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Abstract: Purpose: Development of pharmaceutical dosage forms of natural products has gained
great interest recently. Propolis is a natural product with various active compounds and multiple
pharmacological activities. Its resinous nature and low bioavailability were obstacles in the optimum
use of this magnificent natural product. Aim: This study evaluates the effect of using liposomes
as a drug delivery system on the enhancement of the cytotoxic effect of propolis on squamous cell
carcinoma cell lines (Hep-2) of head and neck. Methods: An optimized liposomal formulation of
propolis was prepared using the conventional thin film hydration method 1, 2. The prepared (Hep-2)
cell line was treated with different concentrations of propolis and optimized propolis liposomes
for 24 h. The effect of both propolis and propolis liposomes on cell line was investigated using
MTT assay, cytological examination, and nuclear morphometric analysis. The effect of the drugs
on the cell apoptosis was evaluated using Annexin V. Results: The findings revealed that both
propolis and propolis liposomes have a cytotoxic effect on Hep-2 cell line through induction of
apoptosis. The effect was dose dependent. However, a statistically significant enhancement in
propolis-mediated apoptosis on Hep-2 cells was elucidated due to encapsulation within the prepared
liposomes. Conclusion: Liposome is a powerful tool for enhancing the cytotoxicity of propolis against
Hep-2 cell line.

Keywords: propolis; liposomes; Hep-2; apoptosis; cytotoxicity

1. Introduction

Head and neck cancer (HNC) is a term used to define malignant neoplasms that
originate from the oral cavity, nasal cavity, larynx, pharynx, and paranasal sinuses [1].
HNC can affect and impair the quality of life of patients through the interruption of
important daily functions including: breathing, speaking, and swallowing. Moreover, they
cause physical and emotional downsides for the patient [2]. According to the World Health
Organization, the oral cavity is the most frequently affected part, with about 389,000 cases
every year [3].

Tobacco and alcohol are responsible for about 75% of HNC cases in USA and Eu-
rope [4]. An alcoholic beverage (three times daily) doubles the risk of developing the
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disease. In addition, passive smoking gives the same risk of developing the disease as
first-hand smoking [1]. Alcohol and tobacco simultaneously increase the risk of the devel-
opment of HNC 35-fold [5]. Human papillomavirus (HPV) also has a significant effect on
the development of HNCs [6], particularly HPV 16 and 18 [7].

Despite the various techniques that have been developed for treatment of HNC,
alternative strategies that can maintain long survival rates with minimal adverse effects are
still needed [8]. Recently, great attention has been paid to natural substances or products
as a promising source for new anticancer strategies. Over 70% of anticancer compounds
are represented as natural products or substances derived from nature such as propolis.
Cytotoxic natural products conjugated to polymeric carriers or monoclonal antibodies
produce more efficient targeted remedies [9].

Propolis has been recently widely investigated for its antitumor effect using in vitro
and in vivo experimental models. It contains many compounds such as flavonoid agly-
cones polyphenols, phenolic aldehydes, and ketones. Those compounds are well known
to have anticarcinogenic activity [10]. Overall, propolis is a honeybee product with im-
munomodulatory, antioxidant, anti-inflammatory, bactericidal, antiviral, and antiparasitic
activities [11]. The chemical composition and proportions of different constituents of propo-
lis extract depend on the geographic diversity of bee species and plant sources [12–14].
Caffeic acid, phenethyl ester (CAPE), and many other flavonoids and phenolic compounds
are the major constituents of the Egyptian propolis [13].

The antitumor activity of propolis is mediated by immunomodulatory action [12].
This is achieved through macrophage activation, which leads to the augmentation of non-
specific antitumor immunity with the production of soluble factors that interfere directly
with the tumor tissue or in the mode of action of other immune cells [13]. It was found
that flavonoids are the compounds responsible for many of the biological activities of
propolis [14]. Despite the promising activities of such flavonoids, their instability, resinous
nature, and low bioavailability are facts that limit the use of propolis [15].

The valuable targeted drug delivery system of liposomes has been introduced for being
biodegradable, biocompatible, non-toxic, and its capability of encapsulating both lipophilic
and hydrophilic drugs [16,17]. Those unique characteristics of liposomes guarantee the
encapsulation of the hydrophilic and lipophilic components of natural extracts. Moreover,
they ensure targeting and enhanced cell utilization due to the small size of drug-loaded
vesicles [18]. Propolis flavonoids can be encapsulated with liposomes, thus increasing their
stability and improving their actions.

The present study aimed to prepare propolis-encapsulated liposomes and investigate
the possible enhancement effect of encapsulation within liposomes on the anticancer effect
of propolis towards HEP-2 cell line.

2. Materials and Methods
2.1. Materials

Drug: Propolis ethanolic extract was bought from the department of Cell Culture,
VACSERA-EGYPT (net content of 72.95%). It was prepared from the Egyptian propolis by
extraction with absolute ethanol in a closed glass container for 4 days at 37 ◦C, with shaking.
Then, filtration of the ethanolic extract was performed and concentrated by evaporation
in a rotary evaporator, under reduced pressure at 60 ◦C. Ethanolic extract of propolis
(EEP) was dissolved in DMSO (50 mg·mL−1), and the final concentration of DMSO in
the culture medium was adjusted at 0.1% (v/v). Chloroform and cholesterol (>99%) were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Phosopholipon 90 H® (PL 90 H), a
purified and granulated soy lecithin with hydrogenated phosphatidylcholine content of
90%, was donated by Lipoid GmbH Germany. Deionized water was obtained from the
microbiological laboratory for water and food analysis (Minia, Egypt). All other materials
were of analytical grade.
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2.2. Methods
2.2.1. Preparation of Propolis-Loaded Liposomes

The conventional thin-film hydration method [19,20] was used to prepare the propolis-
loaded liposomes (P-Lip). In brief, propolis and the specified amount of PL 90 H® were
dissolved in the least volume of chloroform with different molar ratios (Table 1). The
organic solvent was evaporated at 37 ◦C using a rotary evaporator under reduced pressure
(Stuart, RE300 Germany) at 110 rpm until the formation of a dried thin film of the lipid
propolis mixture on the wall of the rotating flask. The formed film was kept for 24 h in
a desiccator to eliminate any organic solvent. A calculated amount of (9% w/v) sucrose
solution was used to hydrate the formed film. The rotating flask was kept rotating in a
water bath under normal pressure at 37 ◦C for 2 h until complete hydration of the film.
The formulated liposomes were remained overnight at 4 ◦C to permit the strengthening
of the lipid bilayer [21]. Then, the liposomal formulations were available for additional
evaluation and in vitro characterization processes [21].

Table 1. Components and physical properties of the formulated propolis loaded liposomes.

Formula Number MCL
(mmol) CH% DL

(mg) EE% Particle Size (nm) PDI Zeta Potential

1 60 40 2.5 72.9 ± 2.8 562.6 ± 13.6 0.521 ± 0.024 −18.3 ± 1.2

2 40 40 7.5 63.2 ± 1.5 185.8 ± 0.4 0.237 ± 0.005 −15.2 ± 2.3

3 80 40 7.5 85.3 ± 3.4 723 ± 20.5 0.654 ± 0.03 −20.2 ± 3.2

4 60 20 2.5 66.5 ± 1.6 126.5 ± 3.4 0.101 ± 0.01 −13.1 ± 1.4

5 60 20 7.5 65.1 ± 2.5 195.3 ± 2.5 0.2 ± 0.05 −16.3 ± 2.5

MCL: Molar concentration of Lipid, CH%: cholesterol percentage to total content, DL: drug loading, PDI: poly dispersity index.

2.2.2. Determination of Entrapment Efficiency (EE%)

The percentage of total flavonoids encapsulated within the prepared liposomes was
detected indirectly by subtracting the unencapsulated amount from the initial amount of
the drug [22]. First, 1 mL of the prepared P-Lip was centrifuged for one hour at 4 ◦C for
removal of the unentrapped drug from the formed liposomes using a cooling centrifuge
(HermLe® Z326 K) (Wehingen, Germany). Washing by resuspension of liposomes in
deionized water was performed in order to confirm a full removal of the unentrapped
drug. The prepared liposomes were then centrifuged again. A spectrophotometric assay
was performed on the separated supernatant each time [23]. Quantitative analysis is based
on the colorimetric analysis of total flavonoid content reported by Woisky and Salatino [24].
Briefly, 50 µL of 10% alcoholic solution of aluminum chloride was mixed with 50 µL of
the supernatant and made to a volume of 1 mL using absolute alcohol. Absorbance was
measured at λ = 410 nm (Spectronic Genesys®, with Winspec Software, Spectronic, Melville,
NY, USA). Entrapment efficiency (%) was determined based on the following equation [22]:

EE% =
Initial amount of flavonoids added − unentrapped flavonoids

Initial amount of flavonoids
× 100 (1)

2.2.3. Evaluation of Particle Size and Zeta Potential

The prepared liposomes were diluted with purified deionized water, particle size and
size distribution were evaluated at 25 ◦C using Mastersizer (3000E, Malvern Instruments,
Malvern, UK), and average values after triplicate repetition of each preparation were
used [25]. The zeta potential of Millipore water-diluted samples was determined. The
average zeta potentials were calculated [26]. The morphological features of the formed
liposomes were examined using transmission electron microscope (TEM) (JM 1000 EX,
Peabody, MA, USA). Briefly, a sample was mounted on hydrophobic grids, dried, and then
stained with uranyl acetate (50 µL, 2.5% w/v).



Pharmaceutics 2021, 13, 2184 4 of 16

To gain more insight into the stability of formulated liposomes, selected formulation (F4)
was evaluated for any change in size and/or EE% after 3 and 6 months of storage at 25 ◦C.

2.2.4. In Vitro Release Study

In vitro release of propolis from the formulated liposomal systems was examined
using the dialysis membrane method. In brief, a sample of P-Lip formulations with
equivalent flavonoid concentrations was placed in pre-soaked dialysis bags. These bags
were kept floating on the release media, herein, phosphate buffer (pH 7.4), containing 0.5%
tween 80 to preserve sink condition [27]. The system was stirred at 50 ± 10 rpm using a
thermostatic shaker at 37 ± 0.5 ◦C. Then, 2 mL samples were withdrawn at predetermined
time intervals over a period of 6 h and were replaced with an equal volume of fresh
medium. Flavonoidal concentration was detected using the aforementioned Woisky and
Salatino technique [24]. The evaluation was repeated thrice, and the average values were
calculated and recorded [28].

The release kinetics of the studied liposomal formulations were investigated by fitting
the permeation data to the following models:

Zero-order: R = K0.

First-order: R = 1 − e−k
1. t

Higuchi diffusion model: Q = KH. t1/2,

where R or Q is the fraction of drug permeated at time t, K, or KH is the rate constant
corresponding to each model.

2.2.5. Cytotoxicity Assay

Cytotoxicity against laryngeal squamous cell carcinoma cell line Hep-2 cells VACSERA-
EGYPT) was performed by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium (MTT)
assay. The cells were grown in MEM-H (InvitrogWaltham, MA, USA) as a culture medium
containing 10% fetal bovine serum (GIBO COBRAL® Limited, Edinburgh, Scotland),
4 mM−l glutamine, 100 U·mL−1 penicillin, and 100 µg·mL−1 streptomycin, then incu-
bated at 37 ◦C in an atmosphere containing 5% CO2. Hep-2 cells were seeded for 24–48 h
before the experiments onto a 96-well plate. The cells were treated with serial concentra-
tions of propolis and P-lip (F4) for 24 h. The medium was removed, and then MTT solution
(20 µL, 5 mg·mL−1) (Sigma Chemical Company, St. Louis, MO, USA) was added to each
well for 4 h. DMSO was used to dissolve the formed crystals. Hep-2 cells and medium
alone represented the control. The spectrophotometric absorbance was measured using
Dynatech MR5000 spectrophotometer (Dynatech Laboratories, Inc., Chantilly, VA, USA) at
550 nm. The percent cytotoxicity was calculated by the formula:

Percent viability (viable cell%) = ([absorbance of experimental wells/absorbance of control wells]) × 100%

Results were determined by trying three independent experiments. Data were ana-
lyzed with Master Plex Reader Fit program to estimate the IC50, the half maximal inhibitory
concentration, of both propolis and P-lip.

2.2.6. Cytological Evaluation and Nuclear Morphometric Analysis

Hep-2 cells were managed with half IC50, IC50, and double IC50 of propolis and P-lip
(F4) for 24 h. Treated cells were dispended and fixed on clean glass slides.

For cytological examination. Ten fields of each slide were photomicrographed at the
power of 1000X oil. The images were analyzed on a computer system using image analysis
software (Image J, 1.27z, NIH, Bethesda, MD, USA). The surface area and nuclear circularity
were measured. Nuclear area factor (NAF) was determined using the formula [29]:

NAF = Circularity × Object area
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2.2.7. Evaluation of Apoptotic Cell Death Using Annexin V-FITC Staining

Hep-2 cells were seeded in 24-well plates for 24–48 h and then exposed to propolis or
P-lip for other 24 h. Cells were rinsed with PBS for two times and suspended in 1 mL of
binding buffer. A certain volume of cell suspension (250 µL) was incubated with 2.5 µL of
annexin V-FITC and 5 µL propidium iodide (PI) at ambient temperature and darkness for
10 min. Apoptotest-FITC Kit (Dako, Glostrup, Denmark) was used for Annexin V assay.
The V-positive population of annexin was estimated using flow cytometry (BD FACScan,
Becton Dickinson Immnunocytometry Systems, San Jose, CA, USA).

2.2.8. Statistical Analysis

All results are recorded as mean ± SD of three separate experiments. Student’s t-test
was used to compare between means of two groups. One-way ANOVA test with Bonferroni
post hoc test was used to compare means of more than two groups. p-values ≤ 0.05 were
considered significant.

3. Results
3.1. Preparation of Propolis Liposomes

Liposomes (F4) visualized by transmission electron microscopy appeared to be pre-
dominantly spherical Figure 1. The figure shows the homogenous size distribution, which
supports the low PDI of F4, as shown in Table 1.

Figure 1. Transmission electron micrograph of the prepared liposomes P-lip (F4) when stained with
uranyl acetate (2.5% w/v) with scale 0.5 µm.

3.2. Effect of Formulation Parameters on Entrapment Efficiency (EE%) and Particle Size

The effect of various formulating parameters on EE% of propolis liposomes is shown
in Table 1. The results show that the molar concentration of lipid (MCL) significantly
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affects the EE% of propolis. The EE% of propolis significantly increased from 63.2 ± 1.5%
up to 85.3 ± 3.4% when the MCL increased from 40 mM mL−1 (F2) to 80 mM mL−1 (F3)
(p < 0.001). Cholesterol molar concentration showed a positive effect on propolis EE%.
Table 1 shows that entrapment efficiency was significantly increased from 66.3 ± 1.6% to
72.9 ± 2.8% when cholesterol molar concentration increased from 20% mol/mol (F4) to
40% mol/mol (F1) (p < 0.001).

The particle size values of the freshly prepared liposomes were in the range of
126.5 ± 3.4 nm and 723 ± 20.5 nm (Table 1). The smallest particle size was recorded
with F4, while the largest value was found with F3. The wide variation in particle size
values may be due to the distinct cholesterol content and drug loading [30]. Different
cholesterol% and consequent different DL amount may be the reason for the different
particle size of the formulated vesicles. Increasing cholesterol% tends to increase drug
loading, which results in increase vesicle size and vice versa. Zeta potential is the electro-
static charge of the vesicle surface, which acts as a repulsive force controlling the stability
of liposomes and other dispersions and opposing the proximity of liposomal vesicles and
aggregation. Zeta potential values of the prepared liposomes (F1–F5) presented in Table 1
were in the range of −13.1 ± 1.4 and −20.2 ± 3.2 mV. These findings confirmed that all
formulations are almost stable [31].

With up to 6 months of storage of the selected F4 liposomal formulation, no significant
change in the EE% was detected (Table 2). There was substantial increase in the particle
size after 6 months, which may be attributed to the tendency of some vesicles to fuse
together; however, the change in size is still accepted and reveals the stability of the
formulated liposomes.

Table 2. Stability study of propolis liposomes (F4) after 3 and 6 months of storage at 25 ◦C.

Formula
Number

Zero Time After 3 Months After 6 Months

EE% Particle
Size (nm) EE% Particle

Size (nm) EE% Particle
Size (nm)

F4 66.5 ± 1.6 126.5 ± 3.4 63.3 ± 3.2 142.5 ± 5.6 59.2 ± 5.2 165.3 ± 6.8

3.3. Effect of Formulation Parameters on the Release

In vitro release of flavonoids from the prepared propolis-encapsulated liposomes (F1–
F5) was represented in Figure 2. The results show that cumulative amounts of flavonoids
released within 8 h could be arranged in descending order as follows: F5 > F4 > F3 > F1
> F2. The low content of cholesterol (20%) in the prepared propolis encapsulated liposomes
(F5 and F4) is responsible for the increased release of the entrapped flavonoids due to the
reduced rigidity and the increased fluidity of the formed bilayer. Moreover, higher drug
loading of the prepared propolis-encapsulated liposomes (F5, F4) is another factor leading
to increased release of flavonoids. However, higher content of cholesterol (40%) in the
prepared propolis-encapsulated liposomes (F1, F2, and F3) makes the prepared liposomes
more rigid with delaying the release of encapsulated flavonoids [31]. The formulated
liposomes exhibited higuchi release kinetics, which is suitable for such dispersion system
(Table 3).

Table 3. Mathematical modeling of release kinetics.

Formulation
R2

Zero First Higuchi

1 0.931 0.912 0.981
2 0.854 0.846 0.988
3 0.855 0.831 0.975
4 0.813 0.832 0.993
5 0.856 0.964 0.987
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Figure 2. In vitro release of flavonoids from the prepared propolis-encapsulated liposomes (F1–F5)
in phosphate-buffered solution containing 0.5% tween 80 to maintain sink condition (PBS, pH 7.4,
37 ◦C). The results are represented as the means ± SD (n = 3).

3.4. MTT Assay

The viability percentage of Hep-2 cells treated with increasing concentrations of
propolis or propolis-encapsulated liposome (F4) for 24 h was listed in Tables 4 and 5
(Figures 3 and 4). F4 was selected for MTT assay, because it exhibited minimal particle size
with enhanced EE% and release%.

Table 4. The mean viability percentage of Hep-2 cells treated with decreasing concentrations of propolis for 24 h.

Propolis
Concentration

(mg/mL)
280 140 35 17.5 8.8 4.4 2.2 1.1 0.275

Viability% 21.43 ± 2.5 26.03 ± 4.5 33.33 ± 3.1 34.13 ± 5.2 38.10 ± 6.1 39.05 ± 5.1 39.37 ± 3.4 72.54 ± 6.1 98.25 ± 5.9

Table 5. The mean viability percentage of Hep-2 cells treated with decreasing concentrations of propolis-loaded liposomes
and corresponding empty liposomes for 24 h.

Propolis-Containing
Liposome

Concentration
(µg/mL)

1000 500 250 125 64 32 16 8

P-Lip 9.29 ± 3.3 36.41 ± 6.4 65.33 ± 11.3 70.82 ± 7.5 74.78 ± 5.4 79.57 ± 3.5 93.04 ± 2.6 98.97 ± 3.5

Empty Liposomes 92.93 ± 3.6 92.54 ± 5.4 93.47 ± 3.4 92.35 ± 6.1 95.6 ± 4.3 97.31 ± 2.5 96.26 ± 3.4 97.6 ± 2.4

Both propolis and liposomal propolis inhibited the growth of Hep-2 cells. Their
effects were more prominent as the concentration increased. IC50 of propolis and propolis-
encapsulated liposomes were calculated as 1.9 mg/mL and 0.32 mg/mL, respectively.
These results revealed that liposomal propolis had a more cytotoxic effect after incubation
for 24 h. Empty liposomes did not show any anti-proliferative effect, as shown in Figure 4.
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Figure 3. The mean viability percentage of HEP-2 cells treated with different concentrations of
propolis extract.

Figure 4. The mean viability percentage of HEP-2 cells treated with different concentrations of
liposomal propolis and corresponding empty liposomes for 24 h.

3.5. Cytological Evaluation and Nuclear Morphometric Analysis

Microscopic examination of control cells revealed the presence of criteria of malignancy
as relatively regular, hyperchromatic, and condensed nuclei. The cellular outline was also
relatively regular with minimum folding in the cellular or nuclear membrane. Only a few
cells showed morphological criteria of apoptosis as nuclear fragmentation, as shown in
Figure 5.

On the other hand, treated cells showed nuclear morphological alterations that
matched with morphological criteria of apoptosis in its different stages. These criteria
included peripheral condensation of chromatin against nuclear membrane (margination),
irregularities in the nuclear and cellular membrane, nuclear shrinkage, nuclear segregation,
nuclear fragmentation, and apoptotic bodies formation. In addition to these apoptotic
criteria, fewer cells showed nuclear changes that matched with morphological changes of
necrosis; characteristically coarse staining and clumping of the heterochromatin admixed
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with euchromatin with relative preservation of nuclear morphology, nuclear and cellular
swelling, and rupture of the cell membrane, as shown in Figure 6a–f.

Figure 5. Micrograph of untreated Hep-2 cells (control cells) at the power of 1000X oil.

Some of these morphological criteria of alterations, including apoptosis and necrosis,
were more obvious and more common in cells treated with P-Lip.

Regarding morphometric analysis, data recorded revealed that HEp-2 cells treated
with different concentrations of propolis showed a decrease in the mean value of NAF with
increasing propolis concentration. A much more significant decrease in the mean value of
NAF was observed when Hep-2 cells were treated with liposomal propolis. These findings
matched with what was found in the cytotoxicity study.

Figure 6. Micrograph showing criteria of apoptosis in Hep-2 cells treated with increasing concen-
trations of propolis (half IC50 of propolis (a), IC50 of propolis (b), double IC50 of propolis (c)) or
propolis encapsulated-liposome (half IC50 of propolis-encapsulated liposome (d), IC50 of propolis-
encapsulated liposome (e), and double IC50 of propolis encapsulated-liposome (f)) for 24 h at the
power of 1000X oil.
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3.6. Apoptotic Cell Death Assay

The majority of control cells were viable and non-apoptotic. Increasing the concen-
tration of propolis resulted in a decrease in the percentage of viable cells and an increase
in cells undergoing early apoptosis. The maximum effect was evident with IC50 concen-
tration of propolis. A slight increase in the necrotic cells was observed with increasing
propolis concentrations, as shown in Figure 7a–c, in comparison to control cells, as shown
in Figure 5.

Figure 7. Annexin V-FITC and propidium iodide. A contour plot for cells treated with different
concentrations of Propolis (half IC50 of propolis (a), IC50 of propolis (b), double IC50 of propolis
(c)) or propolis-encapsulated liposome (half IC50 of propolis-encapsulated liposome (d), IC50 of
propolis-encapsulated liposome (e), and double IC50 of propolis-encapsulated liposome (f)), and
control cells (g).
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Treating the cells with P-Lip resulted in increasing the percentage of apoptotic cells
with maximum effect recorded with double IC50 concentration of P-Lip, as shown in
Figure 7d–f.

3.7. Statistical Analysis
Effect of Different Concentrations of Unencapsulated Propolis on NAF

Mean values of NAF of Hep-2 cells treated with different concentrations of propolis
and the control cells were significantly different, as determined by ANOVA test, Table 6.

Table 6. The mean value of NAF of Hep-2 cells treated with increasing concentrations of propolis
(half IC50, IC50, and double IC50) and liposomal propolis (half IC50, IC50, and double IC50); the mean
value of NAF of control Hep-2 cells was 0.3243.

Propolis
Concentration Double IC50

(3.8 mg/mL)
IC50

(1.9 mg/mL)
Half IC50

(0.95 mg/mL)

NAF 0.2283 0.2009 0.1797

Liposomal
Propolis

Concentration Double IC50
(0.64 mg/mL)

IC50
(0.32 mg/mL)

Half IC50
(0.16 mg/mL)

NAF 0.1509 0.1278 0.1056

Mean values of NAF of Hep-2 cells treated with different concentrations of propolis
were significantly different from those of the control cells as revealed by post hoc multi-
ple comparison test (Turkey HSD). However, a statistically insignificant difference was
observed when comparing the mean value of NAF of Hep-2 cells treated with various
concentrations of propolis extract, as presented in Tables 7 and 8.

Table 7. ANOVA test for NAF of propolis treated-Hep-2 (different propolis concentrations) and
control cells (24 h after treatment).

Sum of Squares Df Mean Square F Sig.

Between Groups 0.122 3 0.041 14.105 <0.0001

Within Groups 0.104 36 0.003

Total 0.226 39

Table 8. Post hoc comparison test (Bonferroni) for comparison of mean difference of NAF values for different propolis
concentrations and control cells (24 h after treatment).

Mean Difference Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound

Control
half IC50 0.0960324 * 0.0240434 0.002 0.028904 0.163161

IC50 0.1234490 * 0.0240434 <0.000 0.056321 0.190577

Double IC50 0.1445892 * 0.0240434 <0.000 0.077461 0.211718

half IC50
IC50 0.0274166 0.0240434 1.000 −0.039712 0.094545

Double IC50 0.0485568 0.0240434 0.306 −0.018572 0.115685

IC50 Double IC50 0.0211402 0.0240434 1.000 −0.045988 0.088269

* Significant when p ≤ 0.05 level.

3.8. Effect of Different Concentrations of Propolis-Loaded Liposomes on NAF

Regarding the mean of NAF of Hep-2, the ANOVA results showed a significantly
difference values between different concentrations of P-Lip-treated cells and the control
cells, as presented in Table 6.
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Post hoc multiple comparison test (Turkey HSD) revealed a statistically significant
difference among mean values of NAF of different concentrations of P-Lip-Hep-2-treated
cells and the control cells. Moreover, NAF values of Hep-2 cells treated with half IC50
concentration, and those treated with double IC50 of P-Lip were significantly different, as
presented in Tables 9 and 10.

Table 9. ANOVA test for the NAF values of different concentrations of P-Lip-treated cells and
control cells.

Sum of Squares Df Mean Square F Sig.

Between Groups 0.299 3 0.100 153.635 <0.000

Within Groups 0.023 36 0.001

Total 0.323 39

Table 10. Post hoc comparison test (Bonferroni) of NAF values of different concentrations of P-Lip-treated cells and control cells.

Mean Difference Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound

Control

half IC50 0.1734342 * 0.0113952 <0.000 0.141619 0.205249

IC50 0.1966242 * 0.0113952 <0.000 0.164809 0.228439

Double IC50 0.2187942 * 0.0113952 <0.000 0.186979 0.250609

half IC50
IC50 0.0231900 0.0113952 0.296 −0.008625 0.055005

Double IC50 0.0453600 * 0.0113952 0.002 0.013545 0.077175

IC50 Double IC50 0.0221700 0.0113952 0.357 −0.009645 0.053985

* Significant when p ≤ 0.05 level.

3.9. Comparison between the Effect of Unencapsulated Propolis and Encapsulated Propolis on NAF

Independent sample t-test showed significant difference when comparing the mean
value of NAF of propolis-treated Hep-2 cells and that of cells treated with P-Lip, as
presented in Table 11.

Table 11. Independent sample t-test to compare NAF between propolis and P-Lip at different con-
centrations.

Groups Mean ± SD p-Value

NAF

half IC50 Propolis 0.2283 ± 0.0504

halfdouble IC50 Liposomes 0.1509 ± 0.0092 <0.0001

IC50 Propolis 0.2009 ± 0.0737

IC50 Liposomes 0.1277 ± 0.0118 0.005

Double IC50 Propolis 0.1797 ± 0.0366

Double IC50 Liposomes 0.1055 ± 0.0116 <0.0001

4. Discussion

An ideal antitumor drug is an agent that not only can destroy cancer cells but also
should be safe and produce a maximum effect at a lower dose with minimal side effects.

Propolis is a fertile source for the discovery of new pharmaceuticals due to its bi-
ological and pharmacological properties, which are correlated to its flavonoid content.
However, although flavonoids and other components of propolis are of various useful
pharmacological activities, the optimum application of this natural grant is hindered by
the instability [14], limited water solubility, and resinous nature of the propolis extract [32].
This has motivated researchers to find a formulation of propolis able to maintain biological
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properties and structural integrity and improve its water solubility and bioavailability,
which can be achieved by the use of liposomes [16,33–35].

An attempt of the optimization of liposomal formula of propolis extract in terms of
enhanced EE% and reduced particle size was carried out, maintaining variable formulation
parameters including DL, CH%, and MCL. The results show the increased EE% with
increasing MCL, which may be attributed to the increased size of the lipid bilayer, which al-
lows the entrapment of more lipophilic drugs [33,35,36]. The increased CH% also increased
EE%, which may be attributed to the improved stability of the formulated liposomes. The
rigidity of the lipid bilayer, and hence the stability, is increased as a result of increasing
the content of cholesterol within the of liposomal lipid bilayer [37]. The formation of
smaller liposomes with decreasing the cholesterol content could be elucidated based on
the enhanced distribution of the aqueous phase within the vesicular liposomes due to the
close packing of the lipid bilayer and the improved membrane fluidity. According to the
fact that reduced particle size of drug-loading nanocarriers would enhance the cellular
uptake of the entrapped cargo, F4 (126.5 ± 3.4) has been chosen for evaluating the effect of
liposomal encapsulation on the enhancement of cytotoxic potential of entrapped propolis
extract. Release from the selected liposomes exhibits higuchi diffusion kinetics, which is
a phenomenological mathematical model that suits the fact that the extract diffuses from
the bilayer of such dispersible system. The controlled release strategy of propolis extract
proposed by that type of release kinetics would be optimized, in future work, for more
therapeutic targets.

In the present study, the effect of encapsulation of propolis within optimized liposomes
on Hep-2 cells was investigated and compared to the effect of unencapsulated propolis.
The scope of the work was to explore the potential of encapsulation of propolis-loaded
liposomes on the enhancement of the antitumor activity of the propolis. The effect of
propolis and P-Lip on Hep-2 cell viability was evaluated by MTT assay using serial dilutions
of the extract either encapsulated or free.

According to MTT assay results, encapsulated propolis decreased the viability of
Hep-2 cells at a much lower concentration than that of propolis extract (IC50 of P-Lip is
much lower than that of propolis extract), indicating that Hep-2 cells were more sensitive to
P-Lip. These findings can be attributed to enhanced cellular uptake and receptor-mediated
endocytosis, promoted by the small particle size of formulated liposomes, and then the
gradual collapse of the liposomes in the lysosomal apparatus and a posterior intracellular
passage of the drug released [38,39]. The smaller particle size of formulated nanocarriers
promotes the tendency for the enhanced permeation retention effect (EPR) in the case
of IV injection of the formulation with consequent promising targeted in vivo cytotoxic
effect [40,41]. However, an MTT assay cannot differentiate whether loss of cell viability is
due to apoptosis or necrosis, critical information required to evaluate the efficacy of the
antitumor drug

The exact type of cell death may be inferred from morphological changes of the
treated cells. Microscopic examination revealed that cells treated P-Lip showed more
apoptotic features than those treated with propolis extract. To avoid human errors in
detecting apoptotic cells and differentiating them from necrotic cells, a software program
was employed to automatically analyze a parameter that is used as an indicator of apoptosis,
nuclear area factor.

Morphometric analysis of treated cells revealed that P-Lip produced a much greater re-
duction in cell circularity and nuclear surface area and, consequently, in nuclear area factor
compared with propolis extract. The effect of encapsulated propolis was dose dependent.

Further investigations were performed using flow cytometry assay in order to com-
pletely elucidate the molecular mechanisms that participated in the observed cytotoxic
activity of propolis and P-Lip. Annexin V not only differentiates between apoptotic and
necrotic cells, but it can also determine whether the apoptotic cell in the early or late
apoptotic stage by binding to the phosphatidylserine on the surface of apoptotic cells [42].
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Flow cytometric results revealed that encapsulated propolis induced apoptosis of Hep-2
cells, and the effect was stronger than that of propolis extract.

Statistical analysis of NAF results showed that both propolis and P-Lip have a statisti-
cally significant effect on Hep-2 cells compared with control cells. The effect of propolis-
encapsulated liposomes was statistically more significant compared with that of propo-
lis alone.

Prospective studies will be expected to explore and elucidate the molecular mecha-
nisms by which propolis-encapsulated liposomes act on cellular signaling pathways to
induce apoptosis.

5. Conclusions

In summary, we demonstrated the encapsulation of propolis into liposomes for en-
hancing its cytotoxic effect against the squamous cell carcinoma cell line (Hep-2) of head
and neck. The prepared propolis-encapsulated liposomes have a more cytotoxic effect
than unencapsulated propolis. Moreover, the nanosized formulation enhances the delivery
and cellular uptake of the apoptotic components of the extract. Morphometric evaluation
of the examined cell line (Hep-2) showed that the prepared propolis-encapsulated lipo-
somes produced a much more reduction in the cell circularity and nuclear surface area and
consequently in nuclear area factor compared with unencapsulated propolis extract. The
cytotoxic effect of propolis-encapsulated liposomes was dose dependent. Liposome is a
powerful tool for delivering and enhancing the cytotoxicity of propolis.
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