properties of the three glycine polymorphs are summarized in Table S1.

Table S1. Properties of α -, β - and γ -glycine crystals.

Property	α-Glycine	β-Glycine	γ-Glycine
space group [1]	P21/n	P21	P31 or P32
Z (formula units per cell) [1]	4	2	3
unit cell volume (ų) [1]	309.6	157.3	235.1
solubility in pure water at 298.15 K (g/(100g water)) [2]	25.03	NA	23.49
solution enthalpy $\Delta_{sol}H_m$ (J mol ⁻¹) [3]	$14,523 \pm 76$	$14,198 \pm 73$	$14,791 \pm 84$
sublimation enthalpy ΔH_{sub} at 298.15 K (J mol ⁻¹ K ⁻¹) [4]	140.58	138.09	141.70
isobaric heat capacity C_p at 298.15 K (J mol ⁻¹ K ⁻¹) [4]	89.85	90.46	89.78

2. PXRD patterns and analyses of glycine polymorphs

The simulated PXRD patterns of α -, β - and γ -glycine references are shown in Figure S1-a. Note that Materials Studio's CSD codes of Gly29 (α -form), Gly33 (γ -form) and Gly31 (β -form) were used in PXRD simulation. As an illustration of solid phase analyses, the PXRD patterns of α -glycine crystal samples before and after the test of α -glycine solubility in a glycine aqueous solution in the presence of 1m Na₂SO₄ are presented in Figures S1-b. Similarly, the PXRD patterns of γ -glycine crystal samples before and after the test of γ -glycine solubility in a glycine solubility in a glycine aqueous solution in the presence of 1m Na₂SO₄ are presented in Figures S1-b. Similarly, the PXRD patterns of γ -glycine crystal samples before and after the test of γ -glycine solubility in a glycine aqueous solution in the presence of 1m Na₂SO₄ are presented in Figures S1-b.

Comparing the PXRD patterns (Figure S1-b) of α -glycine crystal samples with those (Figure S1-a) of α -, β - and γ -glycine references reveals that the metastable α -glycine crystals remained unchanged in their polymorph before and after α -glycine solubility test through an isothermal method. In a similarly way, comparing the PXRD patterns (Figures S1-a and S1-c) enables us to conclude that the thermodynamically stable γ -glycine crystals (Figure S1-c) also remained unchanged in their polymorph before and after γ -glycine solubility test, which is well expected.

Citation: Han, G.; Chow, P.S.; Tan, R.B.H. Understanding the Salt-Dependent Outcome of Glycine Polymorphic Nucleation. *Pharmaceutics* **2021**, *13*

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Figure S1. PXRD patterns of α -, β - and γ -glycine references (**S1-a**), α -glycine crystal samples (**S1-b**) before and after the α -glycine solubility test, and γ -glycine crystal samples (**S1-c**) before and after the γ -glycine solubility test.

References

- 1. Iitaka, Y. The crystal structure of β-glycine. *Acta Cryst.* **1960**, *13*, 35–45.
- 2. Han, G.; Chow, P.S.; Tan, R.B.H. Understanding the Salt-Dependent Outcome of Glycine Polymorphic Nucleation. Pharmaceutics **2021**, *13*, 262.
- 3. Xavier, N.F.; Silva, A.M.; Bauerfeldt, G.F. What Rules the Relative Stability of *α*-, *β*-, and *γ*-Glycine Polymorphs? *Cryst. Growth Des.* **2020**, *20*, 4695–4706.
- 4. Perlovich, G.L.; Hansen, L.K.; Bauer-Brandl, A. The polymorphism of glycine: Thermochemical and structural aspects. *J. Therm. Anal. Calorim.* **2001**, *66*, 699–715.