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Abstract: Antimicrobial treatment during therapeutic plasma exchange (TPE) remains a complex
issue. Recommendations based on a limited number of experimental studies should be implemented
in clinical practice with caution. Effective management of infections due to plasma or albumin-related
interactions, as well as impaired pharmacokinetics, in critical illness is difficult. Knowing the
pharmacokinetics of the drugs concerned and the procedural aspects of plasmapheresis should be
helpful in planning personalized treatment. In general, possessing a low distribution volume, a high
protein-binding affinity, a low endogenous clearance rate, and long distribution and elimination
half-lives make a drug more prone to elimination during TPE. A high frequency and longer duration
of the procedure may also contribute to altering a drug’s concentration. The safest choice would be to
start and finish TPE before antimicrobial agent infusion. If this not feasible, a reasonable alternative
is to avoid administering the drug just before TPE and to delay the procedure for the time of the
administered drug’s distributive phase. Ultimately, if plasma exchange must be performed urgently
or the drug has a very narrow therapeutic index, monitoring its plasma concentration is advised.

Keywords: therapeutic plasma exchange; plasmapheresis; antibiotics; antimicrobial treatment;
drug–drug interactions

1. Introduction

Extracorporeal blood clearance techniques play an important role in treating certain conditions in
modern medicine. Therapeutic plasma exchange (TPE) is a procedure in which plasma is separated
from the morphotic elements of blood and is then replaced by either albumin solution or fresh
frozen plasma (FFP). The aim of TPE is to eliminate morbific factors, often pathological antibodies [1].
However, as plasma removal leads to a decrease in many physiological elements, it is essential to adjust
the dose of plasmapheresis to the patient’s capability to resynthesize the lost molecules, i.e., proteins.
Furthermore, many individuals undergoing TPE simultaneously require drug administration, in which
plasma concentrations can be altered by the procedure, leading to a possible decline in their therapeutic
effect [2]. This issue has taken on a key significance as far as the management of infections is concerned.
Reliable monitoring of the efficacy of antimicrobial treatment was found to be limited in subjects
treated with extracorporeal techniques [3]. As the applied treatment should be effective and safe for
the patient, it is necessary to take these possible interactions into account while planning treatment,
especially in critically ill subjects.
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2. Clinical Use

The guidelines of American Society for Apheresis (ASFA) include 87 neurological and
non-neurological diseases in which TPE can be implemented [4]. The most common ones that
usually require simultaneous treatment in the intensive care unit (ICU) are: severe myasthenia gravis
with acute respiratory failure; Guillain–Barré syndrome with acute respiratory failure; Goodpasture
syndrome with acute respiratory and/or renal failure; thrombotic thrombocytopenic purpura (TTP)
with serious bleeding; acute pancreatitis with extreme hypertriglyceridemia, with acute abdomen
syndrome; and severe intoxications with several substances [5]. The indications for TPE are classified
into four categories, depending on the quality of evidence of the treatment’s efficacy.

Group I consists of diseases in which TPE is a first-line treatment, namely:

• Myasthenia gravis—removal of anti-AChR and anti-MuSK antibodies;
• Thrombocytopenic purpura—removal of anti-ADAMTS13 IgG autoantibodies;
• Guillian–Barré Syndrome—removal of various autoantibodies against gangliosides including

GM1, GD1a, GalNAc-GD1a etc.;
• Wilson’s disease (fulminant)—removal of copper.

Group II considers disorders for which TPE works as an adjunct or a second-line treatment, namely:

• Lambert–Eaton myasthenic syndrome—removal of autoantibodies against the voltage-gated
calcium channel (VGCC);

• Systemic lupus erythematosus (severe);
• Myeloma cast nephropathy—removal of light chains (Bence–Jones protein);
• Mushroom poisoning.

In case of Group III, although the role of TPE has not yet been established, theoretical and case
report implications for its use exist concerning the following:

• Autoimmune hemolytic anemia—removal of IgG hemolysins;
• Hypertrigliceridemic pancreatitis—lowering triglyceride levels, reduction of inflammatory

cytokines, and potential replacement of deficient LpL or apolipoproteins when plasma is used as
the replacement fluid;

• Immune thrombocytopenia—removal of autoantibodies against platelet surface antigens, primarily
GPIIb/IIIa and/or GPIb/IX;

• Immunoglobulin A nephropathy—removal of pathological IgA and related immune complexes;
• Sepsis with multi-organ failure.

Group IV concerns diseases for which existing data suggest TPE is harmful or ineffective:

• Psoriasis
• Systemic Amyloidosis
• Amyotrophic Lateral Sclerosis
• Polymyositis/dermatomyositis

A full display of the indications and recommendations of ASFA is given elsewhere [4].
Since TPE is a relatively invasive method, several contraindications and side effects exist.

Hemodynamic instability and allergy to supplementary fluids (albumin solution, FFP) are the most
significant comorbidities that must be taken into account during TPE qualification [6]. Side effects can
be associated with both central line placement (infections, bleeding, pneumothorax) and the procedure
itself. Most common are anaphylactoid reactions (mostly associated with replacement fluid infusion),
citrate toxicity, hypotension and hypocalcemia [7]. Careful clinical assessment and an individualized
approach can reduce the occurrence of severe undesirable events.
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3. Procedure

In order to perform TPE, vascular access via a central vein is necessary. The cannula should
present certain properties, such as a length of 16–28 cm and a size of 13–14 Fr in order to provide
100–300 mL min−1 of blood flow [8]. The patient’s blood is moved from the vascular bed by negative
pressure generated by the pumps in the apparatus. Since blood passes through synthetic tubes,
anticoagulation is necessary. This can be achieved by systemic (heparin-based) or local (citrate-based)
anticoagulation (Figures 1 and 2). The systemic method is based on constant heparin infusion and
requires regular monitoring of the activated partial thromboplastin time (APTT), as well as having some
possible systemic side effects (related to iatrogenic bleeding diathesis). Heparin-based anticoagulation
is still the most frequently used method of anticoagulation. Local anticoagulation comes with a lower
risk and fewer side effects regarding hemostasis [9] but is less commonly applied during TPE due to
technical reasons [10]. Sodium citrate, infused at the beginning of the tube system, chelates calcium ions
(coagulation factor IV), leading to a decrease in their plasma concentration to a level (<0.33/0.4 mmol L−1)
that inhibits coagulation. Before the blood’s return to the vascular bed, calcium is reinfused to bring
back its physiological level. Thanks to this method, anticoagulation is maintained only within the
TPE apparatus and the patient’s hemostasis remains undisturbed. It is important to note that citrate
may alter the acid-base balance, as well as carrying a caloric load [11]. For the purpose of separating
solid elements from the plasma, either a centrifugal cell separator or a semipermeable membrane may
be used. The separator draws blood and divides its elements by their relative density, using density
gradient centrifugation. If a semipermeable membrane is used, large molecules, i.e., antibodies or
albumins (>50–60 kDa), diffuse through its large pores (0.2–0.6 microns), whereas cellular components
are not able to pass through (Figure 3) [12,13]. It is vital to note that membrane filtration is the
dominant method in Europe [12]. After the blood is separated, it connects with replacement fluid and
returns to the patient’s system as a reinfusate. The eliminated plasma is replaced by either albumins
or fresh frozen plasma (FFP) [12]. Apart from certain indications, albumin solution is preferred as
it presents a lower rate of immunological complications than FFP [14]. In order to compensate for
the plasma loss, the exact same amount of replacement fluid must be administered. However, for an
individual without any circulatory failure risks, the net fluid balance can be either positive or negative,
up to 10–15% of total blood volume (TBV) [12]. TBV is calculated using the following equation:
TBV = 70 mL kg−1 of body weight. If the hematocrit value (Hct) is taken into account, the total plasma
volume can be estimated (plasma = TBV × (1 − Hct)). For a patient body weight of 70 kg and an
Hct level of 0.45, plasma volume should be around 2695 mL. The recommended value of eliminated
plasma varies depending on the characteristics of the disease. For a single procedure, the guidelines
suggest exchanging 1–1.5× of plasma volume. Higher doses come with the risk of excessive reduction
of the necessary plasma elements, i.e., coagulation factors [2]. It is therefore necessary to monitor
concentrations of the latter—for example, low baseline values of fibrinogen (<140 mg dL−1) are an
indication for FFP or TPE dose reduction, as otherwise hemostatic balance may be disturbed [12]. Most
of the plasma elements are distributed both in the vascular and extravascular compartments meaning
that their total body stores are only partially affected by a single dose of TPE. This is caused by the
fact that after eliminating certain factors, re-equilibration of the extravascular compartment occurs.
Intercompartment equilibration depends on the volume of distribution (Vd): the higher the Vd value,
the more significant the redistribution effect. For example, there are differences in distribution between
IgM and IgG antibodies. IgM resides mainly in the vascular compartment (75–90% of total body stores)
resulting in low Vd values, whereas IgG is located more equally in the compartments within the
body (35–45% intravascularly) [15]. Therefore, the redistribution effect in case of IgG removal is more
significant—a single dose of plasmapheresis would not be sufficient as, after the procedure, antibodies
located outside the vessels would transfer to compensate for the loss. Since one procedure leads to
35% elimination of IgG and 59% of IgM total body stores, it needs to be multiplied. Assuming that
1× of plasma volume is exchanged, the total number of procedures required for total IgG depletion
would be six or seven, whereas for IgM it would be around three or four. A similar analysis can be
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conducted for other molecules that are target of the treatment. However, Vd values are not the only
factor accounting for the elimination efficacy, as described below.
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Figure 3. Illustration of MONET® plasmafilter (left, Fresenius Medical Care® educational materials)
and a microscopic view of its pores (right, adapted with permission from Rimmelé et al. [13]) used in
plasmapheresis: the diameters of pores should be approximately 0.2–0.6 micrones, the total filtration
surface of plasmafilter of 0.3–0.6 m2 and for molecules with a mass of 15 kDa–2 MD, the permeability
ratio should be of high value.

4. Basics of Pharmacokinetics During TPE

Usually, the drug distribution volume (Vd) and protein-binding affinity have been considered to
be the two most significant factors determining drug elimination during TPE. It has been suggested
that a low Vd value (<0.2 L kg−1) and a high protein-binding affinity rate (>80%) are associated with
increased removal [16]. As both of these factors correlate with the drug’s presence in the vascular
compartment, they influence the susceptibility to plasma exchange. However, as there are many aspects
that modify Vd and protein-binding values, they cannot be assumed as the same in every patient and
vary in different populations and conditions [17]. Critically ill patients, especially those with septic
shock undergoing aggressive fluid therapy, are vulnerable to drastic Vd changes [18]. Additionally,
kidney and liver dysfunction are worth emphasizing: indeed, it has been reported that impaired renal
clearance can increase drug level in the vascular compartment [19]. Variations of cardiac output in
subjects with sepsis-related cardiac dysfunction is also of great importance. As for factors associated
with the drug itself, a different number of dosages can variously alter the Vd value, which also is the
case in drug overdose [20]. An endogenous clearance rate of less than 4 mL min−1 (commonly observed
in acute kidney injury or other severe organ dysfunction), is considered to be a critical value for
which TPE alters the drug plasma levels [21]. A normal TPE procedure lasts approximately two hours
and, consequently, drugs with a longer elimination half-life (less than two hours) are the most prone
to be affected [22]. Moreover, multicompartmental kinetics are increasingly being discussed in this
regard. The distribution half-life (T1/2a) describes the time of drug diffusion to different compartments.
It has been reported that a longer T1/2a is related with higher elimination rates, mainly due to a
drug’s prolonged presence in plasma, including antibiotics [23]. To minimize a drug’s interference
with TPE, the clinician should estimate the distributive phase of the administered substance and
possibly delay plasmapheresis [24]. The next factor to be considered is the drug level in the removed
plasma (plasmapheresate). This is calculated as follows [25]: QPE = CPE × VPE; QPE—amount
in plasmapheresate (mg), CPE—drug concentration in plasmapheresate (mg L−1), VPE—volume of
plasma removed (L).

Total QPE can be used in the calculation of drug clearance due to plasmapheresis, which may also
be helpful at adjusting drug doses [25]: CLPE = QPE / AUCPE; CLPE—drug clearance due to TPE,
AUCPE—area under the systemic drug concentration versus time curve during plasmapheresis.

CLPE is, however, difficult to establish. It would require collecting multiple blood samples and
measuring their drug concentrations in order to assess AUCPE. Drug clearance due to TPE can be
used for estimating the infusion rate for drugs during plasmapheresis [26]: IR = (CLE × Css) + CLPE;
IR—infusion rate, CLE—endogenous clearance (mg min−1), Css—concentration of drug in steady state
(mg L−1).
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There are several limitations to this method. Firstly, there is a limited number of drugs that
can be measured in blood and plasmapheresate [24]. Secondly, these considerations do not take the
post-redistribution effect into account.

A small number of studies on replacement fluid and its impact on drug elimination exist. Most of
the reports discuss cases of drug overdose, for which the use of albumin or FFP can help redistribute
the drug to the vascular space and, as a result, make it more available for removal during plasma
exchange. Theoretical implications suggest that the lack of albumin supplementation after plasma
removal can increase the free fraction of antimicrobial medications after redistribution [22].

5. Antimicrobials During TPE

5.1. Beta-Lactams

The beta-lactam group contains a wide spectrum of antibacterial drugs: penicillins, cephalosporins,
monobactams and carbapenems. Pharmacodynamically, they present similar properties, mainly
time-dependent activity [27]. This means that the biological effect of killing bacteria is only maintained
only during the time when the concentration of the given substance is above the minimum inhibitory
concentration (MIC). Therefore, serial continuous infusion is a preferable method of administration.
Endogenous clearance is primarily conducted via the kidneys (with the exception of ceftriaxone and
oxacillin) [28,29]. These considerations imply possible interactions in patients undergoing simultaneous
beta-lactam therapy and plasma exchange.

5.2. Penicilines

5.2.1. Ampicillin

Ampicillin is a semisynthetic aminopenicillin with an average Vd of 0.2–0.3 L kg−1 in adults and a
protein-binding affinity of around 20%. There is only one study that has explored its relationship with
TPE. As this was based on a neonate population, its conclusions are limited. Nonetheless, performing
plasmapheresis resulted in a mean decrease of ~35% of total ampicillin concentration [30]. Theoretically,
although a low Vd value would account for these findings, the drug presents, on the contrary, a low
protein-binding affinity, which suggests a role involving other factors. Even though the evidence
coming from the aforementioned study is incomplete, the authors recommended a supplemental dose
of the antibiotic once the administration has occurred within six hours of plasma exchange.

5.2.2. Piperacillin

Piperacillin is a part of the ureidopenicillin group with a Vd value of 0.24 L kg−1 in all age
groups and a protein-binding affinity of around 30%. A single-patient study analyzing the tissue
concentrations of the antibiotic (microdialysis) proved that plasma exchange did not alter the serum
concentration of the drug administered by continuous infusion, due to enhanced redistribution from
the extravascular compartment [31]. Its low protein-binding affinity may account for this finding.
Despite the fact, in the presented case, that serum and tissue concentrations were maintained above
the MIC level, it is necessary to consider even a slight reduction in tissue concentration in cases of
pathogens with high MICs.

No other studies have been performed on penicillins. Nevertheless, theoretical data are
available (Table 1).
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Table 1. Therapeutic plasma exchange (TPE) and penicillins.

Antibiotic
Distribution

Volume
[L kg−1]

Protein
Binding

[%]

Distribution
Half-Life

[min]

Renal
Clearance

[%]

Prediction of TPE
Influence

Ampicillin [30] 0.2–0.3 20% N/A 60–80 moderate
Amoxicillin [32] 0.21 18 N/A 68 moderate/insignificant
Penicillin G [33] 0.53–0.67 45-68 N/A 60–90 insignificant
Ticarcillin [34] 0.17–0.23 45–65 N/A 60–70 moderate/insignificant

Piperacillin [28] 0.24 30% N/A 68 insignificant

N/A—not available.

5.3. Cephalosporins

5.3.1. Ceftriaxone

Ceftriaxone is a third-generation cephalosporin with an average Vd value of L kg−1 in adults
and a T1/2a of 0.23–0.7 h. Although its protein-binding affinity is around 95%, it presents distinctive
dose-dependent kinetics (1 g dose has a Vd value of 0.1 L kg−1, 96% protein-bound, while 2 and 3 g
doses have a Vd value of 0.2 L kg−1, 83% protein-bound) [28]. Ceftriaxone endogenous clearance is
impaired in patients with severe kidney dysfunction, namely GFR < 10 mL min−1. There have been
two studies conducted that were focused on the ceftriaxone and TPE relationship [35,36]. The findings
were similar—ceftriaxone plasma concentration was significantly modified during TPE. The closer the
time between drug administration and TPE initiation, the greater the changes in the plasma ceftriaxone
levels. Indeed, the low Vd value and high protein-binding affinity of ceftriaxone indicate its major
presence in plasma and, thus, TPE’s role in drug removal. Based on theoretical data and results of the
studies, the authors recommended administering ceftriaxone 15 h before or right after TPE.

5.3.2. Ceftazidime

Ceftazidime is a third-generation cephalosporin with an average Vd value of 0.23 L kg−1 in
adults and a T1/2a of 0.26–0.51 h [37,38]. Its protein-binding affinity is around 10% and it is mainly
excreted by the kidneys. A clinical study showed that ceftazidime elimination during TPE was less
than 10%, despite renal impairment occurring in several patients. The drug’s low protein-binding
affinity is worthy of notice. The recommendation for administration of intramuscular ceftazidime
three hours before plasmapheresis vs. the two-hour time interval recommended for intravenous
administration is based on the one-hour time interval between intramuscular injections [32]. Based on
ceftazidime pharmacokinetic parameters and the above-mentioned study, intravenous administration
is recommended two hours before TPE, while the time interval for the intramuscular route must be no
less than three hours.

5.3.3. Cefepime

A member of the fourth generation, cefepime presents a Vd value of around 0.32 L kg−1 and a
distribution half-life of 0.3 h [39]. Its approximate protein-binding affinity is 20% [39]. The drug is
mainly excreted via the kidneys and lowers significantly in patients with decreased GFR. TPE’s role
in the elimination of cefepime has been analyzed. Researchers measured concentrations of cefepime
before and after plasmapheresis—TPE was accounted for removing only ~4% of the total administered
dose (2g). The authors suggested that its low binding affinity and quick distribution phase may be
responsible for these findings [40].

No other studies have been published on cephalosporines and their relationship with
plasmapheresis. Only theoretical data may be advisable (Table 2).
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Table 2. TPE and cephalosporins.

Antibiotic
Distribution

Volume
[L kg−1]

Protein
Binding

[%]

Distribution
Half-Life

[min]

Renal
Clearance

[%]

Prediction of TPE
Influence

Cefazolin (1st gen.) [41] 0.19 88 N/A 80 significant
Cefuroxime (2nd gen.) [42] 0.2 33–50 N/A 96 moderate/insignificant

Ceftazidime [37] 0.23 10 16–31 99 moderate/insignificant
Ceftriaxone [28] 0.13 95 14–42 50–60 significant

Cefotaxime (3rd gen) [43] 0.23 30 N/A 50 insignificant
Cefepime [39] 0.32 20 18 85 insignificant

Ceftaroline (5th gen) [44] 0.37 20 N/A 88 insignificant

N/A—not available

5.4. Monobactams

Aztreonam

There are no existing data regarding TPE’s influence on monobactam concentrations. Nonetheless,
the Vd value of aztreonam is ~0.2 L kg−1 and its protein-binding affinity is 56–72%, with a distribution
half-life of 0.2 h after intravenous injection [45]. Although it is unknown how simultaneous TPE
initiation would alter aztreonam plasma levels, its pharmacokinetic properties suggest that it could be
moderately affected.

5.5. Carbapenems

5.5.1. Imipenem

No studies have been conducted on imipenem and plasmapheresis. The drug’s Vd value is
~0.23–0.31 L kg−1 and it has a protein-binding affinity of approximately 20% [46].

5.5.2. Meropenem

There are no existing data on meropenem and TPE. The drug’s Vd value and protein-binding
affinity is 0.25 L kg−1 and 2%, respectively [47].

The pharmacokinetics of carbapenems would suggest that plasma exchange would not influence
their therapeutic concentrations significantly.

5.6. Glycopeptides

5.6.1. Vancomycin

Vancomycin is an antibiotic of glycopeptide group, with a Vd value of 0.4 L kg−1, it is ~50%
protein-bound. Its distribution half-life is around 0.4–0.94 h [48]. It is mainly excreted via the kidneys
(80–90%) [49]. There have been several reports on vancomycin plasma removal [50–52]. Although
the studies were differently designed, it is likely that vancomycin removal is not clinically significant.
Kinztel et al. suggested dose adjustments based on drug concentrations or administration after TPE [32].
Measurement of vancomycin concentrations on a daily basis should be recommended in order to
adjust the dose.

5.6.2. Teicoplanin

As one of the glycopeptides, the drug’s steady state Vd value is 0.86 L kg−1 and it is approximately
90% protein-bound [53]. Endogenous clearance is maintained via the kidneys. One study explored
the pharmacokinetics of teicoplanin while initiating TPE simultaneously [53]—finding that 20% of
administered teicoplanin was removed by plasma exchange. The authors recommended a time
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separation between drug administration and TPE of at least four hours—after this time, the distributive
phase of teicoplanin is complete. The drug’s pharmacokinetic properties account for these findings.

5.7. Aminoglycosides

Aminoglycosides present mostly a concentration-dependent killing characteristic where their
antimicrobial effect is determined by Cmax/MIC [54]. For such agents, the optimal therapeutic action
can be expected when the concentrations are ≥10 times above the MIC for the target organism at
the site of infection [55]. In order to reach Cmax, it is especially important that no factor interferes
with the pharmacokinetics of the administered drug. Another important aspect of aminoglycoside
pharmacodynamics is the occurrence of a significant postantibiotic effect (>3 h), which can be described
as continuous suppression of bacterial growth after limited exposure to an antibiotic [56]. The long
postantibiotic effect allows long dosing intervals, which can be calculated based on the half-life of the
aminoglycoside. Such a feature creates an opportunity for establishing a treatment plan in which TPE
and antibiotic therapy do not collide.

Tobramycin

Tobramycin is an aminoglycoside with a Vd value of 0.33 L kg−1 and a protein-binding affinity of
less than 10%. Its distribution half-life (T1/2 a) is between 0.1–0.3 h while renal clearance accounts for
90% of its removal [57,58]. These values indicate that it would be only minimally affected by TPE, a
fact which has been confirmed in a study performed on two adults in which the researchers measured
the actual amount of the removed drug and reported it was around less than 10% of total body stores in
both cases [59,60]. Nevertheless, additional reports have presented cases of patients with simultaneous
acute kidney injury. In the described patients, the clearance of tobramycin increased more than 30%
after plasma exchange while total body stores decreased by approximately 10% [59,60]. Even though
the available data and theoretical analysis lead one to consider the influence of TPE on tobramycin
levels as insignificant, Kintzel et al. suggested withholding plasmapheresis by at least two distribution
half-lives of tobramycin, or performing TPE before drug administration [32].

No other studies have been published on aminoglycosides and their relationship with
plasmapheresis (Table 3).

Table 3. TPE and aminoglycosides.

Antibiotic
Distribution

Volume
[L kg−1]

Protein
Binding

[%]

Distribution
Half-Life

[min]

Renal
Clearance

[%]

Prediction Of TPE
Influence

Amikacin [61] 0.27 4 N/A >90 insignificant
Gentamicin [62] 0.25 0–30 21–41 >90 insignificant

Streptomycin [63] 0.26 35 N/A >90 insignificant
Tobramycin [57,58] 0.33 <10 6–20 90 insignificant

Kanamycin [32] 0.19 0–3 N/A >90 moderate/insignificant
Netilmycin [32] 0.16–0.34 0–30 N/A >80 moderate/insignificant

N/A—not available.

5.8. Fluoroquinolones

There are no reports on fluoroquinolones and plasmapheresis. Their pharmacokinetic properties
have been listed below (Table 4).
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Table 4. TPE and fluoroquinolones.

Antibiotic
Distribution

Volume
[L kg−1]

Protein
Binding

[%]

Distribution
Half-Life

[min]

Renal
Clearance

[%]

Prediction of TPE
Influence

Ciprofloxacin [64] 2–3 20–30 N/A ~70 insignificant
Levofloxacin [65] 1.1 30–40 27 >85 insignificant
Moxifloxacin [32] 2 30–40 N/A ~40 insignificant

Ofloxacin [32] 1.8 25 N/A ~90 insignificant
Norfloxacin [32] 0.36–0.5 10–15 N/A ~65 insignificant

N/A—not available.

5.9. Macrolides

There are no existing data on macrolides and plasmapheresis. Their pharmacokinetic properties
have been listed below (Table 5).

Table 5. TPE and macrolides.

Antibiotic
Distribution

Volume
[L kg−1]

Protein
Binding

[%]

Distribution
Half-Life

[min]

Renal
Clearance

[%]

Prediction of TPE
Influence

Azithromycin [66] 0.44 12–52 N/A 12–20 insignificant
Clarithromycin [67] 2.6 70 N/A 15–30 insignificant
Erythromycin [32] 0.78 84 N/A 2.5 moderate/insignificant

N/A—not available.

5.10. Colistin

There are no existing data regarding colistin removal during TPE. Furthermore, pharmacokinetic
data are not consistent, as its volume of distribution and protein binding differ drastically in critical
states and present large interindividual variability. One study estimated the Vd value of colistin to be
around 0.5 L kg−1 and 50% protein-bound [68]. The distribution half-life is a T1/2a of 0.5 h. Colistin
is predominately eliminated by the kidneys [69]. As it is unknown how TPE would interfere with
colistin plasma concentrations, the possible methods of optimizing therapy include monitoring the
drug concentration or ending the procedure before colistin infusion.

5.11. Antivirals

5.11.1. Acyclovir

Acyclovir is an antiviral guanine analogue, used in treating Herpes simplex and Varicella
zoster infections [32]. Its volume of distribution, protein-binding affinity, distribution half-life are
approximately 0.69 L kg−1, 15% and 0.11–0.26 h, respectively [70–73]. It is predominantly excreted
by the kidneys [73]. There have been studies in which the administration of acyclovir occurred one
to three hours before TPE. Moreover, 2.5% of total acyclovir systemic stores were eliminated via
plasmapheresis [74]. Despite the clinical insignificance of this finding, it has been suggested postponing
TPE for at least three hours after acyclovir infusion [32].

5.11.2. Oseltamivir

There are no reports concerning the relationship of oseltamivir with plasmapheresis. The drug’s
Vd value is 0.32–0.37 L kg−1 while its protein-binding affinity is approximately 42%. Its metabolite is
mainly (90%) excreted via the kidneys [75]. Although it is unknown how TPE would interfere with
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oseltamivir plasma concentrations, pharmacokinetic considerations rather imply the insignificance of
plasma exchange.

5.12. Antifungals

5.12.1. Amphotericin B (liposomal)

Amphotericin B is a monocyclic, polyene antifungal drug with a Vd value of 0.1–0.2 L kg−1

while 95–99% of the drug is protein-bound, mainly to LDL, albumin and α-1-acid glycoprotein [76].
Treatment efficacy depends on achieving a concentration above MIC [76]. There is only one report in
which a patient with liposomal amphotericin B treatment received plasmapheresis. Pre-TPE plasma
concentration of the drug was 0.5 µg mL−1 and post-TPE concentration was 0.3 µg mL−1. This means
that the reduction ratio was 40% and resulted it in falling below MIC. The authors recommended
frequent amphotericin B plasma level monitoring and adjusting the doses to assure the effectiveness of
the antifungal therapy [77].

5.12.2. Voriconazole

Voriconazole is a broad-spectrum antifungal agent with a Vd value of 4.5 L kg−1 and a
protein-binding affinity of 58% [78]. There has been a report of a critically ill patient with fungal
pneumonia that required plasmapheresis due to an underlying condition. The authors administered
voriconazole 2.5 h before TPE initiation. The effect of plasmapheresis on the drug levels was clinically
insignificant, which is compatible with the theoretical pharmacokinetic properties of voriconazole [78].

No other studies have been published on antifungals and their relationship with plasmapheresis
(Table 6).

Table 6. TPE and antifungal agents.

Antibiotic
Distribution

Volume
[L kg−1]

Protein
Binding

[%]

Distribution
Half-Life

[min]

Renal
Clearance

[%]

Prediction of TPE
Influence

Amphotericin B [73] 0.1–0.2 95–99 N/A N/A significant
Ketoconazole [32] 2.4 99 N/A 13 moderate/significant
Fluconazole [32] 0.6 11 N/A 80 insignificant
Voriconazole [32] 4.5 58 N/A 94 insignificant
Terbinafine [32] >29 99 N/A N/A moderate/insignificant

Caspofungin [32] 0.3–2 97 N/A 41 moderate/significant

N/A—not available.

5.13. Other Antimicrobials

The prediction of TPE influence on other antimicrobial agents is depicted in Table 7.

Table 7. TPE and other popular antimicrobial agents.

Antibiotic
Distribution

Volume
[L kg−1]

Protein
Binding

[%]

Distribution
Half-Life

[min]

Renal
Clearance

[%]

Prediction of TPE
Influence

Metronidazole [79] 0.25–0.85 <20 N/A 60–80 insignificant
Clindamycin [80] 1.1 60–94 N/A ~33 moderate/insignificant

Sulfamethoxazole [81] 0.43 70 N/A 84.5 moderate/insignificant
Trimethoprim [81] 0.7–1.5 50 N/A 66.8 insignificant

Linezolid [82] 0.57–0.86 31 N/A 35 insignificant

N/A—not available.
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6. Conclusions

Antimicrobial treatment during TPE remains a complex issue (Figure 4). Recommendations
based on a limited number of experimental studies should be implemented in clinical practice with
caution. Effective management of infections due to plasma or albumin-related interactions, as well as
impaired pharmacokinetics, in critical illness is difficult. Nevertheless, knowing the pharmacokinetics
of the drugs concerned and the procedural aspects of plasmapheresis should be helpful in planning
personalized treatment. In general, possessing a low distribution volume, a high protein-binding
affinity, a low endogenous clearance rate, and long distribution and elimination half-lives make a drug
more prone to elimination during TPE. A high frequency and longer duration of the procedure may also
contribute to altering a drug’s concentration. The safest choice would be to start and finish TPE before
antimicrobial agent infusion. If this not feasible, a reasonable alternative is to avoid administering the
drug just before TPE and to delay the procedure for the time of the administered drug’s distributive
phase. Ultimately, if plasma exchange must be performed urgently or the drug has a very narrow
therapeutic index, monitoring its plasma concentration is advised. In conclusion, antimicrobial
treatment would be effective during therapeutic plasma exchange only if planned correctly. Moreover,
the paucity of up-to-date data should encourage researchers to explore this complex issue using
case-series and observational surveys.
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