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Abstract: Chemotherapy has been linked to a variety of severe side effects, and the bioavailability
of current chemotherapeutic agents is generally low, which decreases their effectiveness. Therefore,
there is an ongoing effort to develop drug delivery systems to increase the bioavailability of these
agents and minimize their side effects. Among these, intratumoral injections using in situ-forming
hydrogels can improve drugs’ bioavailability and minimize drugs’ accumulation in non-target
organs or tissues. This review describes different types of injectable in situ-forming hydrogels and
their intratumoral injection for cancer treatment, after which we discuss the antitumor effects of
intratumoral injection of drug-loaded hydrogels. This review concludes with perspectives on the
future applicability of, and challenges for, the adoption of this drug delivery technology.
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1. Introduction

Approximately 20% of the world’s population has been diagnosed with some type
of cancer, making this one of the most fatal diseases worldwide. Further, the number of
cancer patients in 2040 is predicted to increase by almost twice compared with the current
estimates [1,2].

Cancer patients are commonly treated by surgery, chemotherapy, immunotherapy,
and radiation therapy, as well as targeted therapy, a recently developed therapeutic strategy.
Although current therapeutic approaches have been used to successfully treat patients,
some of these methods have been linked to various serious side effects and patients often
exhibit a cancer recurrence due to metastasis, as well as damage to normal organs [2].

Among the current treatment methods, chemotherapy has been proven to be a highly
efficient anticancer therapy. Nevertheless, chemotherapeutic drugs are often non-specific
to tumors and can thus affect normal tissues, organs, and the nervous system. Additionally,
the bioavailability of these compounds is generally poor [3].

Given the aforementioned challenges and limitations, several studies have sought
to improve these side effects and maximize the treatment efficiency of chemotherapeutic
drugs. Targeted treatment methods using drug-loaded nanoparticles have recently be-
gun to be actively studied and used in clinical trials [4]. However, certain therapeutic
drugs in nanoparticles can accumulate in healthy tissues or organs and cause side effects.
Additionally, once nanoparticles are administered in vivo, they can temporarily or perma-
nently remain in normal tissues, and organs and are therefore not suitable for targeted
therapy [5–8]. Therefore, recent studies have developed precise and tumor-specific drug
release technologies to minimize the toxicity to normal tissues and organs [9–11].

Hydrogels can absorb a large amount of biological media and form a three-dimensional
network structure. Therefore, these materials are applicable in a variety of biomedical
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fields [12]. Hydrogels prepared using biocompatible materials can exhibit excellent biocom-
patibility and low cytotoxicity. Additionally, these hydrogels can be loaded with various
anticancer drugs.

Several studies have recently evaluated injectable in situ-forming hydrogels that exist
in liquid form at room temperature but undergo a phase transition when injected into
a body [13]. These hydrogels could thus be mixed with anticancer drugs and applied
as intratumoral injections that solidify once they enter the body [14–16]. Injectable in
situ-forming hydrogels could thus eliminate the need for surgical procedures, as they
can be intratumorally injected. Thus, injectable in situ-forming hydrogels could provide
a far less invasive means to treat cancer patients. For intratumoral injection, injectable
anticancer-loaded hydrogel formulations can be easily prepared without anticancer drugs
loss and then delivered directly to specific tumor sites, thus minimizing drug accumulation
in other organs [17].

There are several types of injectable in situ-forming hydrogels, which are classified
based on the mechanisms that mediate their liquid-to-hydrogel transition. These hydrogels
can be fabricated via physical bonding (e.g., electrostatic interaction, hydrogen interaction,
or hydrophobic interaction) and chemical bonding via covalent bond formation through
light, enzymes, and click crosslinking agents [18–20].

This review presents a comprehensive and detailed overview of the most recent
advances in fabrication strategies for using injectable in situ-forming hydrogels for the
intratumoral injection of anticancer drugs (Figure 1). First, this review discusses the
preparation of injectable in situ-forming hydrogel formulations via chemical and physical
interaction and intratumoral injection in cancer therapy. Afterward, prospective future
uses of injectable anticancer drug-loaded hydrogel formulations are proposed.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 2 of 15 
 

 

Hydrogels can absorb a large amount of biological media and form a three-dimen-
sional network structure. Therefore, these materials are applicable in a variety of biomed-
ical fields [12]. Hydrogels prepared using biocompatible materials can exhibit excellent 
biocompatibility and low cytotoxicity. Additionally, these hydrogels can be loaded with 
various anticancer drugs. 

Several studies have recently evaluated injectable in situ-forming hydrogels that exist 
in liquid form at room temperature but undergo a phase transition when injected into a 
body [13]. These hydrogels could thus be mixed with anticancer drugs and applied as 
intratumoral injections that solidify once they enter the body [14–16]. Injectable in situ-
forming hydrogels could thus eliminate the need for surgical procedures, as they can be 
intratumorally injected. Thus, injectable in situ-forming hydrogels could provide a far less 
invasive means to treat cancer patients. For intratumoral injection, injectable anticancer-
loaded hydrogel formulations can be easily prepared without anticancer drugs loss and 
then delivered directly to specific tumor sites, thus minimizing drug accumulation in 
other organs [17]. 

There are several types of injectable in situ-forming hydrogels, which are classified 
based on the mechanisms that mediate their liquid-to-hydrogel transition. These hydro-
gels can be fabricated via physical bonding (e.g., electrostatic interaction, hydrogen inter-
action, or hydrophobic interaction) and chemical bonding via covalent bond formation 
through light, enzymes, and click crosslinking agents [18–20]. 

This review presents a comprehensive and detailed overview of the most recent ad-
vances in fabrication strategies for using injectable in situ-forming hydrogels for the in-
tratumoral injection of anticancer drugs (Figure 1). First, this review discusses the prepa-
ration of injectable in situ-forming hydrogel formulations via chemical and physical inter-
action and intratumoral injection in cancer therapy. Afterward, prospective future uses of 
injectable anticancer drug-loaded hydrogel formulations are proposed. 

 
Figure 1. Schematic representation of injectable in situ-forming hydrogel for intratumoral injection (the image was created 
by G.R.S. and H.E.K. using Adobe Photoshop 7.0). 

2. Injectable In Situ-Forming Hydrogels 
Over the past decades, several studies have described the design and synthesis of 

several hydrogels for applications in tissue engineering, drug delivery, and bio-nanotech-
nology. Hydrogels consist of solvent-swelled polymer structures, and water is typically 

Figure 1. Schematic representation of injectable in situ-forming hydrogel for intratumoral injection (the image was created
by G.R.S. and H.E.K. using Adobe Photoshop 7.0).

2. Injectable In Situ-Forming Hydrogels

Over the past decades, several studies have described the design and synthesis of sev-
eral hydrogels for applications in tissue engineering, drug delivery, and bio-nanotechnology.
Hydrogels consist of solvent-swelled polymer structures, and water is typically used as the
solvent in biological applications. In situ-forming hydrogels can form by swelling in water
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through different driving forces including the covalent and ionic bonds of hydrophilic
polymers [21].

In situ-forming hydrogels offer several advantages in biomedical applications. Specifi-
cally, these materials can be prepared in liquid form at room temperature (i.e., outside the
human body) and in the absence of trigger materials or mechanisms, after which they can
be quickly injected into the body. Furthermore, different hydrogel formulations containing
various types of drugs (e.g., anticancer drugs) can be prepared via simple physical mixing.
Therefore, in situ-forming hydrogels are promising carrier candidates that could allow for
the easy and convenient delivery of anticancer drugs.

For intratumoral injection, the in situ-forming hydrogels not only have to be stable,
cost-efficient, and easy to manufacture, but must also be compatible with the drugs to be
injected, in addition to promoting a suitable shape formation, uniform and consistent drug
loading, and drug release [22–25]. Several fabrication methods of injectable in situ-forming
hydrogels have been reported. This review will focus on injectable hydrogels formed via
physical and chemical methods.

2.1. Injectable In Situ-Forming Hydrogels Prepared via Physical Interactions

The structure of certain biomaterials relies primarily on physical interactions such as
ionic, hydrogen, and hydrophobic bonding, as well as inter- and intra-physical interactions.
These physical interactions are relatively weak compared to chemical bonds, thus allowing
for the formation of reversible hydrogel matrices according to variations in various biologic
conditions [26,27]. The preparation of injectable in situ-forming hydrogels via physical
interactions does not require the use of crosslinking agents or chemical modification.
Therefore, various biomaterials can be used relatively easily as injectable in situ-forming
hydrogels via physical interaction [28,29].

However, given that physical interactions depend on the physical properties of the
biomaterial itself, some of the characteristics of these materials are inflexible, including
their gelation time, in vitro and in vivo maintenance, and the mechanical properties of the
formed hydrogel. Therefore, it may be difficult to accurately control the in vivo perfor-
mance of these hydrogels [27–29]. Nevertheless, these shortcomings can be overcome by
using biomaterials with different molecular weights and concentrations, as well as different
blends of biomaterials with other components. These procedures can result in the forma-
tion of hydrogels with different stiffnesses, viscosities, rheological behaviors, swelling and
disintegration behaviors, and biocompatibility. Thus, injectable in situ-forming hydrogels
prepared via physical interaction have been widely used for intratumoral injections due
to the ease of biomaterial selection and applicability. The different types of injectable in
situ-forming hydrogels prepared via physical interaction are described below.

2.1.1. Injectable In Situ-Forming Hydrogels Prepared via Electrostatic Interactions

Electrostatic interaction is one of the most common physical bonds. This type of bond
consists of the interaction between two opposite charges such as positive and negative
electrolyte groups. These electrostatic interactions can be caused by (poly)electrolyte groups
with ionizing or protonating properties, as well as pH changes. These (poly)electrolyte
groups can also be affected by external chemical, thermal, and mechanical factors.

Several typical biomaterials contain anionic (poly)electrolytes derived from natu-
ral materials such as alginate, chondroitin sulfate, hyaluronate, heparin, sodium car-
boxymethylcellulose, pectin, dextran sulfate, and xanthan, as well as synthetic materials
such as polyacrylic acid derivatives. Cationic (poly)electrolytes include chitosan, polydial-
lydimethylammonium chloride, spermine, spermidine, polyethylenimine, and polylysine.

Electrostatic interactions can easily be formed between anionic (poly)electrolytes and
cationic (poly)electrolytes by instantaneous physical crosslinking, but these interactions can
also easily lead to a decreased cross-linking capability with several other (poly)electrolytes
in physiological environments [30–32]. Materials with anionic (poly)electrolytes (e.g.,
carboxylates, phosphates, and sulfates) and cationic (poly)electrolytes (e.g., protonated
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amines) can be individually prepared as injectable (i.e., liquid) formulations before mixing.
The (poly)electrolytes in the injectable formulations can induce electrostatic interactions
after mixing, resulting in hydrogel formation [33–36].

However, given the wide variety of electrostatic materials in living organisms, the
performance of electrostatic-interaction-based hydrogels may vary depending on the sur-
rounding environments (e.g., in the presence of biological materials and anionic and
cationic (poly)electrolytes), as well as the body’s temperature. Resolving these limita-
tions is thus necessary for the further development and widespread adoption of injectable
intratumoral hydrogels prepared via electrostatic interactions [29].

2.1.2. Injectable In Situ-Forming Hydrogels Prepared via Hydrophobic Interaction

Under physiological conditions, hydrophobic materials with non-polar groups repel
water and aggregate among themselves or with other non-polar materials. In contrast,
amphiphilic materials containing both hydrophilic and hydrophobic groups can either
dissolve or precipitate in water depending on the environmental conditions. Certain
environmental conditions favor the dissolution of hydrophilic structures in water, thus
inducing the dissolution of amphiphilic materials in aqueous solution. In other conditions,
precipitation can occur via the dehydration of the aqueous solution by the hydrophobic
segments [34,37].

Given the difference between body temperature and room temperature, the solu-
bility of amphiphilic materials in water may vary under physiological conditions. This
phenomenon can cause amphiphilic materials to undergo a phase transition from their
dissolved to their precipitate states.

Various amphiphilic materials have been developed and utilized as injectable in
situ-forming hydrogels via hydrophobic interactions. Poly(ethylene glycol) (PEG) is
among the most widely studied hydrophilic structures in the biomedical field. Various am-
phiphilic materials have been developed by incorporating hydrophobic structures into PEG
blocks to be used as injectable in situ-forming hydrogels [38]. The developed hydropho-
bic structures include poly(propylene oxide) (PPO), poly(lactide-co-glycolide) (PLGA),
polylactic acid (PLA), poly(ε-caprolactone-co-D,L-lactic acid) (PCLA), polycaprolactone
(PCL), poly(trimethylene carbonate) (PTMC), poly(δ-valerolactone), poly (1,4-dioxan-2-
one) PDO, PCL-co-PTMC, PCL-co-PDO, polysebacic acid, polyphosphazenes, and poly(N-
isopropylacrylamide). A variety of amphiphilic materials composed of hydrophobic and
hydrophobic structures can be prepared as liner blocks, dendrimers, and network structures.

These materials possess varying advantages depending on their hydrophilic and
hydrophobic group composition, including their adjustable in vivo mechanical properties
and in vivo biodegradation [38]. However, amphiphilic materials must be soluble in bio-
logical media to serve as carriers for therapeutic agents. Given that many of the developed
amphiphilic materials are synthetic, potential challenges such as immune reactions should
be comprehensively evaluated prior to their in vivo application [39].

2.2. Injectable In Situ-Forming Hydrogels Prepared via Covalent Bonding

A covalent bond is the irreversible linking of one molecule (e.g., a biomaterial chain)
to another. The formation of covalent bonds between intra- and inter-biomaterial chains
can lead to permanent biomaterial fixing or promote changes in the physical properties
of the original biomaterials [40,41]. If the biomaterial is water-soluble, it can form a
water-swellable biomaterial network via the covalent bonding between intra- and inter-
biomaterial chains, resulting in the formation of injectable in situ-forming hydrogels [42].
Covalent bonding can improve the mechanical properties of injectable in situ-forming
hydrogels, thus increasing their resistance to dissolution in aqueous solutions.

Covalent bonds between intra- and inter-biomaterial chains can be formed by chemical
reactions that are initiated by heat, pressure, pH changes, or irradiation [43], among which
heat application is the most common strategy. Nevertheless, applying heat above body
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temperature would not be feasible in vivo, and this greatly limits the clinical applicability
of injectable in situ-forming hydrogels prepared using heat.

Injectable in situ-forming hydrogels prepared via covalent bonding require functional
or crosslinking materials with which to chemically react. Although most functional or
crosslinking materials can cause toxicity, injectable hydrogels prepared via covalent bond-
ing have been widely used in intratumoral injections. The sections below describe the
types of injectable in situ-forming hydrogels prepared via photo-irradiation, click reaction,
and enzyme activity to form covalent bonds.

2.2.1. Injectable In Situ-Forming Hydrogels Prepared via Photo-Irradiation

The photo-reaction method for hydrogel synthesis is generally regarded as fast and
practical [26,44]. Additionally, various photosensitive materials have been developed [45]
and have been widely studied in a variety of biological fields [46–50]. Among them, azoben-
zene, spiropyran, nitrobenzyl, galactose, 7-diethylamino-4-thiocoumarinylmethyl, cumarin,
and cinnamic acid contain anthracene or acrylate groups (photosensitive chromophores),
which can be activated within a few seconds of light irradiation.

Nevertheless, unreacted photosensitive chromophores can cause inflammatory reac-
tions. Additionally, light irradiation (particularly UV light) can lead to cytotoxicity and
potential genetic mutations. Furthermore, very few compounds could serve as suitable
solvents and non-cytotoxic activators (i.e., photoinitiators) in vivo [51,52]. Instead, bioma-
terials containing these photosensitive chromophores or acrylate groups can also be easily
activated by light irradiation. This can enable facile and rapid hydrogel formation via light
irradiation when performing in vivo injections, thus enabling injection position control [53].

2.2.2. Injectable In Situ-Forming Hydrogels Prepared via Click Reaction

Covalently click-cross-linked biomaterials prepared as a solution could be used for
the development of injectable in situ-forming hydrogels. Click reactions, formed by the
mixing of click-group-modified biomaterials, can rapidly form hydrogels with tunable me-
chanical properties for in vivo applications [54,55]. In recent years, click reaction materials
(e.g., formed via the copper-catalyzed azide–alkyne cycloaddition or alkyne–azide reac-
tions, Diels–Alder reaction, Schiff base formation, Michael addition, or thioenol addition,
among others) have been introduced into biomaterials with various structures (e.g., linear,
dendrimer, and network).

Click reactions between click reaction materials rapidly form bioorthogonally cross-
linked hydrogels without catalysts or external energy in aqueous media, as well as under
physiological environments [54–57]. Individual solutions of click-group-modified bioma-
terials can easily allow for the covalent formation of injectable in situ-forming hydrogels
within a few seconds. However, click reactions are potentially cytotoxic, as they involve
the use of copper. Additionally, a click reaction’s time may depend on the regiospecificity
of the click reagents [58,59].

2.3. Injectable In Situ-Forming Hydrogels Prepared via Enzyme Activity

Enzyme-mediated crosslinking can enable the formation of hydrogels in physiological
conditions, and injectable in situ-forming hydrogels prepared via enzymatic reactions are
increasingly being used as alternatives to metal catalysts and photo-irradiation [60].

Active enzymes for injectable in situ-forming hydrogels include laccases, horseradish
peroxidase (HRP), transglutaminases (TGases, protein-glutamine gamma-glutamyltransferase),
tyrosinase (Tyr), and lysyl oxidase coupled with hydrogen peroxide (H2O2) to support
the reaction [61–69]. Enzymatic-mediated crosslinking using HRP induces the binding of
aniline, phenol, and its derivative tyramine in the presence of H2O2 [70–73]. Enzymatic-
mediated crosslinking forms strong covalent bonding, with reactions occurring in less than
10 min. Additionally, the kinetics of in situ-forming hydrogel synthesis can be manipulated
by controlling the enzyme concentration. Further, the products of these reactions tend
to be highly biocompatible and are especially well suited to the preparation of injectable
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hydrogels. Nevertheless, several physicochemical factors such as the pH, temperature,
and steric hindrance caused by the substrate structure can significantly affect the catalytic
activity of enzymes [74].

3. Intratumoral Injection Using Anticancer Drug-Loaded Injectable Hydrogels

Intratumoral injection can maximize the efficiency of chemotherapeutic agents and
minimize their toxicity to normal organs and tissues other than the target tumor. Addition-
ally, the administration of chemotherapeutic compounds via intratumoral injection could
greatly reduce the amount of a drug required for a single administration compared with
conventional approaches in which anticancer drugs are repeatedly administered (Figure 2).
Therefore, the injectable in situ-forming hydrogels described in the previous sections can
easily be prepared as anticancer drug-loaded hydrogel formulations and could be highly
effective as a non-invasive method to treat cancer via direct intratumoral injection [75,76].
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Tables 1 and 2 summarize a selection of recent studies that evaluated the applicability
of anticancer drug-loaded in situ-forming hydrogels for intratumoral injection, which will
be described in the following section.

3.1. Intratumoral Injection Using Hydrogels Prepared via Electrostatic Interactions

As discussed above, anticancer drugs can easily be mixed into electrostatic interaction
hydrogels prepared using several electrostatic biomaterials.

Huayamares et al. prepared electrostatic interaction hydrogels using glatiramer
acetate (GA) and hyaluronic acid (HA) [77]. In a comparative experiment, the electrostatic
interacted GA/HA hydrogel was injected into solid tumors using a hydrogel prepared
from GA and nonionic PEG. After intratumoral injection, the GA/HA exhibited a higher
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tumor retention rate than the GA/PEG due to electrostatic interaction, and the drug release
rate of these different hydrogels also varied when administered to treat tumor fibrosis.

Table 1. Intratumoral injection using an injectable hydrogel through physical interaction with anticancer drugs.

Hydrogel Materials Drug or Agents Cells Cancer Type Ref.

Electrostatic
interactions

HA, GA (HAMA PEGDA)
HAMA Glatiramer acetate AT-84 Head and neck

(HN) [77]

CS, β-GP Carboplatin B16F1 Melanoma [78]

CS, β-GP, PLGA Paclitaxel M-234p Mammary
adenocarcinoma [79]

CMC, CHI Cur A253 - [80]

Na-DOC-hydrogel DOX MDA-MB-231 Epithelial cell [81]

Hydrophobic
interaction

PDLLA–PEG–PDLLA
triblock copolymer GEM, DDP BxPc-3 Pancreatic cancer [82]

MPEG-b-(PCL-ran-PLLA)
diblock copolymer 5-Fu B16F10 Melanoma [83]

MPEG–PCL diblock copolymer DOX B16F10 Melanoma [84]

PLGA–PEG–PLGA
triblock copolymers Tamoxifen MCF-7 ERα-positive

breast cancer [85]

PLGA–PEG–PLGA
triblock copolymers Herceptin SK-BR-3 HER2+ breast

cancer [86]

HA—hyaluronic acid; GA—glatiramer acetate; HAMA—methacrylated HA; PEGDA—polyethylene glycol diacrylate; CS—chitosan; β-
GP—β-glycerophosphate; CMC—caboxylmethycellulose; CHI—chitosan; Cur—curcumin; Na-DOC-hyd—sodium deoxycholate hydrogel;
DOX—doxorubicin; PDLLA–PEG–PDLLA—poly(D,L-lactide)–poly(ethylene glycol)–poly(D,L-lactide); GEM—gemcitabine; DDP—cis-
platinum;; MPEG-b-(PCL-ran-PLLA)—poly(ethylene glycol)-b-(polycaprolactone-ran-poly-L-lactic acid); 5-Fu—5-fluorouracil; MPEG–
PCL—poly(ethylene glycol)-b-polycaprolactone; PLGA-PEG-PLGA—poly(lactic acid-co-glycolic ac-id)-b-poly(ethylene glycol)-b-poly(lactic
acid-co-glycolic acid).

Chitosan (CS) is enzymatically degradable, generally non-cytotoxic, and biocompati-
ble, and therefore does not cause adverse effects on healthy organs and tissues near the
injected tumor site. CS is a cationic polymer with two functional groups, hydroxyl and
amine, and an overall positive charge. Thus, the cationic nature of chitosan (CS) enables this
biopolymer to electrostatically interact with anionic molecules such as β-glycerophosphate
(β-GP). Particularly, a single intratumoral injection of this CS/β-GP system showed good
efficacy in mammary-tumor-bearing mice [78,79]

Previous studies sought to increase the efficacy of other drug delivery carriers by
taking advantage of the electrostatic interactions with CS. For example, some studies
reported on the applicability of a CS/β-GP-based material coupled with carboplatin-
loaded PCL nanoparticles and paclitaxel (PTX)-loaded PLGA microparticles. Further,
carboxymethylcellulose is an anionic (poly)electrolyte, and therefore hydrogels can be
produced via the electrostatic interactions between this compound and chitosan (CCS).
Kim et al. prepared curcumin-loaded microspheres to increase the in vivo half-life of
curcumin. The authors reported that electrostatically interacting CCS hydrogels with
curcumin-loaded microspheres showed good antitumor efficacy in animal models after
intratumoral injection [80].

Collectively, these studies demonstrated that electrostatically interacting hydrogels
with/without drug-loaded nano- and micro-particles can synergistically enhance the an-
ticancer activity. Although electrostatically interacting hydrogels can easily be formed
using anionic and cationic biomaterials, they tend to be sensitive to changes in pH and
are thus easily affected by the protonation and deprotonation of anionic and cationic
biomaterials [81]. These properties can be a disadvantage; however, pH-responsive elec-
trostatic interacted hydrogels can be prepared via the protonation and deprotonation of
ionic biomaterials. Furthermore, electrostatically interacting hydrogels are prone to in vivo
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degradation due to erosion and cracking, thus impairing their mechanical properties and
controlled drug release.

3.2. Intratumoral Injection Using Hydrophobically Interacting Hydrogel

As described above, several studies have evaluated the applicability of hydrophobi-
cally interacting PEG–polyester block copolymers for the preparation of hydrogels. The
most widely used polyesters are PLA, PLGA, and PCL.

Shi et al. used a poly(D,L-lactide)–PEG–poly(D,L-lactide) (PDLLA–PEG–PDLLA)
triblock copolymer co-loaded with gemcitabine and cisplatin for a synergistic combination
therapy to treat pancreatic cancer [82]. Kim et al. prepared injectable in situ-forming
hydrogels using a MPEG–PCL diblock copolymer for intratumoral injection of doxorubicin
(DOX), PTX, and 5-fluorouracil (5-Fu) [83,84]. Additionally, the intratumoral injection of
PLGA–PEG–PLGA triblock copolymers enabled the sustained release of tamoxifen and
Herceptin [85,86].

Recently, OncoGelTM (MacroMed Inc., Salt Lake City, UT, USA) has employed com-
mercial formulations of a PLGA–PEG–PLGA triblock copolymer to deliver PTX to the
tumor site in solid malignancies [87]. The efficacy of hydrophobically interacting hydrogels
has been preliminarily demonstrated in a Phase IIa study for intratumoral chemotherapy;
however, no significant effects on the overall tumor response were observed.

3.3. Intratumoral Injection Using Photo-Irradiated Hydrogels

Some hydrogels with photoresponsive agents can be utilized for intratumoral injection.
The o-nitrobenzyl or azobenzene groups in PEG- or PEG–polyester-based hydrogels un-
dergo irreversible or reversible reactions when irradiated with UV light, respectively [88,89].
Another study examined the applicability of a hydrogel composed of indocyanine green–
alginate (i.e., two near-infrared (NIR)-responsive agents) and Ca2+/Mg2+ for localized
tumor ablation [90]. This injectable indocyanine green–alginate hydrogel has been suc-
cessfully applied as a highly efficient photothermal therapy in vivo without NIR-induced
side effects. Nevertheless, NIR-I light (650–950 nm) penetrates <1 cm into the tissues,
and therefore this approach is only suitable to treat superficial and thin tumors. NIR-II
light (1000–1700 nm) provides a more feasible means for the treatment of large superficial
tumors due to its tissue penetration depth of approximately 3–5 cm; however, its clinical
application to the treatment of deep tumors remains restricted [91].

Mukerji et al. developed a photoradiation-controlled intratumoral depot (PRCITD)
driven by convection-enhanced delivery (CED) to spatiotemporally control tumors and
anticancer drug coverage [92]. This intratumoral depot consisted of a recombinant elastin-
like polypeptide (ELP) containing periodic cysteine residues and was conjugated with a
photosensitizer [chlorin-e6 (Ce6)] at the N-terminus of the ELP. The photodynamic therapy
provided by the PRCITD caused significant tumor inhibition in a Ce6 dose-dependent man-
ner. Additionally, the combination of photodynamic and intratumoral radionuclide therapy
co-delivered by the PRCITD provided a greater antitumor effect than either monotherapy
alone. These findings suggest that the PRCITD could provide a stable platform for the
co-delivery of anticancer drugs to induce synergistic effects.

In intratumoral injection using photo-irradiated hydrogels, increasing the power
density (W/cm2) and the exposure time to irradiation leads to greater penetration. Given
the substantial limitations of UV light (e.g., poor penetration and risk of damaging tissues),
approaches involving upconversion of low-energy photons (e.g., near-infrared; NIR) into
high-energy photons (e.g., UV) are promising alternatives.

3.4. Intratumoral Injection Using Click Crosslinking Hydrogel

Several biomaterials with click crosslinking molecules can be prepared as a solution
and have been used to rapidly form injectable hydrogels in physiological environments.
The click crosslinking between functionalized molecules has a high efficiency and excellent
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specificity at high reaction rates. These properties enable the quick and facile formation of
intratumoral depots of anticancer drugs after intratumoral injection.

Xu et al. prepared PEG-based dendrimer hydrogels consisting of alkyne dibenzocy-
clooctyne and PEG-bisazide. Bioorthogonal depots formed via azide–alkyne cycloaddition
after intratumoral injection and exhibited a high cytocompatibility, thus enabling the
sustained release of the anticancer drug 5-Fu and suppressing the tumor growth [93].

Emoto et al. used an HA-aldehyde and HA-adipic dihydrazide with cisplatin for
intratumoral injection. The time of gelation via cross-linking was modified by changing the
concentration of the HA-aldehyde and HA-adipic dihydrazide. Click crosslinked cisplatin-
loaded HA was successfully implemented to locally deliver cisplatin to live mice [94].

Kim et al. described an in situ-forming PEG hydrogel produced via cross-linking
between thiol and maleimide [95]. The gelation time of this material could be controlled
from 15 s to 5 min by modifying the thiol and maleimide concentrations. The TRAIL
protein-loaded hydrogel quickly formed a depot and exerted anticancer effects on tumors
of Mia Paca-2 cell-xenografted BALB mice.

Although click crosslinking can form a stable depot system for the intratumoral
delivery of anticancer drugs, the utilized cross-linking agents can be toxic and have poor
biocompatibility, which greatly limits the applicability of this approach. Additional studies
are thus required to develop non-toxic crosslinking reagents [96].

3.5. Intratumoral Injection Using Enzyme-Mediated Crosslinking Hydrogels

Enzyme-reactive hydrogels are typically obtained through enzyme-mediated crosslink-
ing. The preparation of enzyme-reactive hydrogels for intratumoral injection requires the
incorporation of an enzyme-specific substrate or a substrate-mimicking material into
the hydrogel.

Tang et al. prepared cytarabine HA-tyramine (Ara-HA-Tyr) hydrogel conjugates [97].
The enzyme-reactive hydrogels were formed through the oxidative coupling of tyramines
by H2O2 and HRP. These enzyme-reactive hydrogels exhibited a robust synergistic antitu-
mor efficacy when combined with radiotherapy in the Lewis lung cancer xenograft model.

Oh et al. investigated a gelatin-hydroxyphenyl propionic acid (GHPA)-based hydrogel
composed of hydroxyphenyl propionic acid conjugated to gelatin obtained via HRP- and
H2O2-mediated cross-linking [98]. The enzymatic cross-linking reaction of this system can
easily be manipulated to achieve hydrogels with desired properties such as gelation time,
mechanical stiffness, and degradation rate. More importantly, the authors demonstrated
a synergistic antitumor effect and induction of tumor-specific immune responses via
the hydrogel-mediated sustained release of oncolytic adenovirus and dendritic cells in
solid tumors.

Xu et al. synthesized an L-phenylalanine-based low-molecular-weight gelator con-
taining thioketal and a control gelator without reactive oxygen species (ROS)-cleavable
bonds [99]. Enzyme-reactive hydrogels co-loaded with DOX and a photosensitizer were
intratumorally injected into 4T1-breast-tumor-bearing mice and rendered antitumor effects
in vivo.

Collectively, the above-described findings demonstrate that enzyme-reactive hydro-
gels exhibit a high substrate specificity (both regioselectivity and stereoselectivity) and
prevent the expensive and time-consuming separation of by-products and intermediates.
Nevertheless, enzyme reactive hydrogels have recently been linked to cross-reactivity
problems in vivo, thus highlighting the need for further research to enhance the specificity
of enzymes to their target substrates [100].
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Table 2. Intratumoral injection using an injectable hydrogel through covalent bonding with anticancer drugs.

Hydrogel Materials Drugs or Agents Cells Cancer Type Ref.

Photo
Irradiation

Photothermal Ca2+/Mg2+

stimuli-responsive ICG–alginate hydrogel
ICG 4T1 Breast cancer cell [90]

cE6 cELP [A14VC]16
gene FaDu Squamous cell

carcinoma [92]

Click
reaction

DH-P-G4-PDBCO (P-G4-PDBCO +
PEG-BA) 5-Fu HN12 HNSCC [93]

HA–ADH, HA-CHO Cisplatin MKN45P Human gastric
cancer [94]

HAS-SH/PEG-MAL hydrogel TRAIL protein Paca-2 - [95]

Active
enzyme

Ara-HA-Tyr hydrogel; H2O2, HRP Cytarabine LLC Lung cancer [97]

GHPA-based hydrogel Ad, DC MLLC - [98]

DOX–ZnPCS4-coloaded gel DOX 4T1 Breast cancer cell [99]

ICG—indocyanine green; cE6—chlorin-e6; cELP—cysteine containing elastin-like polypeptides; FaDu—human squamous cell carcinoma;
DH-P-G4 polyamidoamine generarion 4.0 dendrimer hydrogel; PDBCO—PEGylated dibenzocyclooctyne; PEG-BA—polyethylene glycol
bisazide; HNSCC—Head and neck squamous cell carcinomas; HA–ADH—Hyaluronic acid–adipic dihydrazide; HA-CHO—Hyaluronic
acid aldehyde form; HAS-SH—thiolated human serum albumin; PEG–MAL—4-arm polyethylene glycol–maleimide; TRAIL—TNF-related
apoptosis inducing ligand; Ara-HA-Tyr—cytarabine hyaluronic acid-tyramine; HRP—Horseradish peroxide; LLC—Lewis lung cancer;
GHPA—gelatin-hydroxyphenyl propionic acid; Ad—oncolytic adenovirus; DC—dentritic cell; MLLC—murine Lewis lung carcinoma
cell line.

4. Conclusions and Outlook

Research on in situ-forming hydrogels has recently garnered increasing attention, as
this technology could enable the localized delivery of anticancer drugs via intratumoral
injection. Here, we discussed the preparation of anticancer-drug-loaded injectable in situ-
forming hydrogels via chemical and physical interactions for intratumoral injection in
cancer therapy. However, this review did not describe the release behavior of anticancer
drugs with different lipophilic properties or multiple drugs from hydrogel depots [101,102].

The properties of in situ-forming hydrogels are highly associated with their chemical
and physical interactions, and therefore the functional improvement of these materials is
extremely dependent on innovation of fabrication strategies. Normally, in situ-forming
hydrogels generated via chemical interactions exhibit desirable mechanical properties,
whereas in situ-forming hydrogel formulations obtained via physical interactions are more
biocompatible due to the absence of chemical crosslinking agents in their composition.
Therefore, novel and more comprehensive fabrication strategies for situ-forming hydrogels
could pave the way for the development of hydrogel formulations containing various
anticancer drugs.

Intratumoral injection technology has recently undergone tremendous progress, in-
cluding the design of in situ-forming hydrogels optimized for the effective delivery of
anticancer drugs. Further, we anticipate that the applications and adoption of this novel
drug-delivery technology will continue to grow. The primary objective of intratumoral
injection is the effective delivery of anticancer drugs to the tumor site with minimal or
no systemic drug bioavailability and no toxicity to healthy organs and tissues. Therefore,
in situ-forming hydrogels must enable the sustained release of anticancer drugs from
depots after intratumoral injection, thus localizing the anticancer drug exclusively to the
tumor site. Future studies on intratumoral injection using in situ-forming hydrogels must
address the applicability of this technology to different cancer-affected tissues or organs in
clinical environments.

Although the efficacy of in situ-forming hydrogels for cancer treatment has been
repeatedly demonstrated in several proof-of-concept experiments using various animal
models and cancer types, translating this technology to clinical applications in humans will
pose several important challenges.
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Despite the recent progress in the development of in situ-forming hydrogels for intra-
tumoral injection, several challenges still need to be considered. The first major challenge
is the immunogenicity of in situ-forming hydrogel materials to healthy organs and tissues
near the injected tumor site, as most injected depots can cause serious inflammation at
the injected site. Additionally, in situ-forming hydrogels must be biodegradable under
the tumor microenvironment conditions, ideally at a similar rate to the tumor’s decrease.
Moreover, the development of intratumoral injection technology requires a thorough
understanding of the responses of tumor tissues to in situ-forming hydrogels, as many
situ-forming hydrogels are designed and tested in hypothetical conditions and not in the
tumor microenvironment. Finally, the spatiotemporal release of anticancer drugs from
the depot is another important challenge that must be overcome in order to maximize the
efficacy of the hydrogels for the desired treatment period.

Therefore, the following factors must be considered for clinical translation: (1) biomate-
rials for in situ-forming hydrogels must meet perfect biocompatibility and biodegradability
standards; (2) in situ-forming hydrogels must be highly responsive to human tumors;
and (3) drug loaded-in situ-forming hydrogels must be evaluated in human trials, paying
special attention to the surrounding tumor processes, age, and physical activity.

A more comprehensive understanding of the properties of injectable in situ-forming
hydrogels would contribute to the improvement of patients’ convenience while reducing
drugs’ systemic toxicity and also allowing for the programmable delivery and sustained
release of anticancer drugs from the hydrogel depot—all of which would facilitate clinical
translation. In summary, a joint multidisciplinary effort is urgently needed to develop and
apply novel strategies that might help to materialize the tremendous potential of injectable
in situ-forming hydrogel technology for intratumoral injection. Achieving this would
greatly contribute to the advancement of cancer therapy in the near future.
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