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Table S1. Glycyrrhizic acid (GL) functionalized nano-systems for liver drug targeting. 

Nano-Systems Drug Formulation/Materials Target/Characteristics In Vitro/In Vivo Study Main Results Ref. 

Liposome 

(GLOSt-SUV) 
INL 

Hydrogenated egg phos-

phatidylcholine-choles-

terol-GLOSt or dicetyl 

phosphate 

Model drug: INL 

Targeting therapy of liver 

cancer 

Rat hepatocytes 

Mean diameter: 60 nm 

In vitro cellular uptake: interaction be-

tween GLOSt-SUV and hepatocytes 

In vivo in rats: determination of radio-

activity in tissues, blood and urine 

samples. 

GLOSt-SUV showed about a 10-fold 

higher uptake than the control-SUV dur-

ing 2 h of incubation: GLOSt-SUV bind to 

the hepatocyte surface and are internal-

ized and degraded in the cell. 

The clearance of GLOSt-SUV from blood 

after IV injection in rats was more rapid 

than that of control-SUV. GLOSt-SUV 

showed 4-fold higher uptake in the liver 

than the control; the blood clearance and 

the liver accumulation were dependent 

on the GLOSt-SUV content in liposomal 

membrane. 

[1,2] 

Dendrimer 

(GL-PPI) and 

Multi-Walled 

Carbon Nano-

tubes (GL-

MWCNTs) 

DOX 

Dendrimer: ethylenedia-

mine, acrylonitrile, poly-

propylene imine and GL 

Nanotubes: carbon, GL 

Targeting therapy of hepa-

tocellular carcinoma 

HepG2 cells 

Nanometric size, as 

evidenced by SEM and 

TEM analyses 

In vitro drug release study, hemolytic 

and cytotoxicity assays 

High DOX loading observed in DOX/GL-

PPI and DOX/GL-MWCNTs (43 and 87 

%, respectively). GL attachment reduced 

the hemolytic toxicity of DOX (12 and 7 

% for DOX/GL-PPI and DOX/GL-

MWCNTs, respectively). The IC50 of DOX 

was reduced from 4.2 µM to 2.0 µM and 

2.7 µM, from DOX/GL-PPI and DOX/GL-

MWCNTs, respectively. GL conjugated 

nanosystems were significantly dragging 

higher cancer cell number in early apop-

tosis as well as in early apoptotic phase. 

[3] 

GL surface 

modified 

albumin 

nanoparticles 

(GL-BSA-NPs) 

HCPT 

HCPT encapsulated in GL-

surface modified bovine 

serum albumin 

nanoparticles 

Targeting therapy of liver 

cancer 

Human hepatoma cells 

Z-Average size:158 nm 

Zeta Potential: −22.5 mV 

Drug encapsulation effi-

ciency: 94 % 

Drug loading efficiency:  

11 %  

In vitro cellular uptake and cell 

proliferation assay 

Hemolysis test with rabbit blood 

 

HCPT was wrapped in GL-BSA. In vitro 

drug release study showed slowly and 

continuously release. Cells incubated 

with HCPT/GL-BSA-NPs and labeled 

with fluorescein isothiocyanate showed 

stronger fluorescence intensity than sam-

ples without GL conjugation. The inhibi-

tory rate of HCPT/GL-BSA-NPs devel-

oped as drug concentration was raised.  

[4] 

GL surface mod-

ified albumin 

nanoparticles 

(GL-BSA-NPs) 

CAL 

CAL encapsulated in GL-

surface modified bovine se-

rum albumin nanoparticles 

Targeting therapy of liver 

cancer 

Rat hepatocytes 

Z-Average size: 79 nm 

Drug amount loaded in 

GL-BSA-CAL-NPs: 5.93 

g/mg 

In vitro cellular uptake  

The NPs cellular uptake in the hepato-

cytes reached its maximum at 2 h after in-

cubation. The uptake amount of Cal/GL-

BSA-NPs by rat hepatocytes was 4.43-

fold higher than that of Cal/BSA-NPs due 

to the presence of specific GL binding site 

in the hepatocytes. 

[5] 

GL surface mod-

ified chitosan 

nanoparticles 

(GL-CS-NPs) 

ADR 

GL surface modified chi-

tosan nanoparticles 

Model drug: ADR 

Hepatocytes target 

Rat hepatic cells 

Mean diameter: 147 nm 

Zeta Potential: 9.3 mV 

Drug Association Effi-

ciency: 91 % 

In vitro drug release and 

cellular uptake 

NPs showed in vitro low extent of release 

(28% over 72 h). GL-CS-NPs were prefer-

entially accumulated in hepatocytes and 

the cellular uptake amount was 4.9 times 

than that in hepatic non parenchymal 

cells, and the uptake process was de-

pendent on incubation time and dose of 

nanoparticles, indicating that the inter-

nalization of these nanoparticles into 

hepatocytes was mediated by a ligand–

receptor interaction. 

 

 

[6] 



 

GL-conjugated 

N-caproyl chi-

tosan nanoparti-

cles 

(GL-CCS-NPs) 

ADR 

GL-conjugated N-caproyl 

chitosan nanoparticles 

Model drug: ADR 

Hepatocytes target 

Hepatic cells 

Mean diameter: 127 nm 

Zeta Potential: 9.3 mV 

Drug Association Effi-

ciency: 87 % 

In vitro: drug release in 

human plasma 

In vivo: drug tissue distribution in 

kunming strain mice, 

hepatic cellular uptake 

GL surface-modified NPs made ADR to 

dissolve and diffuse slowly to the plasma 

and led to low extent of release. 

NPs formulations were accumulated in 

the liver and spleen. GL-CCS-NPs 

reached the highest level of targeting in 

the liver, nearly 1.6 times higher than that 

of non-GL-modified CCS-NPs. GL-CCS-

NPs were preferentially distributed in 

hepatocytes by a ligand–receptor 

interaction. 

[7] 

Valeric chitosan 

nanoparticles 

(GL-VCS-NPs)  

FER 

Hydrophobically modified 

chitosan with valeric moi-

ety 

GL surface modified valeric 

chitosan nanoparticles 

Model drug: FER 

Active liver targeting 

HepG2 cells 

Z-Average size: 84 nm 

Zeta Potential: 10.9 mV 

In vitro cytotoxicity assay 

In vivo biodistribution in albino mice 

The GL surface decorated NPs showed 

highest cytotoxicity due to the presence 

of GL that may induce GL receptor medi-

ated internalization. 

The increased liver uptake of GL modi-

fied nanoparticles confirmed the recogni-

tion of nanoparticles by glycyrrhizin re-

ceptors on hepatocytes. 

[8] 

GL-conjugated 

human serum 

albumin nano-

particles 

(GL-HSA-NPs) 

RES 

GL coupled to human se-

rum albumin 

Resveratrol encapsulated in 

GL-conjugated HSA 

Targeting therapy of liver 

cancer 

HepG2 cells 

Z-Average size: 108 nm 

Drug encapsulation effi-

ciency: 84 % 

Drug loading efficiency: 

11.5 % 

In vitro: drug release study, 

lethality and targeting ability 

in HepG2 cells. 

In vivo:  biodistribution in 

H22 tumor-bearing mice 

NPs slowly and continuously released 

the drug. The inhibitory rate of RES/GL-

HAS-NPs was 62.5 mg/mL. The target 

ability of the NPs for HepG2 cells in-

creased as NPs concentration raised. 

The in vivo distribution study of labelled 

RES/GL-HSA-NPs exhibited significant 

drug accumulation in the liver of tumor-

bearing mice. 

[9] 

  



 

Table S2. Glycyrrhetinic acid (GA) functionalized nano-systems for liver drug targeting. 

Nano-Systems Drug Formulation/Materials 
Target/CHARACTERIS-

TICS 
In Vitro/In Vivo Study Main Results Ref. 

Liposomes 

Suc-GAOSt-LPs 
CAL 

3-Succinyl-30 stearyl 

GA liposome 

Targeting therapy of liver 

cancer 

HepG2 cells 

Mean diameter: 68 nm 

In vitro cellular uptake 
Uptake of CAL/ Suc-GAOSt-LPs was 

3.3-fold higher than that of CAL/LPs. 
[10] 

Nanostructured 

Lipid Carrier 

GA-PEG-NLC 

CUR 

GA-Modified CUR-Loaded 

Nanostructured Lipid Car-

rier 

Targeting therapy of liver 

cancer 

HepG2 cells 

Particle size: 123 – 133 nm 

Zeta Potential: 14 – 16 mV 

Encapsulation efficiency: 90 

−95% 

In vitro cellular uptake by HPLC and 

cytotoxicity by MTT assay 

CUR/GA-PEG-NLC have significantly 

high cellular uptake and cytotoxicity 

against HepG2 cells. 

[11,12] 

Lipid 

Nanoparticles 

GA-ALB-NPs 

CUR 

CUR loaded albumin 

nanoparticles surface-

functionalized with GA 

Targeting therapy of hepa-

tocellular carcinoma 

HepG2 cells 

Z-Average size: 259 nm En-

capsulation efficiency: 89% 

In vitro cellular uptake by HPLC and 

cytotoxicity by MTT assay 

Apoptosis and cell cycle 

by FCM 

CUR/GA-ALB-NPs are endocytosed 

into HepG2 cells, inducing cell cycle 

arrest in the G2/M phase. 

The observed number of apoptotic 

cells is consistent with the cytotoxicity 

seen over the observation period of 24 

h. 

[13] 

Micelles 

GA-CS/CY-PCL 

CUR 

DOX 

GA-modified chitosan-

cystamine-poly(e-caprolac-

tone) copolymer 

micelle loaded with DOX 

and CUR 

Targeting therapy of liver 

cancer 

HepG2 cells 

Z-Average size: 100 nm 

Zeta Potential: −30 mV 

Encapsulation efficiency of 

DOX and CUR: 

20 and 9 %, respectively 

In vitro cellular uptake by fluores-

cence assay and cytotoxicity by MTT 

assay 

The cellular uptake is stronger when 

GA is present. The micelles exhibit en-

hanced inhibition on proliferation of 

the tested cancer cells. The improved 

efficiency is due to the synergy of DOX 

and CUR. 

[14] 

Nanoparticles 

GA-ALG-NPs 
DOX 

DOX loaded GA-modified 

alginate nanoparticles 

Targeting therapy of liver 

cancer 

HepG2 cells 

Mean diameter: 274 nm 

Zeta Potential: 46 mV 

Loading Efficiency: 10% 

In vitro: determination of cytotoxicity 

and cellular HepG2 cells compatibility 

by MTT test 

In vivo: tumor growth inhibitory ac-

tivities in mice bearing H22 liver tu-

mors in situ 

Good liver targeting ability due to 

both passive targeting via the en-

hanced permeability and retention ef-

fects and the active targeting ability of 

GA. 

DOX/GA-ALG-NPs enhanced the anti-

tumor activity of DOX against liver tu-

mors in situ. By histological examina-

tion NPs induced cell death in the ma-

jority of liver tumor cells. Effectively 

inhibit the growth of liver tumors in 

situ and significantly reduce systemic 

side effects. 

[15,16] 

Nanoparticles 

GHH-HIS 
DOX 

Hyaluronic acid modified 

with GA and L-histidine 

and doxorubicin loaded na-

noparticles 

Targeting therapy of liver 

cancer 

HepG2 cells 

Z-Average size: 157–238 

nm 

Zeta Potential: −10–14 mV 

Encapsulation efficiency: 

87–91 % 

In vitro cellular uptake and cytotoxi-

city by MTT assay 

In vivo antitumor activity and imag-

ing study of H22 tumor-bearing mice 

by near-infrared fluorescence 

In vitro cellular uptake indicates that 

the introduction of HIS to the HA 

backbone substantially increase the re-

lease rate of DOX from the lysosomes 

of HepG2 cells. 

In vivo antitumor activity analysis 

showed that the GHH nanoparticles 

exhibited higher antitumor efficacy 

than free DOX or DOX/GA-HA nano-

particles. 

[16] 

Lipid nanoparti-

cles 

CS/PEG-GA 

DOX CS/PEG-GA nanoparticles 

Targeting therapy of liver 

cancer HepG2 cells 

Z-Average size: 172 – 232 

nm 

Zeta Potential: 12.7 – 36.5 

mV 

Drug loading: 13% 

In vitro cellular uptake and cytotoxi-

city by MTT assay 

In vivo in mice antitumor activity and 

biodistribution by single-photon emis-

sion computed tomography 

About 74% of the human hepatic carci-

noma cells (QGY-7703) shows uptake 

of the nanoparticles; The nanoparticles 

are greatly cytotoxic to QGY-7703 cells 

and inhibit tumor growth in H22 cell-

bearing mice. 

[17] 

Lipid nanoparti-

cles 

GA-SCS-NPs 

DOX GA-sulfated chitosan 

Targeting therapy of liver 

cancer HepG2 cells 

Z-Average size: 183–177 

nm 

Zeta Potential: −29.9 – −30.7 

mV 

Encapsulation efficiency: 

67–75 % 

 

In vitro cellular uptake and cytotoxi-

city by MTT assay 

In vivo in mice antitumor activity and 

biodistribution 

For the group injected with FITC-GA-

SCTS5%, the uptake by the liver is 664 

μg/g, the highest among all the tissue. 

The IC50 against HepG2 cells was 55 

ng/mL; there was 2.2-fold improve-

ment in uptake of the DOX micelles by 

HepG2 cells than that by Chang liver 

cells. 

[9] 

Nanoparticles 

GA-HSG-NPs 
DOX 

Self-assembled 

nanoparticles formed via 

conjugation of GA to the 

hydroxyl 

Targeting therapy of liver 

cancer 

HepG2 cells 

Z-Average size: 180–280 

nm 

Zeta Potential: −27–−35 mV; 

In vitro cellular uptake by fluores-

cence assay and cytotoxicity by MTT 

assay 

In vivo in rats pharmacokinetic profile 

The accumulation of DOX/GA-HSG-

NPs in the liver was from 2.6 to 4.0-

fold higher than that of DOX solution. 

In vivo imaging analysis further 

demonstrated nanoparticles not only 

have better liver targeting effect, but 

[18] 



 

group of hyaluronic acid 

through succinic anhydride 

bridge 

Encapsulation efficiency: 

50–73 % 

In vivo imaging study in tumor-bear-

ing mice by near-infrared fluores-

cence. 

also present superior tumor targeting 

efficiency than DOX solution. 

The DOX/GA-HSG-NPs and DOX so-

lution have AUC of 50 and 2.1 mg/L·h 

and Cmax of 19.6 and 1.8 mg/L, respec-

tively. 

Liposomes 

GAL-GA-LPs 
 

GA liposomes modified 

with a liver-targeting galac-

tosylated derivative ligand 

Targeting therapy of liver 

cancer 

HepG2 cells 

Mean diameter: 150 nm 

Zeta Potential: -35.5 mV 

Encapsulation Efficiency: 

>93% 

In vitro cellular uptake by HPLC 

In vivo pharmacokinetic profile in 

mice 

The amount of intracellular GAL-GA-

LP is greater than GA-S suggesting 

that GA in liposomes increased HepG2 

cellular uptake. 

The in vivo results show that the mean 

residence times and AUC (23.7 μg·h/L) 

of liposomes (GAL-GA-LP), is higher 

than the GA solution (8493 μg·h/L) 

(GA-S) in plasma. 

[19] 

Liposomes 

GA-LPs 
OX 

Liposomes surface modi-

fied with GA 

Targeting therapy of Hepa-

tocellular carcinoma 

HepG2 cells. 

Z-Average size: 93.2 nm 

Zeta Potential: −21.3 mV 

Encapsulation efficiency: 

>94% 

In vivo in rats pharmacokinetic profile 

and histology studies. 

The increased AUC from 240 to 996 

mg·h/mL and Cmax from 270 to 243 

µg/mL of the GA-OX-LPs demon-

strates an increased absorption than 

drug IV administration. The GA-modi-

fied liposomes deliver OX mainly to 

the liver. No severe signs, such as ap-

pearance of epithelial necrosis or 

sloughing of epithelial cells, are de-

tected in the histology studies. 

[20] 

Nanoparticles 

HGA-NPs 
PXT 

GA-graft-hyaluronic acid 

loaded with paclitaxel. 

Targeting therapy of liver 

cancer 

HepG2 cells 

Z-Average size: 321 nm 

Zeta Potential: −22.3–26.8 

mV 

Encapsulation efficiency: 

92% 

In vitro cellular uptake by fluores-

cence assay and cytotoxicity by MTT 

assay 

In vivo imaging study in tumor-bear-

ing mice by near-infrared fluorescence 

The nanoparticles exhibit more signifi-

cant cytotoxicity to HepG2 cells than 

B16F10 cells. The cellular uptake of na-

noparticles is enhanced in HepG2 and 

B16F10 cells compared to a normal fi-

broblast cell (HELF cells). 

The liver and tumor targeting activity 

of nanoparticles is confirmed by in 

vivo imaging analysis. The fluores-

cence signals of nanoparticles in tumor 

and liver were 2.9 and 1.8-folds 

stronger than that of the control, re-

spectively. 

[21] 

Micelles 

HA-ADH-

DOCA 

HA-ADH-GA 

SIL 

Hyaluronic acid-deoxy-

cholic acid (HA-ADH-

DOCA) and hyaluronic 

acid-GA (HA-ADH-GA) 

conjugates 

Targeting therapy of Acute 

liver injury 

Z-Average size: 122–128 

nm 

Zeta Potential: −28–−29 mV 

Encapsulation efficiency: 

92–93 % 

In vivo in rats pharmacokinetic stud-

ies 

In vivo imaging study by near-infra-

red fluorescence 

The AUC of 4.4 and 4.1 mg·h/mL and 

Cmax of 0.88 µg/mL of the HA-ADH-

DOCA and HA-ADH-GA micelles, re-

spectively, demonstrates a signifi-

cantly increased absorption than SIL 

suspension administration. 

In vivo imaging analysis confirms the 

liver targeting activity of micelles after 

oral administration. In comparison be-

tween the two micellar formulations, 

the fluorescence signals of HA-ADH-

GA micelles in liver are stronger than 

that of HA-ADH-DOCA10 micelles. 

[22] 

Liposomes 

GA-LPs 
WG 

GA modified wogonin lipo-

somes 

Targeting therapy of Hepa-

tocellular carcinoma 

HepG2 cells 

Z-Average size: 90 nm 

Zeta Potential: −16 mV 

Encapsulation efficiency: 

>92%. 

In vitro cellular uptake and cytotoxi-

city by MTT assay 

In vivo in mice antitumor activity and 

biodistribution 

GA-modified WG liposomes show the 

highest cellular uptake, at a rate of 1.6 

times that of WG-LPs on HepG2 cells. 

HepG2 cell inhibitory efficacy of GA-

WG-LPs IC50 is 1.5 times higher than 

that of WG-LPs. 

The tumour inhibitory ratios of GA-

WG-LPs of 53.7% was significantly 

higher than WG-LPs. 

[23] 
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