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Abstract: Casein kinase-1 alpha (CK1«) is a multifunctional protein kinase that belongs to the
serine/threonine kinases of the CK1e family. It is involved in various signaling pathways associated
with chromosome segregation, cell metabolism, cell cycle progression, apoptosis, autophagy, etc. It
has been known to involve in the progression of many diseases, including cancer, neurodegeneration,
obesity, and behavioral disorders. The elevated expression of CK1x in diseased conditions facilitates
its selective targeting for therapeutic management. Here, we have performed virtual screening
of phytoconstituents from the IMPPAT database seeking potential inhibitors of CKl«x. First, a
cluster of compounds was retrieved based on physicochemical parameters following Lipinski’s rules
and PAINS filter. Further, high-affinity hits against CK1o were obtained based on their binding
affinity score. Furthermore, the ADMET, PAINS, and PASS evaluation was carried out to select
more potent hits. Finally, following the interaction analysis, we elucidated three phytoconstituents,
Semiglabrinol, Curcusone_A, and Liriodenine, posturing considerable affinity and specificity towards
the CK1« binding pocket. The result was further evaluated by molecular dynamics (MD) simulations,
dynamical cross-correlation matrix (DCCM), and principal components analysis (PCA), which
revealed that binding of the selected compounds, especially Semiglabrinol, stabilizes CK1x and leads
to fewer conformational fluctuations. The MM-PBSA analysis suggested an appreciable binding
affinity of all three compounds toward CK1a.

Keywords: casein kinase-1 alpha; phytoconstituents; drug discovery; virtual screening; molecular
dynamics simulation; dynamical cross-correlation matrices; principal components analysis

1. Introduction

Casein kinase-1 alpha (CK1x) belongs to the serine/threonine family of kinases and
functions primarily as a regulator in various signaling pathways [1]. Human kinases are
considered as attractive drug targets for cancer therapy [2-7]. Like other kinases, CK1o per-
forms multiple biological processes such as cell division, cell cycle, beta-catenin destruction
and cell morphogenesis, signal transduction, WNT signaling pathway, etc. [8-14]. Pharmaco-
logical inhibition of CK1x has been investigated as a potential therapy in various diseases,
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including cancers [15]. In particular, CK1o controls the WNT signaling pathway, which is
essential in driving hematologic malignancies [16]. It is considered an integral component
of the WNT signaling or beta-catenin pathway and a potential drug target for cancer [1,17].
CK1o has shown high expression in various types of cancers like lymphoma, brain, prostate,
lymphoma, and leukemia [1,18-20]. The RNA expression of CKl«x is decreased in lung
cancer, bladder cancer, and melanoma, which is in turn determined via the amount of protein
expressed [1]. In progressed melanoma tumors, the downregulation of CK1« is mediated by
its methylation [1].

CK1 proteins contain an extremely conserved kinase domain at the N-terminal and a
diverse regulatory domain at the C-terminus [21]. As a serine/threonine kinases family
member, CK1x embodies the typical bilobal structure, consisting of beta-sheets at a smaller
N-terminal lobe and an «-helical structure C-terminal lobe [22]. It consists of a conserved
glycine-rich loop which forms the boundary of the ATP binding site and contributes the
v-phosphate moiety of ATP [22]. The ATP binding and active sites in CK1o are Lys46 and
Asp136, respectively. The uniqueness around the binding pocket of CK1« facilitates its
selective targeting for structure-based drug discovery. The structural features of CK1ax are
depicted in Figure 1.

NN ATP-binding site
' K46

Figure 1. Structural features of Casein kinase 1a. Structural components, sheets, helices, and loops
are shown in pink, cyan, and grey-white, respectively. The figure was drawn in PyMOL using PDB
ID: 6GZD.

Virtual screening has been an essential part of the drug discovery pipeline [23-26].
It helps find small molecules which could bind the defined target effectively and specifi-
cally [27-32]. It is one of the most effective techniques for identifying high-affinity binding
partners to the target protein [23-25,33]. It computationally screens different chemical
libraries available from various resources for identifying potential compounds [34-37]. The
molecular docking-based virtual screening process, combined with several other filters,
Lipinski’s filter [38], ADMET properties, PAINS filter [39], PASS analysis [40], carcinogenic-
ity prediction, etc., accelerate the lead discovery process. Natural compounds, including
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phytoconstituents, have been considered an important source of leads in drug discovery
for ages [41,42].

In this study, we have considered ~9500 phytoconstituents from the IMPPAT database,
a curated database of phytochemicals of Indian medicinal plants. The compounds were
subjected to screening based on Lipinski’s rule of five, followed by molecular docking,
ADMET properties, and PASS evaluation [40]. From the top hits generated, we have
further screened the compounds based on their specific interactions towards the CK1x
binding pocket, followed by all-atom molecular dynamics (MD) simulations, dynamical
cross-correlation matrix (DCCM), principal components analysis (PCA), and MM-PBSA
analysis. Overall, the combined study suggests that three phytoconstituents, i.e., Curcusone
A, Liriodenine, and Semiglabrinol targeting of CK1e, can be explored in the therapeutic
management of cancer.

2. Materials and Methods
2.1. Computer Environment and Web Resources

This study was performed on an HP Z840 workstation running on Windows 10 OS. We
used high-speed internet with an uninterrupted power supply. Bioinformatics tools such
as MGL AutoDock [43] and InstaDock [44] were used for molecular docking-based virtual
screening; PyMOL [45] and Discovery Studio visualizers [46] were used for interaction
analysis and visualization purposes. Various web-based servers and resources, including
RCSB Protein Data Bank (PDB), IMPPAT (Indian Medicinal Plants, Phytochemistry, and
Therapeutics) database [47], SwissADME [48], pkCSM [49], PASS [40], etc. were utilized
for the retrieval, evaluation, and analyses purposes.

2.2. Receptor Preparation and Library Preparation

The X-ray crystal structure of human CKle (PDB ID: 6GZD, resolution: 2.28 A)
was downloaded from the RCSB-PDB in the PDB format and refined further using the
InstaDock tool, New Delhi, India. Using the PyMOL, the structure was visualized, and
water molecules and heteroatom, including co-crystallized ligand, were removed. A
database named IMPPAT was used for the screening purpose. The Lipinski filter was
applied to the IMPPAT database so that only compounds with admirable physicochemical
properties were fetched out. IMPPAT is a manually curated database of traditional Indian
medicines and other existing resources of phytochemistry. It has a total of 9596 compounds
which remained to 5763 after applying the Lipinski filter.

2.3. Molecular Docking-Based Virtual Screening

Virtual screening plays a vital role in drug discovery and development [50,51]. It aims
to screen large libraries of drug-like compounds computationally, generally commercially
available, against specific protein targets and reduce them to a key set of likely drug
candidates [52,53]. Molecular docking-based virtual screening is based on interacting
receptors and small molecules [30,44,54,55]. The docking protocol tries to predict the
position and orientation of the ligand when it is bound to a protein [56-58]. The docking
process must be fast enough as many compounds are being analyzed [59-62]. In this
attempt of virtual screening, we begin with a 3D structure of CK1o and a 3D database of
phytoconstituents and score the compounds to identify lead candidates for further analysis.
We used InstaDock to perform the molecular docking-based virtual screening. The docking
screening was blind, where the search space was big enough to accommodate the protein’s
entire structure and let the ligands freely move and search their favorable binding sites.
The resultant output was analyzed in out-files and log-files once InstaDock completed the
docking. The top hits were fetched out based on the affinity score toward CK1«.

2.4. ADMET Prediction

The filtered compounds from the docking results were subjected to filter out based
on their ADMET properties. The prediction of ADMET properties along with PAINS
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(Pan-assay interference compounds) [39] evaluation was carried out using the pkCSM and
SwissADME [48]. Compounds with well ADMET properties were taken and then filtered
for any PAINS patterns. PAINS filter helps us to avoid compounds having explicit patterns
with a higher tendency of binding to multiple targets [39]. The ADMET evaluation helps
find compounds with drug-like physicochemical and pharmacokinetic properties, which
reduces their chances of failure in clinical trials [63].

2.5. PASS Evaluation

The PASS analysis is useful in studying the chemical-biological interactions to evaluate
the biological properties of chemical compounds. We have used the PASS server to examine
the biological properties of the selected compounds from the ADMET filter. The internal
algorithm of the PASS webserver uses molecular fragments of chemical compounds as
multi-level neighbors of atoms descriptors and recommends certain biological properties.
It provided two different descriptors, i.e., ‘probability to be active (Pa)” and “probability of
being inactive (Pi)’, where a higher Pa value signifies a higher probability of corresponding
property for the compound.

2.6. Interaction Analysis

The interaction analysis of the docked protein-ligand complexes was performed to
explore various interactions formed during their binding. The binding poses and all
possible interactions were explored through the PyMOL and Discovery Studio Visualizer.
The interactions formed within 3.5 A within the protein-ligand complex were labeled
as close contacts in the PyMOL. The type of interactions and the participating residual
and atomic coordinates were explored through Discovery Studio Visualizer. Here, the
compounds with specific interactions towards the critical residues of CK1¢, including the
active site and the binding site, were selected for further analyses. The binding of known
CKla binding partners was referred to compare the docking outputs.

2.7. MD Simulations
2.7.1. Systems Preparation and Simulation Protocol

The apo CKlax and its complexes with the selected ligands prepared through the
molecular docking approach were used as initial coordinates in the MD simulation study.
The all-atom MD simulations were performed through the AMBER 18 package [64]. The
FF14SB AMBER force field [65] was used for the receptor protein, and appropriate charge
and protonation state were prepared through the Protein Preparation Wizard implemented
in the Schrodinger suite. The GAFF force field [66] was utilized for the ligands, and the
AM1-BCC model [67] was used in parameterization and adding charges. The topology and
atomic charges of the compounds were generated through the Antechamber utility of the
AMBER 18 package. The topology and coordinates of the complex systems were generated
through the leap module of AMBER 18. The solvation of all the systems was performed
in a virtual box of the TIP3P water model [68]. An appropriate number of counterions
was supplied for the neutralization of the systems. To deal with the hydrogen bonds and
long-range electrostatic interactions, the SHAKE algorithm and the particle mesh Ewald
(PME) was espoused, respectively. The energy minimization of all the systems was carried
out using 10,000 steps of the steepest descent algorithm. Each system was gradually heated
from 0 to 300 K for 100 ps. Afterward, the equilibration of each system was performed
for 100 ps at 300 K and constant pressure. Lastly, a production run for 200 ns for each
system was performed at constant temperature and pressure. The resultant trajectories
were explored using the CPPTRAJ module [69]. The RMSD, RMSF, Ry, SASA, H-bonds,
secondary structure analysis, distance cross-correlation matrix, and PCA were analyzed
from the generated outputs.
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2.7.2. Dynamical Cross-Correlation Matrix

The analysis of the MD resultant trajectory was also performed through the dynamical
cross-correlation matrices (DCCM). DCCM analysis helps us to determine the coordinate
aberrations and behaviors in C« atoms of the protein [70]. In DCCM, all configurations are
translated and rotated by the least-square-fitting method using all backbone C« atoms of
CKla before and after the ligands binding to align on the equilibrated configurations. The
technical concept of DCCM (C;;) is defined below:

Cj= _ (Aridrg) 1)

(o)

where Ar;; signifies the ith and jth atom average point movement. Correlated movements
are denoted by C;; = 1; however, C;; = —1 is supposed to be highly anti-correlated. The
divergence of atomic movements from 1 to —1 defines that i and j movements are correlated
and anti-correlated.

N|—=

2.7.3. Principal Component Analysis

Principal components analysis (PCA) is a highly useful approach in pattern recognition
in protein movements [71]. In PCA, two-dimensional plotting of two different eigenvectors
(EVs), i.e., EV1 and EV2, is produced by clustering them [27,33,72,73]. PCA was performed
through the covariance matrix C, based on the atomic coordinates of C« atoms and their
corresponding eigenvalues [74]. The generation of positional covariance matrix C is
defined below:

Ci=((i — () (aj = (a5)))  (j=12,...3N)
where g; and g; represent the cartesian coordinates for the ith, j position of the C atom
and N is the number of C,, atoms.

2.7.4. MM-PBSA Calculations

To further support the binding studies of CK1 with the selected compounds, the bind-
ing affinity of each docked complex was examined through the MM-PBSA calculations [75].
The binding energies of each complex were estimated by considering the vacuum potential
energy, including bonded and non-bonded interactions, and the free energy of solvation,
considering polar and nonpolar terms. The polar solvation energy was calculated by resolv-
ing the Poisson-Boltzmann equation, while the nonpolar solvation energy was estimated
using the SASA method. The MM-PBSA estimation was carried out while utilizing the
script ' MMPBSA.py’ of the AMBER suite [76].

3. Results and Discussion
3.1. Molecular Docking-Based Virtual Screening

Molecular docking-based virtual screening of all the phytoconstituents from the IMP-
PAT was carried out to find high-affinity binding partners of CK1x. The resultant output
generated the affinities and docked poses for each compound [30,54,77]. The compounds
were filtered out based on their binding affinity towards CK1x. The selected compounds
were found to possess appreciable binding affinity towards the binding pocket of CK1o
(Table 1). The top 10 hits out of 5763 compounds had the binding affinity score < —9.7
with CK1« (Table 1). The results indicated that the selected phytoconstituents have appre-
ciable binding efficiency with CK1«, further exploring the therapeutic potential in the drug
development process.
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Table 1. The top 10 hits and their binding affinities toward CK1«.

. Binding Affinity . * Ligand
S. No. Compound ID Phytochemical Name Source (keal/mol) pKi Efficiency
1. 443716 Hydroxysanguinarine Papaver ~10.1 7.41 0.33
somniferum
2. 94577 Cepharadione A Piper nigrum —10.0 7.33 0.33
3. 11035494 Semiglabrinol Tephrosia 99 7.26 0.30
purpurea
4. 124069 Dihydrosanguinarine Fumaria indica -9.8 7.19 0.33
5. 175941 Curcusone A Jatropha curcas -9.8 7.19 0.39
6 10144 Liriodenine Annona —9.8 7.19 0.38
’ squamosa ’ ’ ’
7. 147329 Corysamine Meconopsis —9.7 7.11 0.33
aculeata
8. 197018 Ushinsunine Michelia —97 711 031
champaca
9. 2754650 Irenolone Musa paradisiaca -9.7 7.11 0.35
10. 442851 Crinasiatine Crinum asiaticum -9.7 711 0.33
* Ligand Efficiency values are in (kcal/mol/non-H atom); S. No., serial number.
3.2. ADMET Properties
ADMET prediction consists of a set of parameters on which the pharmacokinetic
properties of chemical compounds have to be depicted [29,30,78]. The selected hits from
the docking study were further screened to predict their ADMET properties (Table 2).
The three compounds out of 10 having ADMET within the range of drug candidacy were
selected. These three compounds (Semiglabrinol, Curcusone_A, and Liriodenine) share
a similar class of ADMET properties without any toxic patterns (AMES/Hepatotoxicity)
thus were selected for further analysis.
Table 2. ADMET properties of the top 10 compounds.
Absorption Distribution Metabolism Excretion Toxicity
S. No. Compound GI Water BBB c¥pIDs ocr2 AMES/
Absorption Solubility Permeation strute/?nhibitor Substrate Hepatotoxicity
1. Hydroxysanguinarine High Moderate Yes No No Yes
2. Cepharadione A High Moderate Yes No No Yes
3. Semiglabrinol High Moderate Yes No No No
4. Dihydrosanguinarine High Moderate Yes No No Yes
5. Curcusone A High Moderate Yes No Yes No
6. Liriodenine High Moderate Yes Yes No No
7. Corysamine High Moderate Yes Yes Yes Yes
8. Ushinsunine High High Yes Yes No Yes
9. Irenolone High Moderate Yes Yes No Yes
10. Crinasiatine High Moderate Yes Yes No Yes

S. No., serial number; GI absorption, gastrointestinal absorption; BBB permeation, blood-brain barrier permeation.

3.3. PASS Evaluation

Natural compounds possess many chemico-biological properties, which may con-
sequence in synergistic or antagonistic impacts [41,79]. In search of safe and effective
compounds with desirable properties, the biological properties for the hit molecules need
to be explored. In this study, the PASS analysis explored the probable properties of the
elucidated hits. The compounds and their biological properties are summarized in Table 3,
along with their confidence level. The results revealed that the selected hits, Semiglabrinol,
Curcusone_A, and Liriodenine, possess antineoplastic and kinase inhibitory potential, with
significant Pa values, i.e., 0.612 to 0.889. The PASS analysis recommended that Curcu-
sone_A, Liriodenine, and Semiglabrinol have great potential in anticancer therapeutics.
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Table 3. Biological properties of the elucidated phytoconstituents predicted through the

PASS webserver.
Compound ID Pa Pi Biological Activity
0.808 0.005 Kinase inhibitor
0.793 0.011 Membrane permeability inhibitor
Seriglabrino 0.783 0.014 Antineoplastic
0.653 0.036 TP53 expression enhancer
0.612 0.033 Oxidoreductase inhibitor
0.889 0.005 Antineoplastic
0.819 0.015 Antieczematic
0.803 0.004 Carminative
Curcusone_A Transcription factor NF kappa B
0.744 0.004 .
stimulant
0.702 0.015 Apoptosis agonist
0.784 0.014 Antineoplastic
0.763 0.008 Caspase 3 stimulant
. . 0.710 0.015 Alkane 1-monooxygenase inhibitor
Liriodenine 0.680 0.014 Kinase inhibitor
0.629 0.005 Caspase 8 stimulant

3.4. Interaction Analysis

The selected compounds’ binding modes and interaction patterns were analyzed
utilizing PyMOL and Discovery Studio visualizer. The analysis of compounds was done
based on interacting residues. We employed Discovery Studio and PyMOL to identify and
visualize hydrogen bonding and other interactions of the compounds with CK1e. It was
found that residues of the kinase domain of CK1« offer a significant number of interactions,
such as Ser25, Lys46, and Leu93 (Figure 2). The ATP binding site, i.e., Lys46, was also
found to make direct contact with the docked compounds, which is crucial for the CK1x
activity (Figure 2B). All three compounds were found to be fit within the binding pocket of

CKlo with a good complementarity (Figure 2C).

Figure 2. Molecular interactions of (A) Casein kinase 1 with Curcusone A (white), Liriodenine (magenta), and Semiglabrinol

(yellow). (B) Magnified cartoon view of protein-ligands interactions. (C) Electrostatic potential of Casein kinase 1 bound the

selected compounds.

The detailed binding analysis showed that the interaction of all three compounds
was in the ATP binding pocket, where several crucial residues of CK1lx participated in
the interaction (Figure 3). The binding of all three compounds with CK1x was stabilized
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by several interactions, including four conventional H-bonds, one carbon-H bond, and a
few hydrophobic interactions. The plot showed that two H-bonds stabilized the CK1«x-
Curcusone_A complex with Gly26 and Lys46, two Alkyl bonds with Ile23 and Ile31, along
with 15 Van der Waals interactions (Figure 3A). While one H-bond stabilized the CK1a-
Liriodenine complex with Lys46, two Alkyl bonds with Ile31 and Ala44, along with two
Pi-sigma bonds with Leul43 and Ile156, and 10 Van der Waals interactions (Figure 3B).
At the same time, the CK1a-Semiglabrinol complex was stabilized by two H-bonds with
Ser25 and I1e93, along with several other interactions (Figure 3C). The stable binding of
the elucidated compounds with the ATP-binding site might be vital to inhibit the kinase
activity of CK1a and raise them as “competitive inhibitors” of CK1«.
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Figure 3. Representation of Molecular Interaction and 2D plots showing detailed interactions of (A) Curcusone A, (B) Lirio-
denine, and (C) Semiglabrinol with CK1a.

3.5. MD Simulations
3.5.1. Structural Deviations in CK1«x

Docking study can only provide a static prototype for protein-ligand interactions;
hence, MD simulation studies were carried out on CK1a and its docked complexes with
Curcusone_A, Liriodenine, and Semiglabrinol to explore their binding mechanism. To as-
sess the structural deviations in CK1x and its docked complexes, the systematic properties
of each complex, such as RMSD and RMSEF, were examined during the simulation time. The
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fluctuations of RMSD values in each system are depicted in Figure 4A, which indicates that
all of them are stable without any major fluctuation during the 200 ns MD trajectories. The
RMSD values of Ca backbone atoms denoting the starting structure were used to observe
the dynamic stability of the complexes. The RMSD results revealed that each complex
reached equilibrium after 50 ns which are quite stable up to the simulation trajectory.

30~

A S B

25

3
=

RMSD (A)
RMSF (A)

10

0ns 1 1 1 | 0 | 1 | | 1 | 1 | |
() 50 100 150 200 0 30 60 9 120 150 180 210 240 270

Time (ns) Residue numbers

Radius of gyration (A)

L J 1 | 1 |

50 100 150 200 12,500
Time (ns) 0 50 100 150 200
Time (ns)
Figure 4. Structural dynamics of CKlx Apo (black), CKla-Curcusone_A (red), CKla-Liriodenine (green), and CKla-
Semiglabrinol (blue) (A) RMSD, (B) RMSF, (C) Rg, and (D) SASA across Ca backbone calculated after 200 ns of MD trajectories.

To evaluate the stability of the binding pocket residues in MD simulation, the RMSF
of all the residues in CK1x were calculated and plotted [80-84]. During the RMSF calcula-
tion, the average fluctuation of each residue of CK1«x before and after the binding of the
compounds was computed for the entire 200 ns trajectories of MD simulation. The RMSF
results showed that residues around the ligand-binding site are less fluctuated than other
regions, suggesting that the binding pocket is relatively stable during the simulation time
(Figure 4B).

The R, is another useful tool to explore the compactness of a protein and protein-ligand
complex [53,85]. A higher R, value for a protein indicates its loose packing, while; lower
Rg value indicates tight packing of the structure. In MD studies, it is used to demonstrate
the impact of a ligand molecule, exerting conformational changes in protein molecules.
We have evaluated the R,y of each complex during the simulation to see the impact of
compounds binding on the conformational packing of CK1a (Figure 4C). The results
showed that CK1« had the lowest Rq value during the simulation when in complexed with
Semiglabrinol, which could be attributed to a more compact structure than the free state of
CK1la. However, the results indicated that the ligand binding to CK1x doesn’t affect its
compactness and supports complex stability.

To further evaluate the folding/unfolding behavior of CK1x before and ligand bind-
ing, we have calculated the time evolution of SASA values during the simulation. The
SASA values represent the exposure of each amino acid in a protein surrounded by the
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solvent. The plotted SASA values are in good agreement with the R, trend of the simulated
trajectories of 200 ns (Figure 4D). The plot showed that SASA is decreased after the binding
of a ligand, especially in the case of Semiglabrinol, which suggested higher compactness
and stability of the docked complexes during the simulation. After the 100 ns simulation,
the SASA values of the CKla-Liriodenin rise up slightly in the rest of the simulation
time, which indicated an exposer of some buried residues to the solvent, but without any
structural shift.

3.5.2. Dynamics of Hydrogen Bonds

Intramolecular H-bonds formation is quite important in maintaining the integrity of
protein structure [86]. The analysis of intramolecular H-bonds during MD simulation is
useful to examine the impact of ligand binding on the protein structure. At the same time,
the analysis of intermolecular H-bonds is useful to see the lifetime of interactions formed
between the protein and ligand. This work monitored the time evolution of H-bonds, with
the distance cutoff set to 3.5 A. The resultant plots of intramolecular and intermolecular
H-bonds analysis for all the four systems in MD simulations are shown in Figure 5. The
generated plot showed an overlapped pattern of intermolecular H-bonds distribution
that suggested that CKla maintained its structural integrity during the simulation even
after compounds binding (Figure 5A). This analysis of intermolecular H-bonding also
indicated that the compounds haven’t moved from their initial docking position on CK1x
and maintain the interactions in stabilizing the complex structures (Figure 5B).

I 1 | 1 1 | I

100 150 200 U] 50 100 150 200
Time (ns) Time (ns)

Figure 5. The dynamics of H-bonds in CKla. (A) Intramolecular and (B) Intermolecular hydrogen bond analysis in
CK1-Curcusone_A (red), CK1-Liriodenine (green), and CK1-Semiglabrinol (blue) calculated after 200 ns MD simulation.

3.5.3. Secondary Structure Dynamics

Secondary structure components in a protein maintained its 3D structure and regulated
the flexibility /rigidity of the protein in a natural system [87-90]. To see the impact of
compounds binding on CK1«, the dynamics of secondary structure components were
monitored (Figure 6). The generated graphs show the participation of each residue in
secondary structure formation overtime during the entire simulation. The secondary
structure panels of each system generated through the simulated trajectory indicated
the stable pattern over 200 ns simulation. The result suggested that secondary structure
components of CK1a protein are conserved before and after the binding of each compound
during the entire simulation. The average number of residues participating in the secondary
structure formation is summarized in (Table 4).
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Figure 6. Secondary structural analysis of CK1x Apo, CK1a-Curcusone_A, CKlx-Liriodenine and
CKla-Semiglabrinol complexes calculated after 200 ns of MD trajectories.

Table 4. Percentage of amino acid residues contributed to the secondary structure of CKlx Apo,
CK1a-Curcusone_A, CKla-Liriodenine and CK1a-Semiglabrinol complexes calculated after 200 ns
of MD trajectories.

Complex lo4 B 310-Helix Turn Bend Other
CKla-Apo 24 23 3 9 11 19
CKl1a-Curcusone_A 21 19 5 10 8 21
CKla-Liriodenine 27 23 6 12 10 18
CK1a-Semiglabrinol 28 26 7 13 14 24

However, a slight decrement in «-helices and (3-sheets in the case of CK1o-Curcusone_A
was observed, possibly due to its increased dynamics as seen in the RMSF and SASA analyses.
Whereas, a slight increase in the average number of residues that participated in the formation
of a-helices and 3-sheets of CK1o was observed after the Semiglabrinol binding, which
suggested more compactness and stability of the docked complex during the simulation.

3.5.4. DCCM

Motions in a protein take place on a comprehensive range of time scales, extending
from femtoseconds to seconds [91]. DCCM also depends on the time scale over which
the correlation data was composed [92]. To explore the correlated and anti-correlated
movements in CKlo and its docked complexes with Curcusone_A, Liriodenine, and
CKloa-Semiglabrinol, the inter-residue DCCM analysis was carried out. Four DCCM plots
generated for the CKlo and its docked complexes are illustrated in Figure 7. Positive
and negative correlations are shown in red and blue, respectively. The maps indicated
that CK1x scattered into different populations through positive and negative correlations
with reference to the residue index. The movements in all maps were relatively alike with
minor fluctuations, suggesting that CK1« may have similar global dynamics before and
after compound binding. Overall, the correlation patterns in all the graphs are weakly
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differentiated, suggesting the stability of the movements in free CK1la and its ligand-
bound complexes.

CKI1-Curcusone_A

g
5
Z

Residue index
]

g

g

Residue index

Figure 7. Dynamical cross-correlation matrices of the Apo CKlx, CKla-Curcusone_A, CKlx-
Liriodenine and CK1a-Semiglabrinol complexes.

3.5.5. PCA

PCA is a useful approach in figuring out the overall combined motions of the Cx
atoms in a protein represented by the EVs of the covariance matrix [93]. It is used to
explore the collective motions and conformational sampling of a protein and protein-ligand
complex [94,95]. Employing PCA has been a valuable approach to studying the folding
dynamics of a protein in the presence of small molecules [26,96,97]. To further explore the
directionality of the conformational motions in CK1«, we carried out the PCA of all four
simulation trajectories (Apo CK1a, CK1a-Curcusone_A, CK1u-Liriodenine, and CK1x-
Semiglabrinol) (Figure 8). The average of the protein motions was designated based on the
Cox atoms of CK1o. The projections conformations for the first two EVs, EV1, and EV2 indi-
cated that CK1o in complexed with Curcusone_A has significantly higher negative motions
than the apo CKl«x and its other complexes. The results suggested CK1x-Semiglabrinol
higher stable that mimicked the motions of the apo CK1x with some positive movements.
In all four projections, the CK1x-Curcusone_A and CK1oa-Liriodenine complexes occupied
a broader phase space as compared to the Apo CK1a and CK1x-Semiglabrinol complex
(Figure 8A). The collective motions of the CK1x-Semiglabrinol complex may plausibly
enhance the stability of the docked complex compared to others. The directionality and
magnitudes of all four trajectories were also explored through porcupine plots (Figure 8B).
The changes in direction and magnitude of the complexed systems indicated that the
binding of the identified compounds induced a minor conformational impact on the con-
formational dynamics of CK1x but a quite stabilization during the simulation.
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Figure 8. Principal component analysis. (A) 2D projection of CKla Apo (black), CK1a-Curcusone_A (red), CK1a-
Liriodenine (green), and CK1x-Semiglabrinol complex calculated after 200 ns of MD trajectories (bule). (B) PC1 collective

motions in porcupine plot for Apo, Curcusone_A, Liriodenine, and Semiglabrinol CK1x complexes.

3.5.6. MMPBSA

The solvent condition is one of the crucial parameters while determining the binding
affinity of a ligand molecule with a protein, which is typically not considered in molecular
docking studies [98]. Therefore, the binding energies of all three docked complexes were
further obtained through MM-PBSA calculations using the simulated MD trajectories. The
binding energies of all three docked complexes are summarized in Table 5. The calculated
binding energy through the MM-PBSA approach includes different energetic terms for the
bonded and non-bonded (van der Waals and electrostatic) interactions. The MM-PBSA
calculation was performed on the last 50 ns of the production run. The calculated results
showed that Semiglabrinol in complex with CK1«x has the best result in MM-PBSA binding
energy, further suggesting their higher stability than others. MM-PBSA result showed
that the docked complex of Semiglabrinol with CK1x was stabled with a binding affinity
(AG) —41.08 kcal/mol. The negative value of AE,), as compared to AEyqw and AGyonpolar
signified the presence of H-bonds and polar interactions between the CK1x and the ligands,
especially Semiglabrinol. Overall, the MMPBSA analysis confirmed the stability of all the
docked complexes.

Table 5. MM-GBSA energy profiles of CK1x in complex with Curcusone_A, Liriodenine, and Semiglabrinol *.

Complex AEvdW AEele AGgas AGpolar AGnonpolar AGsol AGDbind
CKla-Curcusone_A —45.23 —8.27 —53.50 20.77 —5.74 15.03 —38.47
CKla-Liriodenine —38.60 —9.31 —4791 20.77 —4.24 16.53 —31.38
CKla-Semiglabrinol —43.58 —1.98 —45.56 9.54 —5.06 447 —41.08

* All the values are in kcal/mol.

4. Conclusions

Considering CK1«x as a potential therapeutic target because of its presence as a positive
regulator of cancer progression and targeting it with the selected hits is an attractive
strategy. The computational approach used in this study might prove its usefulness in
developing potential leads from natural compounds as potent inhibitors of CK1x against
cancer. We performed a systematic study of the structure-based drug discovery approach
and identified three phytoconstituents, Semiglabrinol, Curcusone_A, and Liriodenine,
evaluated as potent binding partners of CKle. Initially, the compound database was
filtered out based on several drug-like properties, followed by molecular docking study.
Then, the results were validated by investigating RMSD, RMSF, R, SASA, and intra- and
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intermolecular H-bonding analyses in MD simulations followed by DCCM, and PCA. The
integrated approach was used to assure that the selected hits interact properly with CK1x
with considerable stability. The MM-PBSA analysis further indicates that the elucidated
phytoconstituents can act as promising CK1« inhibitors and further be exploited for drug
design purposes.
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