
pharmaceutics

Article

Ceftriaxone Mediated Synthesized Gold Nanoparticles:
A Nano-Therapeutic Tool to Target Bacterial Resistance

Farhan Alshammari 1, Bushra Alshammari 2 , Afrasim Moin 1 , Abdulwahab Alamri 3, Turki Al Hagbani 1,
Ahmed Alobaida 1, Abu Baker 4 , Salman Khan 4 and Syed Mohd Danish Rizvi 1,*

����������
�������

Citation: Alshammari, F.;

Alshammari, B.; Moin, A.; Alamri, A.;

Al Hagbani, T.; Alobaida, A.; Baker,

A.; Khan, S.; Rizvi, S.M.D. Ceftriaxone

Mediated Synthesized Gold

Nanoparticles: A Nano-Therapeutic

Tool to Target Bacterial Resistance.

Pharmaceutics 2021, 13, 1896.

https://doi.org/10.3390/

pharmaceutics13111896

Academic Editors: Corneliu Tanase,

Valentina Uivarosi and Aura Rusu

Received: 5 October 2021

Accepted: 5 November 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
frh.alshammari@uoh.edu.sa (F.A.); afrasimmoin@yahoo.co.in (A.M.); t.alhagbani@uoh.edu.sa (T.A.H.);
a.alobaida@uoh.edu.sa (A.A.)

2 Department of Medical Surgical Nursing, College of Nursing, University of Ha’il, Ha’il 81442, Saudi Arabia;
bu.alshammari@uoh.edu.sa

3 Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il,
Ha’il 81442, Saudi Arabia; a.alamry@uoh.edu.sa

4 Nanomedicine and Nanotechnology Lab, Department of Biosciences, Integral University,
Lucknow 226026, India; karimabubaker@gmail.com (A.B.); salmank@iul.ac.in (S.K.)

* Correspondence: syeddanishpharmacy@gmail.com

Abstract: Ceftriaxone has been a part of therapeutic regime for combating some of the most aggres-
sive bacterial infections in the last few decades. However, increasing bacterial resistance towards
ceftriaxone and other third generation cephalosporin antibiotics has raised serious clinical concerns
especially due to their misuse in the COVID-19 era. Advancement in nanotechnology has converted
nano-therapeutic vision into a plausible reality with better targeting and reduced drug consump-
tion. Thus, in the present study, gold nanoparticles (GNPs) were synthesized by using ceftriaxone
antibiotic that acts as a reducing as well as capping agent. Ceftriaxone-loaded GNPs (CGNPs) were
initially characterized by UV-visible spectroscopy, DLS, Zeta potential, Electron microscopy and
FT-IR. However, a TEM micrograph showed a uniform size of 21 ± 1 nm for the synthesized CGNPs.
Further, both (CGNPs) and pure ceftriaxone were examined for their efficacy against Escherichia coli,
Staphylococcus aureus, Salmonella abony and Klebsiella pneumoniae. CGNPs showed MIC50 as 1.39, 1.6,
1.1 and 0.9 µg/mL against E. coli, S. aureus, S. abony and K. pneumoniae, respectively. Interestingly,
CGNPs showed two times better efficacy when compared with pure ceftriaxone against the tested
bacterial strains. Restoring the potential of unresponsive or less efficient ceftriaxone via gold nanofor-
mulations is the most alluring concept of the whole study. Moreover, applicability of the findings
from bench to bedside needs further validation.
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1. Introduction

According to Centers for Disease Control and Prevention (CDC) threat report on
antibiotic resistance (2019) [1], every year around 2.8 million cases of resistant bacterial
infection occur in the United States alone with 35 K mortality. However, COVID-19 co-
infection with antibiotic-resistant bacterial pathogens has raised a serious clinical issue
now-adays. The situation has worsened due to the increasing trend of self-medication
of antibiotics in the COVID-19 era [2]. One such antibiotic is ceftriaxone, and scientists
have grave concerns over the cautious use of antibiotics in COVID-19 management [3]. In
fact, ceftriaxone is often prescribed to treat a wide range of bacterial infections, such as
meningitis, bone infections, joints, middle ear, intra-abdominal, skin, and pelvic inflamma-
tory diseases [4]. On the other hand, ceftriaxone resistance has also increased many fold
in the recent past [5–7]. Thus, alternative novel approaches to tackle the current scenario
are urgently needed, and nanotechnology appears to deliver a plausible solution to these
resistant issues.
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Application of nanoparticles in different fields of medicine has gained worldwide
acceptance because of their unique physical and bio-chemical features, and controlled drug
release ability [8]. In the past few years, several inorganic nanoparticles with antibacterial
potential have been developed, such as gold nanoparticles, silver nanoparticles, zinc oxide
nanoparticles, and titanium dioxide nanoparticles [9–15]. These inorganic nanoparticles
can inhibit bacterial growth by various mechanisms such as hindering replication and
transcription process, DNA damage via direct interaction, increasing reactive oxygen
species, destroying the cell wall, etc. [13]. Importantly, they have shown effectiveness
against resistant bacterial strains [14,15].

Among the different inorganic nanoparticles, gold nanoparticles (GNPs) are of ma-
jor interest in diverse research fields such as therapeutics, antimicrobials, catalysis, and
biomolecular detection [16–18]. A two-fold increase in antibiotic activity was observed
when ampicillin was conjugated with chitosan-capped GNPs, compared to free ampi-
cillin [9]. GNPs capped with Human Serum Albumin (HSA) have been used for the
successful delivery of antibiotics of the amino-glycosidic group, such as sulfates of strepto-
mycin, neomycin, gentamicin, and kanamycin [19]. Similarly, sericin-capped silver and
GNPs have shown marked activity against both Gram-negative and Gram-positive bacte-
ria [20]. In addition, silver and GNPs have shown the ability to overcome ampicillin and
cefaclor resistance [21], although, GNPs are considered more biocompatible and safe than
silver nanoparticles [22,23].

All these findings incited us to explore solution(s) for expanding ceftriaxone resistance
via applying GNPs as a nano-carrier. The thought behind the current study is to increase
ceftriaxone strength by loading them onto GNPs. The study involved synthesis of GNPs
by employing ceftriaxone as a reducing and capping agent, and to boost ceftriaxone
antibacterial potential in a coordinated manner against Escherichia coli, Staphylococcus
aureus, Salmonella abony and Klebsiella pneumoniae.

2. Materials and Methods
2.1. Materials

All the chemicals, microbiological media and reagents, such as, Mueller–Hinton
agar, ceftriaxone sodium and tetra chloroauric [III] acid (HAHuCl4) were procured from
Sigma–Aldrich (St. Louis, MO, USA).

2.2. Ceftriaxone-Mediated Synthesis of GNPs (CGNPs)

The reaction for the synthesis of CGNPs was performed at temperatures of 30 ◦C,
40 ◦C, 50 ◦C and 60 ◦C by adding ceftriaxone at concentrations of 50, 100, 150, 200, and
250 µg/mL to a 1 mL reaction mixture and incubating for 48 h. However, the reaction
mixture consisted of 1 mM HAuCl4 in 50 mM phosphate buffer at pH 7.4.

An autonomous reaction was performed for the control without ceftriaxone. At ten
distinct time points, the mixture was removed and analyzed by UV-visible spectroscopy.
The CGNPs were collected by centrifugation at 30,000× g for 30 min after the completion
of the reaction. The CGNPs were then washed twice by Milli Q water followed by a final
wash with 50% v/v ethanol to remove unbounded materials. For further analysis, the
resultant CGNPs were used. For comparative analysis, the Khan et al. [24] method was
applied to synthesize GNPs by bromelain (where bromelain acts as a reducing as well as
stabilizing agent) to keep them as control naked GNPs (without ceftriaxone).

2.3. Characterization of CGNPs
2.3.1. UV/Vis Spectroscopy

The GNPs (control) and CGNPs were characterized via UV-vis spectrophotometry
using a Shimadzu dual-beam spectrophotometer (UV-1601 PC, Shimadzu, Tokyo, Japan) at
a resolution of 1 nm.
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2.3.2. Dynamic Light Scattering (DLS)

The mean particle size of GNPs and CGNPs was measured with a DLS particle size
analyzer (Zetasizer Nano-ZS, Malvern Instrument Ltd., Malvern, UK). The sample was
taken in a DTS0112-low volume disposable sizing cuvette of 1.5 mL. The sample was
sonicated for 1 min and filtered through syringe membrane filters with pores less than
0.45 µm before measurement. The mean particle size was determined by calculating the
average of the measurements of a single sample in triplicate. Zeta potential was also
measured to observe the nature of charge present on the surface of each sample by using
Zetasizer Nano-ZS, Malvern Instrument Ltd., Malvern, UK. For zeta potential, DTS1070
disposable cuvette was used.

2.3.3. Scanning Electron Microscopy (SEM)

A drop from each sample, GNPs and CGNPs solutions, was deposited onto a con-
ductive silicon substrate and dried on a hotplate at 60 ◦C for 20 min. The morphology of
deposited GNPs and CGNPs on Si substrates were then imaged using FEI quanta 250 SEM
(FEI Company, Hillsboro, OR, USA) with an accelerating voltage of 30 KV and a spot size
of 3 nm.

2.3.4. Transmission Electron Microscopy (TEM)

TEM was performed using a Tecnai™ G2 Spirit Bio-TWIN equipped with a CCD
camera (GatanDigital, Hillsboro, OR, USA). CGNPs sample was prepared using a carbon-
coated TEM copper grid.

2.3.5. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR (Shimadzu FTIR-8201 PC, PerkinElmer Inc., Waltham, MA, USA) was used to
analyze the binding conformation and changes in secondary structures on the ceftriaxone
present on the surface of CGNPs. The instrument was operated in diffuse reflectance mode
at a resolution of 4 cm−1 to obtain good signal-to-noise ratios, 256 scans of CGNP films
were obtained at a range of 400–4000 cm−1.

2.4. Ceftriaxone Loading Efficiency on GNPs
2.4.1. Calculation by UV-Vis Spectrophotometry

The ceftriaxone loading efficacy onto GNPs was evaluated by using the methodology
of Gomes et al. [25] as applied in Shaikh et al. [26]. Once the CGNPs were synthesized
(without washing), the samples were centrifuged at 30,000× g for 30 min. Ceftriaxone
in the supernatant was quantified by using UV-Visible spectrophotometer (λmax 241)
after scanning [27,28]. However, the 5–70 µg/mL concentration range was used to plot
calibration curve of ceftriaxone. For evaluating ceftriaxone loading efficacy, free ceftriaxone
present in the supernatant was subtracted from the initial amount added for the CGNPs
synthesis. The following equation was used to evaluate the % of loading efficacy:

Percentage of loading efficacy =
[Amt. of ceftriaxone used (Total)− Free ceftriaxone in supernatant]

Amt. of ceftriaxone used (Total)
× 100

2.4.2. Calculation by High Performance Liquid Chromatography (HPLC)

The loading efficacy of ceftriaxone onto GNPs was also estimated by using the modi-
fied methodology of Pal et al. [29]. Shimadzu HPLC model fitted with UV/VIS detector
(SPD-20A), AT pump (LC-20) and rheodyne injector with a 20-µL loop were used. Samples
were analyzed on a reverse phase C-18 (Luna −5 µm, 250 × 4.6 mm inner diameter) column
at 25 ◦C by applying a mobile phase (0.01 M KH2PO4:ACN buffer in 85:15 ratio) with
1 mL/min flow rate and UV-detection at 241 nm. Spinchrom software was used to record
and evaluate the data. Before analyzing, a 0.22 µm filter was used to filter the mobile phase.
Each sample was run in triplicate, and a calibration curve was plotted by using 5–70 µg/mL
concentration of ceftriaxone. The amount of unbound ceftriaxone was calculated by using
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the calibration curve, and the amount of capped ceftriaxone onto GNPs was calculated by
subtracting the unbound ceftriaxone from the total amount of ceftriaxone added. The exact
amount of capped ceftriaxone was calculated using the following equation:

Percentage of drug capping =
[Amt. of ceftriaxone capped]

Amt. of ceftriaxone used (Total)
× 100

2.5. Antibacterial Activity Evaluation
2.5.1. Bacteria and Growth Conditions

Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13883), Salmonella abony
(NCIM 2257) and Staphylococcus aureus (ATCC 25923) were obtained from National Chemi-
cal Laboratory, India. Luria–Bertani (LB) broth was used to prepare fresh inoculum for each
bacterial strain and incubated at 37 ◦C for 18 h. Prior to antibacterial activity, LB broth was
used to adjust the turbidity of culture to 0.5 McFarland standard i.e., 1.5 × 108 CFU/mL.

2.5.2. Qualitative Assessment of Antibacterial Activity

Before performing the antibacterial assay, solutions were prepared by dispersing the
synthesized CGNPs, GNPs (control) and ceftriaxone in PBS (phosphate saline buffer at
pH 7.4). The agar well diffusion method was applied to assess the potency of synthesized
CGNPs [30]. Fresh bacterial culture for each strain was spread on Mueller–Hinton agar and
6 mm wells were cut on 1 mg/mL) and GNPs (control) were dispensed in the wells. All the
experiments were performed in triplicate, and the agar plates were placed in an incubator
at a temperature of 37 ◦C overnight. The diameter of the zone of inhibition was measured.

2.5.3. Determination of the MIC

The synthesized CGNPs and ceftriaxone were tested against bacterial strains to deter-
mine their minimum inhibitory concentrations (MICs) by employing the broth microdi-
lution method of Eloff [31]. To achieve the concentrations ranging from 0.025–32 µg/mL,
aliquots of CGNPs and ceftriaxone were serially diluted in 96-well microtiter plates con-
taining LB broth medium. The tested strains were cultured overnight in LB broth, and their
turbidity was adjusted to 0.5 McFarland standard (1.5 × 108 CFU/mL), following these
plates. A total of 50 µL of CGNPs (200 µg/mL ceftriaxone), ceftriaxone (which, 10 µL of
the standard suspensions was placed in the aliquots. MICs are the lowest concentrations of
synthesized CGNPs that completely inhibit bacterial growth after being incubated at 37 ◦C
for 20 h.

3. Results and Discussion
3.1. CGNPs Synthesis

Several biomolecules and chemicals have been utilized as capping and reducing
agents in the synthesis of multi-purpose inorganic nanoparticles [32]. Generally, conju-
gation of antibiotic/drug is performed on pre-formed GNPs by using different strategies.
GNPs are synthesized either by chemicals (such as sodium borohydrate and trisodium
citrate) or by herbal extracts and natural enzymes before conjugating antibiotics onto
them [26,33–35]. In both the cases, residual contamination might create a doubt on the
actual antibacterial results.

Typically, gold salt reduction followed by nucleation and nuclei growth leads to the
synthesis of GNPs, and synthesized GNPs need a capping agent to be stabilized [36–38].
The highlight of the present study is that ceftriaxone acted as both reducing and cap-
ping/stabilizing agents for the synthesis of (ceftriaxone loaded gold nanoparticles) CGNPs
(Figure 1). It is a fact that by changing the concentration of reducing agent (especially when
it acts as a reducing as well as capping agent) and experimental conditions, the size of
GNPs can be controlled [36–38]. Here, the different concentrations of ceftriaxone along
with different temperature conditions were applied to synthesize CGNPs. Finally, the
250 µg/mL ceftriaxone concentration was selected to reduce HAuCl4 to GNPs to obtain the
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desired size at a temperature of 40 ◦C and pH of 7.4. Khan et al. [24] and Khan et al. [39]
have also applied the same strategy to synthesize GNPs of various sizes using bromelain
and trypsin as reducing and capping agents. Similarly, the properties such as size, shape,
mono-dispersity and stability of CGNPs in the present study basically relied on ceftriaxone
concentration and temperature used for the reaction (data not shown for brevity). The
synthesized GNPs and CGNPs showed visible characteristic color changes from yellow to
ruby red (Figure S1).
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Figure 1. Scheme of ceftriaxone-mediated synthesis of gold nanoparticles. Here, CGNPs are the
ceftriaxone-stabilized gold nanoparticles.

3.2. Characterization of CGNPs
3.2.1. Spectrophotometric

Typical ‘Surface Plasma Resonance’ band patterns for synthesized gold nanoformula-
tions were characterized using UV-Visible spectroscopy. GNPs (control/without ceftriaxone
showed absorption λmax at 520 nm, while CGNPs showed maximum absorption at 536 nm
(Figure 2). The red shift of absorption from 520 to 536 nm can be correlated with the changes
in size that might have occurred due to attachment of ceftriaxone to the CGNPs [40,41].
In a 2017 study, Shaikh et al. [26] also observed the same red shift after the attachment of
cefotaxime antibiotic to the GNPs. However, they conjugated the antibiotic on preformed
GNPs instead of synthesizing them by the one-pot synthesis method that has been devel-
oped during the present study. During CGNP spectrophotometric analysis, an additional
peak at 241 nm was also detected that corresponds to ceftriaxone attached to CGNPs [27].
Similarly, other studies have also shown two peaks when antibiotics (secnidazole-320 nm
and cefotaxime-298 nm) were conjugated to GNPs along with characteristic peaks of
525 [42] and 542 nm [26]. In fact, it has been observed that the capping agent has a major
influence on the electrocatalytic activity of GNPs [43].
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3.2.2. Dynamic Light Scattering (DLS) and Electron Microscopy

Z-average size by DLS for GNPs and CGNPs was estimated as 51.59 and 95.07 nm,
respectively (Figure 3). The size by DLS is based on the details of inner inorganic core
of nanoparticles along with the solvent layer that has adhered to the nanoparticles once
they are disseminated in the liquid medium. Thus, relying only on DLS is not enough to
know the actual size of inorganic core. Zeta potential of GNPs and CGNPs was found
to be −16.6 and −25.7 mV, respectively, which is an indicator of good stability of both
the nanoparticles [44]. Usually, larger zeta potential either −ve or +ve implicates much
more stable dispersion, that means nanoparticles will not get aggregated due to repulsion
between each other [45,46]. However, emulsion and colloid stability are not always pre-
dicted by zeta-potential, as only repulsive electrostatic forces are measured, and the forces
of attraction such as Van der Waals forces are not considered [47]. Thus, the stability was
also checked by keeping the colloidal CGNPs at room temperature for months and no
aggregation was found even after 5 months.
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Figure 3. Z-average particle size of (a) GNPs and (b) CGNPs measured by DLS.

Scanning Electron Microscopy (SEM) results showed that both GNPs and CGNPs
were spherical in shape and monodispersed (Figure 4). Ceftriaxone attachment/capping
has not caused any changes in the shape of GNPs. In accordance, several other reports have
also suggested the similar spherical pattern of GNPs after antibiotic conjugation [26,42].

Transmission Electron Microscopy (TEM) has been performed for GNPs and CGNPs to
estimate the size of the inorganic core. Using the TEM analysis by Gatan Digital Micrograph
(Figure 5), the size of the GNPs and CGNPs were confirmed to be 10.2 ± 1 and 21 ± 1 nm,
respectively. The optical properties of GNPs were accredited to the 5 d (valence) and
6 sp (conduction) electrons. Well-defined monodispersed nanoparticles of equal size were
revealed by the TEM micrograph. Estimating size by TEM and DLS covers two different
aspects. DLS provide size distribution and polydispersity index results based on the
quantification of several million particles present in the colloidal form, while TEM results
are considered more biased in terms of selective imaging, where only a few hundred
particles could be quantified at one time. Thus, correlating both the approaches has become
an important strategy worldwide.
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3.3. FTIR Spectra of CGNPs and Ceftriaxone

Confirmation of the interactions between the surface of gold nanoparticles and cef-
triaxone was done by FTIR spectroscopy (Figure 6a,b). The FTIR spectrum of ceftriaxone
shows chief absorption bands at 3426 and 3265 cm−1. The emergence of the aforemen-
tioned absorption bands indicates the stretching vibrations in the N–H and O–H groups,
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respectively. The absorption band at 2935 cm−1 indicates stretching band vibrations of C–H
groups, range between 1741 and 1650 cm−1 is designated for the stretching vibrations of
the carbonyl group (C=O), and the absorption band corresponding to 1538 cm−1 indicates
torsional vibrations of the aromatic ring.
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Absorption bands corresponding to 1383 and 1034 cm−1 indicate the stretching vibra-
tion values of the C–N and C–O bonds. However, the interaction of ceftriaxone with the
surface of gold nanoparticles causes the merging of the absorption bands and reduces the
absorption intensities in C=O, N-H, and O-H groups. The absorption intensities of C=O,
N-H, and O-H are 1798–1637, 3422, and 3265 cm−1, respectively.

3.4. Calculation of Loading Efficiency

Prior to antibacterial assessment, loading efficiency of ceftriaxone on GNPs was calcu-
lated by UV-Visible spectrophotometric and HPLC method. Here, 199.8 µg of ceftriaxone
(by UV-Visible spectrophotometry) and 199.5 µg of ceftriaxone (by HPLC) was found to be
loaded to the GNPs, out of 250 µg of the ceftriaxone initially used for the synthesis. Thus,
the loading efficiency percentage was estimated as 79.92% and 79.80%, respectively, for the
methods used. Furthermore, the retention time for pure ceftriaxone and capped ceftriaxone
is estimated as 3.512 min (Figure 7a) and 3.59 min (Figure 7b), respectively. The observable
slight change in retention time was might be due to variation of pH in the mobile phase to
the medium of the drug. The retention time for CGNPs is 2.61 min (Figure 7b). Similarly, in
a 2015 study, secnidazole was estimated by HPLC, and found to have 70% loading efficacy
onto GNPs [42]. In another study, cefotaxime loading efficacy on GNPs was found as
77.59% when estimated by UV-Visible spectrophotometry [26]. It is a fact that higher load-
ing efficiency correlates inversely with unwanted loss of antibiotic/drug and shows better
therapeutic application [25]. Therefore, the methodology applied in the present study was
effective in loading a good amount of ceftriaxone onto gold nanoparticles. However, 200 µg
ceftriaxone was considered as the final loaded amount on GNPs as an approximation for
further antibacterial assay to avoid difficulties in calculations.
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3.5. Antibacterial Activity of CGNPs

The antibacterial activities of GNPs (Control), CGNPs and ceftriaxone were evaluated
by testing them against three gGram-negative strains, i.e., Escherichia coli, Salmonella abony
and Klebsiella pneumoniae and one Gram-positive Staphylococcus aureus. These tested strains
were chosen to represent different bacterial types of machinery nurturing several potent
virulent factors other than their observable pathogenicity and their prevalence in day-
to-day life. The promising detection revealed that CGNPs and ceftriaxone could inhibit
the growth of bacteria after diffusion into the agar (Figure S2). Also, it was observed
that both CGNPs and pure ceftriaxone had similar zones of inhibition. However, the
total concentration of ceftriaxone in 50 µL CGNPs was equivalent to only 10 µg/well,
whereas, the concentration of pure ceftriaxone was 50 µg/well. Thus, our primary findings
confirmed that effectiveness of CGNPs was higher than pure ceftriaxone.

The MIC50 of CGNPs and pure ceftriaxone against all the tested bacterial strains
was recorded (Figure 8). The MIC50 values for GNPs and pure ceftriaxone were 1.39 and
3.1 µg/mL against E. coli (Figure 8a), 1.60 and 2.9 µg/mL against S. aureus (Figure 8b),
1.1 and 2.07 µg/mL against S. abony (Figure 8c), 0.9 and 2.4 µg/mL against K. pneumoniae
(Figure 8d), respectively.

Based on the antibacterial results, it can be suggested that ceftriaxone attachment to
gold nanoparticles has enhanced its potency twice than the pure ceftriaxone. GNPs without
ceftriaxone were used as a control and they did not show any activity against any tested
strain. Similar results were observed when Shaikh et al. [26] and Brown et al. [48] tested
naked GNPs while studying the cefotaxime- and ampicillin-conjugated GNPs against
resistant bacterial strains, respectively. Thus, it can be inferred that the activity was due
to ceftriaxone, and GNPs just aided in augmenting the potency. Due to biocompatibility,
non-cytotoxicity and exceptional physiochemical properties, gold nanoformulations have
always been the first choice among inorganic nanoparticles for drug delivery [22,23].
Importantly, it was observed that the reactive portion of antibiotic (ciprofloxacin) was
surface exposed when it was attached to GNPs and activity is retained [49]. Our results
were in harmony with the findings of Shaikh et al. [26] and Brown et al. [48], where
cefotaxime and ampicillin also retained their potency after conjugation to GNPs.
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The hypothesis on the mechanistic aspect of CGNP antibacterial action is based on
the earlier reports of Rai et al. [21] and Shaikh et al. [26]. Firstly, the effective delivered
ceftriaxone concentration was increased due to its attachment to GNPs. It might be due
to the typical properties of GNPs, i.e., high surface-to-volume ratio, high concentration
of (ceftriaxone) molecules loaded onto it due to large surface area, increased permeability
towards the biological membrane and higher uptake by the bacterial cell [50]. Secondly,
GNPs might have increased the porosity of the targeted bacterial strains and ceftriaxone
molecules have gained easy access to the bacterial cell for their action. In fact, increased
delivered concentration of antibiotic could saturate the resistant enzymes such as beta-
lactamses, and plausibly inhibit the growth of the beta-lactamase-containing resistant
bacterial strains as well [26]. However, when we discuss human cellular uptake of the
nanoparticles (within the nanometers size range), pinocytosis is considered as a major
uptake mechanism [51]. In fact, pinocytosis is a continual process occurring in all the cells
that could be subdivided as clathrin-mediated endocytosis, micropinocytosis, clathrin-
and caveolae-independent endocytosis, and caveolae-mediated endocytosis [52,53]. It
has been observed that if the size is below 100 nm, the pinocytosis uptake mechanism is
preferred, whereas, if the size is large (250 nm), phagocytosis occurs [54,55]. In our study,
the size of both GNPs and CGNPs (as observed by TEM) are appropriate for pinocytosis.
Although, further studies are needed to pinpoint the exact pinocytosis mechanism followed
by CGNPs for the cellar uptake.

The most persistent global public health issue after COVID-19 is antimicrobial re-
sistance due to the resultant restriction in therapeutic options against infections, and
misuse/self-medication of antibiotics in the COVID-19 era [2]. Recently, novel strategies
have been designed to enhance the properties (distribution, penetration, specificity, and
pharmacokinetics) of antimicrobial drugs. The formulation of antimicrobial nanoparticles
or antimicrobial-conjugated nanoparticles is one such strategy. Impressive increases in
drug specificity and enhanced pharmacokinetics were observed when GNPs are utilized
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for antimicrobial delivery. In this study, a similar approach has been used to enhance the
potency of ceftriaxone. Ceftriaxone resistance was globally accepted before the arrival of
COVID-19, but it is speculated to increase with time as suggested by several reports. Thus,
the solutions are warranted urgently. In our study, it has been found GNPs can markedly
enhance the potency of ceftriaxone. Moreover, its fate in the human body and toxicity
aspects still needed to be deciphered. Currently, our team is working on exploring the
exact mechanism of action, toxicity and lethal dose of CGNPs using in-vivo and in-vitro
experimental designs. On the basis of preliminary findings on toxicity (data not shown),
we found no toxicity on normal cell lines. Our team hopes that we can come up with fresh
nanoformulations to tackle bacterial resistance issues in the near future.

4. Conclusions

The present study delivered an approach to synthesize gold nanoparticles by applying
ceftriaxone as reducing as well as stabilizing agent. In addition, synthesized ceftriaxone-
loaded gold nanoparticles (CGNPs) acted as an effective tool to deliver ceftriaxone to the
tested bacterial strains and markedly enhanced the ceftriaxone potency. Comparative
analysis of pure ceftriaxone and CGNPs revealed that ceftriaxone after loading onto GNPs
could become two times more potent. This strategy has opened a path to synthesize
and deliver different antibiotics through GNPs in a one-step process to resolve the issue
of increasing resistance. However, in-vivo studies to evaluate the fate and toxicity of
CGNPs are warranted before jumping into the conclusive statement on the applicability of
synthesized nanoformulations. Moreover, the preliminary findings of the present study
could be used as a base to develop applicable nanoformulations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111896/s1, Figure S1: Synthesized gold nanoparticles (a) Bromelain mediated
synthesized (GNPs) (b) Ceftriaxone mediated synthesized (CGNPs); Figure S2: Qualitative assess-
ment of the antibacterial activity of CGNPs and ceftriaxone (CFTN). Müeller-Hinton (MH) agar plates
were seeded with standardized suspensions (equivalent to 0.5 McFarland) of (A) Escherichia coli (B)
Staphylococcus aureus, (C) Salmonella abony, and (D) Klebsiella pneumonia. The dilutions of CGNPs 50 µL
(200 µg/mL CFTN), CFTN 50 µL (1 mg/mL CFTN), and GNPs 50 µL (negative control) were poured
in the wells made in MH plates. After overnight incubation at 37 ◦C, zones of inhibition around wells
of CGNPs and CFTN against all tested bacterial species, in comparison to control, were observed.
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