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Abstract: Nanogel-based nanoplatforms have become a tremendously promising system of drug
delivery. Nanogels constructed by chemical crosslinking or physical self-assembly exhibit the ability
to encapsulate hydrophilic or hydrophobic therapeutics, including but not limited to small-molecule
compounds and proteins, DNA/RNA sequences, and even ultrasmall nanoparticles, within their
3D polymer network. The nanosized nature of the carriers endows them with a specific surface
area and inner space, increasing the stability of loaded drugs and prolonging their circulation
time. Reactions or the cleavage of chemical bonds in the structure of drug-loaded nanogels have
been shown to trigger the controlled or sustained drug release. Through the design of specific
chemical structures and different methods of production, nanogels can realize diverse responsiveness
(temperature-sensitive, pH-sensitive and redox-sensitive), and enable the stimuli-responsive release
of drugs in the microenvironments of various diseases. To improve therapeutic outcomes and increase
the precision of therapy, nanogels can be modified by specific ligands to achieve active targeting
and enhance the drug accumulation in disease sites. Moreover, the biomembrane-camouflaged
nanogels exhibit additional intelligent targeted delivery features. Consequently, the targeted delivery
of therapeutic agents, as well as the combinational therapy strategy, result in the improved efficacy of
disease treatments, though the introduction of a multifunctional nanogel-based drug delivery system.

Keywords: multifunctional nanogels; crosslinking; stimuli-responsive; delivery;
combinational therapy

1. Introduction

With the development of advanced nanotechnology in recent decades, nanocarriers have
emerged and gained popularity in biomedicine [1]. Nanocarriers serve not only as carriers of
routine chemotherapeutic agents due to their drug encapsulation capacity but also as platforms for
combinational therapy, multifunctional diagnosis and theranostics. As an ideal multifunctional drug
delivery system (DDS), nanocarriers have been applied for various disease therapies, such as passive
targeting due to the enhanced permeability and retention (EPR) effect, active targeting facilitated by
ligand modification of the surface of nanoplatforms, and site-specific and time-controlled drug delivery
strategies mediated by stimuli-responsive materials [2].
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Nanogels, a type of systemic drug delivery carrier, are hydrogels with a three-dimensional (3D)
tunable porous structure and a particle size in the submicrometer range, from 20 to 250 nm; nanogels
can be discriminated from microgels, which have a particle size ranging from 1 to 350 µm, and in
situ-forming hydrogels, which facilitate local delivery [3]. Nanogels are composed of various natural
polymers, synthetic polymers, or combinations thereof, which contributes to the encapsulation of small
molecules, oligonucleotides, and even proteins. These unique properties equip nanogels with the
abilities to enable drug delivery, diagnostics, and imaging [4].

As a kind of hydrogel, nanogels retain the highly hydrated nature and shrinking-swelling
properties of hydrogels under different environmental conditions [5]. Their 3D structure enables the
encapsulation of hydrophobic or hydrophilic drugs in their internal network, potentially protecting
these drugs from degradation during storage or in circulation (such as degradation due to hydrolysis or
enzymolysis) [6]. Unlike typical nanoparticles (NPs), nanogels exhibit a tunable particle size, particle
shape, and sensitivity to pH, temperature, ionic strength, redox conditions and other external stimuli,
giving them effective controlled drug release properties [7]. Furthermore, nanogels can be tailored to be
multifunctional and targeted, and their circulation time can be prolonged by surface modification [8].
Based on the above advantages, nanogel-based DDSs have become popular and had significant impacts
in recent years.

In this review, we summarize recent developments in nanogels and their biomedical application in
drug delivery (Scheme 1). In addition to the composition of nanogels and methods of their preparation,
the construction of various pH-responsive, temperature-responsive, dual pH/temperature-responsive
and triple pH/temperature/redox-responsive nanogels are presented in detail. Moreover, targeted
ligands, such as promising small molecules, peptides and antibodies on the surface of nanogels, enable
the development of nanogels with active targeting properties. Finally, the biomedical applications of
nanogels are discussed in detail.
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2. Construction of Nanogels

Based on the different structures and building blocks in nanogels, the methods of nanogel synthesis
can be divided into chemical crosslinking and physical self-assembly. The nanogel formed by chemical
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crosslinking exhibited preferable stability compared to the physical crosslinking through the covalent
crosslinking between functional groups on polymer chains. Meanwhile, the reversible connections
of physically crosslinked nanogels are commonly dependent on the noncovalent interactions, which
mainly include hydrogen bonding, Van der Waals force, hydrophobic interaction, host-guest interaction,
electrostatic interaction, and so on [9]. Although the interaction of physical noncovalent bonds is
relatively weaker than that of chemical covalent crosslinking, the process of physical self-assembly
is more flexible and convenient, because it does not require complex reactions [10,11]. This section
discusses the synthetic methods and examples of nanogel preparation are discussed.

2.1. Physical Crosslinking

Physically crosslinked nanogels are supramolecular particles consisting of polymer molecules
formed through noncovalent interactions. The sizes of nanogels can be influenced by the polymer
concentration and different environmental conditions, such as ionic strength, temperature, and pH,
during nanogel preparation.

The semi-interpenetration method was described as physically incorporating an insoluble
molecule into a crosslinked polymer network, and the obtained nanogels can then extend
the new properties of the incorporated molecule. Polypyrrole (PPY) with photothermal
convention, which could be used for photoacoustic (PA) imaging, was introduced into dendritic
polyglycerol (dPG) cross-linked poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) nanogels
(p(NIPAm-co-NIPMAm)) by semi-interpenetration to form the PPY/Co-dPG nanogels. PPY/Co-dPG
nanogels with near infrared (NIR)-responsive and hermoresponsive properties could be used for PA
imaging-guided photo thermotherapy with NIR irradiation (Figure 1) [12].
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Figure 1. (A) The scheme for synthesis of dual responsive nanogels via semi-interpenetration method.
The N-isopropylacrylamide (NIPAm)-based polymer network and interpenetrated polypyrrole (PPY)
enabled the nanogels with thermoresponsive property and near-infrared (NIR)-induced photothermal
convention, respectively; (Pyrrole·HCl (Py·HCI) as the base and ammonium persulfate (APS) as an
initiator were introduced for polymerization); the TEM images (B) and hydrodynamic size distribution
(C) of PPY/Co-dPG nanogels. Adapted from (Journal of Controlled Release. 2019, 311–312, 147–161).
Copyright (2020) with permission from Elsevier Science.
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2.2. Chemical Crosslinking

Beyond physical crosslinking, chemical crosslinking is the most developed and more versatile
strategy for nanogel construction. Chemical crosslinking methods include polymerization by
emulsion, reversible addition-fragmentation chain transfer (RAFT), click chemistry crosslinking,
and photo-induced crosslinking [13]. Amino crosslinking is often used for the preparation of
biodegradable nanogels based on amino acids [14].

2.2.1. Inverse Emulsion Polymerization

Inverse emulsion polymerization is a polymerization reaction initiated by the continuous
emulsification of water-in-oil emulsifiers in the oil phase. The sizes of nanogels can be regulated by many
factors, such as the surfactant, feed ratio of the monomer and crosslinker, and pH [11]. For example,
Ashrafizadeh et al. synthesized zwitterionic poly(AA-BA-EGDMA) nanogels by using ethylene
glycol dimethacrylate (EGDMA), butyl acrylate (BA) and acrylic acid (AA) as monomers [9]. Using
N,N′-methylenebis(acrylamide) (BIS) and N-acryloyl-l-glutamic acid (l-AGA), Peres and co-workers
prepared poly(l-AGA) and poly(l-AGA-co-BIS) hydrogels by inverse emulsion polymerization, which
demonstrated that the degree of hydrogel swelling increased with variation of pH [15]. Furthermore,
the presence of carboxylic acid and amide groups in a polymer network plays important roles in the
physicochemical properties of the polymer network, thereby affecting its hydrophilicity and hydration.

2.2.2. Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization

Through RAFT, a polymer undergoes a series of reactions with dithioester compounds; these
reactions include reversible addition, reversible degradation of adducts, and chain transfer reactions
and control the molecular weight of the polymer during free radical polymerization. RAFT technology
can change the micelle structure of amphiphilic polymers by altering the length, configuration and
properties of the polymers. Poly(N-vinylcaprolactam) (PVCL) has become an interesting biocompatible
and temperature-sensitive polymer [16]. In addition, poly(vinyl acetate) (PVAC) is an attractive
polymer that can be used to adjust the phase transition temperature of PVCL, which is known
as a kind of biocompatible and temperature-sensitive polymer, by promoting the noncovalent
hydrophobic interactions between VAC and VCL. By adjusting the ratio of VAC and VAL during RAFT
polymerization, Etchenausia et al. obtained a series of thermoresponsive polymers which they named
as PEG-b-P(VAC-co-VCL), with xanthate-terminated poly(ethylene glycol) (PEG-X) as a polymeric
chain transfer agent [17].

2.2.3. Click Chemistry Crosslinking Polymerization

In recent decades, emergent hydrogels and nanogels have been associated with click chemistry
due to its high reactivity, high yield and superb selectivity [18]. Click chemistry, which
includes the copper(I)-catalyzed azide-alkyne (CuAAC) click reaction, the copper-free click reaction,
and pseudo-click chemistry, has become the most promising strategy for the preparation of nanogels.
For instance, a pH-responsive nanogel was obtained through thiol-ene click chemistry, an efficient
method of nanogel preparation without byproducts, by polymerization with methoxy polyethylene
glycol acrylate (mPEGA), pentaerythritol tetra(3-mercaptopropionate) (PT) and ortho ester diacrylamide
(OEAM) [19]. The network of the obtained nanogels was introduced to capture the molecule doxorubicin
(DOX), and acid-labile monomer OEAM enabled the DOX-loaded nanogel displayed a pH-triggered
release profile with the intracellular acidic environment (Figure 2).
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2.2.4. Photo-Induced Crosslinking Polymerization

The application of irradiation for the preparation of nanogels is becoming popular due to its
bacteriostatic effect, additive-free nature, multifunctional nature, tunable particle diameter and ability
to promote crosslinking. In the process of irradiation, water molecules break down into hydroxyl
radicals and hydrogen atoms with the potential to convert polymers into microradicals, leading to
intermolecular crosslinking, which promotes nanogel formulation [20]. Consequently, the crosslinking
density can be adjusted by regulating the wavelength or energy of the laser [21]. In addition, there are
optical crosslinking methods using photoinitiators; for instance, Irgacure 2959 was applied to prepare
lipid-coated nanogels which could reduce the drug release rate of docetaxel, compared to that of
uncrosslinked drugs [22,23].

3. Stimuli-Responsive Nanogels

The use of stimuli-responsive systems for drug delivery has received increasing attention and
mainly utilizes the special conditions of the tumor microenvironment, including a low pH, high
temperature, and high glutathione (GSH) concentration, to achieve targeted drug delivery and
release [24]. In this way, the use of stimuli-responsive systems not only decreases the drug dose and
systemic toxicity but also weakens toxicity to normal tissues [25]. Nanogels have been widely used
as stimuli-responsive systems due to their stability, ease of synthesis, high drug-loading capacity,
and ability to be modified in multiple ways. Importantly, nanogels are more highly responsive to
mutative environments than other DDSs due to their unique 3D network structures, which easily change
in different environments to control drug release [26]; therefore, several common stimuli-responsive
nanogels are introduced below.

3.1. Thermo-Responsive Nanogels

Thermo-responsive nanogels are among the most attractive intelligently responsive DDSs.
Thermoresponsive nanogels present shrinkage-swelling behavior with variation in the environmental
temperature, which enables a controlled release rate of the drug loaded inside. Moreover, accumulation
in the disease-related microenvironment and the improved intracellular uptake efficiency could be
achieved by stimulated reduction in particle size, and further benefit the therapeutic outcomes [27–29].

NIPAm is a typical thermosensitive derivative that has been widely applied in biomedicine [30–32].
Below 32 ◦C (the lower critical solution temperature (LCST) of NIPAm), NIPAm is hydrophilic.
It becomes hydrophobic with the agglomeration of NIPAm units and causes the system to shrink
when the temperature exceeds its LCST. Moreover, the LCST of pNIPAm can be regulated by chain
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modifications. Hence, pNIPAm-based copolymers with thermosensitive properties were synthesized
by chemical crosslinking with other monomers to form various DDSs, including nanogel [33,34],
and hydrogel [35–37]. In the recent report, by initiating the polymerization of NIPAm with AA and
N-[3-(dimethylamino) propyl] methacrylamide (DMAPMA), the volume phase transition temperature
(VPTT) of pNIPAm-based nanogels was adjusted to near the physiological temperature (37 ◦C). with
APS as an inissiaer and sodium dodecyl sulfate (SDS) as an emulsifier. This thermo-sensitive nanogel
was introduced for protein loading by aqueous imprinting precipitation. More importantly, the template
protein lysozyme exhibited imprint-release property accompanying with the temperature-dependent
shrinking-swelling of nanogel, indicating the promising controlled delivery ability (Figure 3A) [38].Pharmaceutics 2020, 12, x FOR PEER REVIEW 7 of 25 
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swelling property of nanogels guarantees stimuli-drug release when AMF is applied. The DOX-
MagNanoGels not only displayed enhanced internalization of cancer cells and release of DOX 
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Figure 3. (A) Schematic illustration of the aqueous imprinting method for protein-loaded
thermoresponsive nanogels (with APS as an initiator and sodium dodecyl sulfate (SDS) as an
emulsifier). The change in temperature below or above VPTT enabled the removal or rebinding
of protein. Republished with permission of Royal Society of Chemistry, from [Soft Matter, 2013, 9,
3840–3850. Edition Number 38, Copyright (2013)]; permission conveyed through Copyright Clearance
Center, Inc. (B) By hydrolysis of cholesteryl vinyl ether bond at pH 4.0, the acid-labile cholesteryl-bearing
pullulan nanogels (acL-CHP) resulted in swelling-collapse and presented the acid-triggered drug
release. Adapted with permission from (Biomacromolecules 2013, 14, 56-63). Copyright (2013)
American Chemical Society.

3.2. pH-Responsive Nanogels

The pH-dependent swelling-shrinking behavior of the nanogel system is mainly attributable to the
ionizing groups, which could deform by ionization or deionization in response to variation in the pH
value. Some scientific research has reported that the microenvironments of tumor tissues (pH 6.5–7.2)
and tumor cells (pH 4.5–5.0 in lysosomes, and pH 5.0–6.5 in endosomes) are acidic, when compared
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with the physiological pH of 7.4 in the blood circulation and normal tissues [39–41]. The pH-sensitive
monomers methacrylic acid (MAA) and methyl ester (MA) were reported to polymerize nanogels,
which maintained a swollen state at basic pH conditions with high permeability. Accompanied by
decreasing pH values, the deionization of MAA and MA would lead to the shrinkage of nanogels,
resulting in the entrapment of the hydrophobic fluorescent indicator oligothiophene (TF) and the
hydrophilic drug DOX. Moreover, the enhanced release of DOX was observed at pH 5.5, which could be
attributed to the further shrinkage of pH-sensitive nanogels and the protonation of DOX [42]. Besides
the synthetic polymers, the natural polysaccharide–based nanogels with shrinkage-collapse variation
were designed for precisely controlled drug release with the stimulus of disease microenvironment.
Cholesteryl-modified pullulan polymers were reported to self-assemble under physiological conditions
to form a stable network structure of acid-labile cholesterol-bearing pullulan (acL-CHP). However,
the acid-catalyzed hydrolysis of cholesteryl vinyl ether bonds occurred at pH 4.0, leading to the
swelling of the acL-CHP nanogels, and finally resulting in collapse of the nanogels. The acL-CHP was
expected to be a promising carrier for protein delivery with controlled release (Figure 3B).

3.3. Magnetic-Responsive Nanogels

Besides the magnetic-targeting under extra magnetic field, the magnetic nanoparticles (MNPs) can
realize hyperthermia under the conditions of alternative magnetic field (AMF) [43,44]. Hence, MNPs
and the temperature-sensitive nanogels were applied to construct the hybrid nanogels and loaded with
chemical drug DOX (DOX-MagNanoGels). Nanogels provide opportunities to co-encapsulate MNPs
and chemical drugs due to the 3D network structure. Moreover, the shrinking-swelling property of
nanogels guarantees stimuli-drug release when AMF is applied. The DOX-MagNanoGels not only
displayed enhanced internalization of cancer cells and release of DOX because of the shrinkage of
nanogels by MNPs-induced magnetic hyperthermia, but also possess the possibility for magnetic
resonance imaging (MRI) and magnetic targeting in cancer diagnosis and therapy [45].

3.4. Ultrasound-Responsive Nanogels

Ultrasound (US)-mediated drug delivery systems are widely used in transdermal administration
and central nervous system (CNS) disease treatment [46,47]. Moreover, a US-responsive delivery
system was also introduced for anticancer therapy based on the advantages for deep penetration of
acoustic wave. When US was applied, the liquid US agent perfluorohexane (PFH) evaporated to
gas, benefitting the triggered drug release [48]. A redox-sensitive hybrid nanogel (MSNss-gel) was
synthesized by the mesoporous silica nanoparticles’ (MSNs) core and polymer shell, and was utilized
for hydrophilic drug DOX and hydrophobic PFH co-loading. The collapse of the polymer shell in the
microenvironment of the tumor region enabled the controlled DOX release and also improved the US
contrast imaging in cancer therapy [49].

3.5. Multistimuli-Responsive Nanogels

Monoresponsive nanogels cannot maintain the controlled drug release effectively, so nanogels
with dual- or multi-stimuli responsiveness have attracted widespread attention [50–53]. Among
the multiresponsiveness combinations, pH–temperature dual-sensitivity combinations have been
studied with considerable advances. Peng and coworkers innovated a kind of dual-stimuli nanogel
polymerized from NIPAm, MAA and PEGMA that responded to temperature and pH values.
The cross-linked p(NIPAm-MAA-PEGMA) nanogels displayed the excellent drug loading and
release behavior for hydrophilic model drugs with different molecular weights [54]. Furthermore,
the p(NIPAm-MAA-PEGMA) nanogels were introduced as the pH-thermal dual responsive carriers
for loading cisplatin (CDDP), which was conjugated with the COOH group from MAA, and the
release could be triggered by H+ and Cl− attack. The thermoresponsive nanogels could reduce the
Cl−-triggered drug release during circulation, while the acidic environment in the tumor region would
achieve the controlled release of CDDP, improving antitumor efficacy and alleviating adverse effects
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(Figure 4A) [55]. Besides the physical condition, the intracellular responsive release of glutathione
(GSH), an essential antioxidant that specifically reduces the disulfide bonds, was reported at a relatively
high concentration in cancer cells (approximately 2–10 mM), which is approximately 1000 times
the value of approximately 2–20 µM in normal cells [56]. The monomers NIPAM and AA were
crosslinked by N,N’-bis(acryloyl)cystamine (BAC) to prepare the PNA-BAC nanogels with thermo,
pH-, and redox-sensitivity for DOX delivery [57]. In this research, triple-responsive PNA-BAC-DOX
nanogels displayed the accelerated DOX release in the presence of 4 mM DTT, which mimicked the
tumor cell environment. Meanwhile, the acidic conditions were beneficial for the DOX release from
PNA-BAC-DOX nanogels, which was in accordance with the tumor microenvironment (Figure 4B).Pharmaceutics 2020, 12, x FOR PEER REVIEW 9 of 25 

 

 
Figure 4. (A) The synthesis of temperature and pH duel-responsive nanogel, and the drug release 
mechanism of cisplatin (CDDP)-conjugated nanogel when at circulation and in tumor region. 
Adapted with permission from (Biomaterials. 2013, 34, 8726–8740). Copyright (2013) American 
Chemical Society. (B) The in situ polymerization of thermo/redox-sensitive nanogels (with potassium 
persulfate (KPS) as an initiator and SDS as an emulsifier), and the doxorubicin (DOX)-loaded nanogels 
exhibited both thermo and redox triggered drug responsive release. Republished with permission of 
Royal Society of Chemistry, from [Journal of materials chemistry. B, Materials for biology and 
medicine, 2015, 3, 4221–4230. Edition Number 57, Copyright (2015)]; permission conveyed through 
Copyright Clearance Center, Inc. 

3.6. Modification of Nanogels for Active Targeting 

Like other types of NP, nanogels can be provided not only passive targeting ability by 
adjustments to their size, shape or surface property, but also active targeting by their surface 
modification, further improving the accumulation of drugs in disease region [58]. Active targeting 
can be achieved through the interaction of ligands and specific cellular or subcellular receptors. 
Moreover, the biological ligands such as small molecules, proteins, peptides, polysaccharides were 
employed for the surface modification of NPs (Figure 5) [59]. 

Figure 4. (A) The synthesis of temperature and pH duel-responsive nanogel, and the drug release
mechanism of cisplatin (CDDP)-conjugated nanogel when at circulation and in tumor region. Adapted
with permission from (Biomaterials. 2013, 34, 8726–8740). Copyright (2013) American Chemical Society.
(B) The in situ polymerization of thermo/redox-sensitive nanogels (with potassium persulfate (KPS)
as an initiator and SDS as an emulsifier), and the doxorubicin (DOX)-loaded nanogels exhibited both
thermo and redox triggered drug responsive release. Republished with permission of Royal Society
of Chemistry, from [Journal of materials chemistry. B, Materials for biology and medicine, 2015, 3,
4221–4230. Edition Number 57, Copyright (2015)]; permission conveyed through Copyright Clearance
Center, Inc.
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3.6. Modification of Nanogels for Active Targeting

Like other types of NP, nanogels can be provided not only passive targeting ability by adjustments
to their size, shape or surface property, but also active targeting by their surface modification, further
improving the accumulation of drugs in disease region [58]. Active targeting can be achieved through
the interaction of ligands and specific cellular or subcellular receptors. Moreover, the biological
ligands such as small molecules, proteins, peptides, polysaccharides were employed for the surface
modification of NPs (Figure 5) [59].Pharmaceutics 2020, 12, x FOR PEER REVIEW 10 of 25 
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3.6.1. Small-Molecule Conjugation

In recent studies of antitumor targeted therapies, folic acid (FA) has become a prominent target
that can specifically interact with cells overexpressing folate receptors (FRs). FRs are overexpressed in
human tumor tissues, especially in ovarian cancer tissues, but are seldom expressed in normal tissues.
The differential expression of FR in ovarian cancer and other tumor tissues makes it an attractive
biomarker for the diagnosis and treatment of tumors [60]. The block copolymer poly (ethylene
oxide)-b-poly(methacrylic acid) (PEO-b-PMA) was loaded with CDDP and DOX, and further modified
with FA to obtain pH-sensitive nanogels. The intracellular uptake results show that the uptake rate
of FA nanogels in FA-positive cells (approximately 80%) was much higher than that in FA-negative
cells (approximately 20%). In vivo data showed that CDDP-loaded FA-nanogel treatment resulted in
an obvious therapeutic effect in ovarian cancer-bearing animal models with reduced toxicity to the
kidney [61].

3.6.2. Peptide Conjugation

Recently, the active targeting with some peptide ligands has been extensively investigated in both
therapy and imaging. For instance, the tumor-homing peptide LyP-1, which was reported to bind
preciously with p32 protein of a series of tumor cells, could be conjugated with nanoparticles to realize
enhanced tumor targeting. Furthermore, improved therapeutic outcomes resulting from treatment
with these modified nanoparticles were achieved by photo-thermotherapy, photo-chemotherapy
and photo-immunotherapy in our previous work [62–64]. In addition to LyP-1, the RGD peptide,
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a tripeptide consisting of L-arginine, glycine and L-aspartic acid, is a cell adhesion sequence that mimics
cell adhesion proteins and can bind to integrin receptors on angiogenic endothelial cells and tumor cells,
such as malignant glioblastoma cells, bladder cancer cells and αVβ3 integrin receptor-overexpressing
breast cancer cells [65]. Moreover, the cyclic RGD (cRGD) peptide has also been demonstrated to
maintain the affinity to tumor cells. Hence, the cRGD-modified nanogels could be the versatile
and promising drug carriers for tumor-targeting strategies. In our previous study, acid-sensitive
pNIPAM-co-MAA nanogels (NG) were conjugated with cRGD peptide. Meanwhile, CDDP and lidocaine
(Lido) were co-loaded by the active targeting nanogel system (Lido/cRGD-NG-Pt). The results of in vivo
fluorescence imaging and magnetic resonance (MR) imaging demonstrate that the ligand-modified
nanogels exhibited enhanced tumor region targeting and accumulation, which could be attributed
to the specific internalization of the cRGD peptide. Consequently, by combining the tumor region
enrichment with controlled drug release in the tumor environment, the dual drug-loaded nanogels
displayed enhanced therapeutic outcomes in MBA-MD-231 breast cancer model (Figure 6) [66].
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Figure 6. (A) The scheme for the preparation of Lido/cRGD-NG-Pt nanogels and internalization process
of cRGD modified nanogel in the tumor region; (B) in vitro confocal fluorescence images illustrated
that the cRGD modified nanogel present enhanced cell uptake efficacy for αVβ3 integrin-positive
MDA-MB-231 tumor cells; (C) in vivo fluorescence imaging of MDA-MB-231 tumor model after
treatments with fluorescent probe-labeled nanogels (DID/cRGD-NG). MR Imaging demonstrated the
tumor targeting property of MRI probe-labeled nanogels (Fe3O4/cRGD-NG). Adapted with permission
from (ACS Appl. Mater. Interfaces 2018, 10, 25228−25240). Copyright (2018) American Chemical Society.

3.6.3. Antibody Conjugation

Compared with specific receptors on the surface of tumor cells, antibody-modified nanogels
show a higher affinity for binding sites, allowing them to achieve higher targeting and precision,
so antibodies are widely used as ligands in the modification of nanogels [67,68]. In addition,
antibodies can be applied not only as the ligands but also as therapeutic agents in cancer treatment;
for instance, antibody-dependent cell-mediated cytotoxicity (ADCC) was indicated to inhibit cellular
signaling pathways related to tumor growth and initiation [69,70]. In a previous report, an anti-STn
antigen-specific antibody was employed to modify nanogels because of the aberrant expression of Sialyl
Tn (STn) antigen in pancreatic ductal adenocarcinoma (PDAC), resulting in the effective accumulation



Pharmaceutics 2020, 12, 290 11 of 25

of drugs in tumor tissues, which not only improved the antitumor effect, but also implied a promising
target for PDAC [71].

3.6.4. Biomembrane Camouflaged

A protein corona is an unavoidable coating formed on the surface of nanoparticles during
exposure to a biological milieu. Some studies have found that the targeting capacity of tumor-targeting
ligands can be attenuated by the influence of the protein corona [72–74]. Meanwhile, some recent
studies have also revealed that the targeting capacity of ligands can be partially retained after in vivo
corona formation [75]. However, how the protein corona formed on the ligand-modified nanoparticle
influences the targeting capacity remains unclear.

A new strategy of biomembrane-camouflaged nanomedicine has been developed in recent studies
for targeted delivery. Membrane-camouflaged DDSs can simulate the structure and function of cell
membranes. Compared with conventional ligand-modified delivery systems, they displayed the
superior passage through physiological barriers, more precise accumulation, prolonged circulation
time and improved drug efficacy [76,77]. Mesenchymal stem cell membrane-coated gelatin nanogels
(SCMGs) were loaded with DOX and exhibited considerable tumor-targeting ability because of tumor
recognition by mesenchymal stem cells. Compared to the free DOX-treated group, the enhanced
antitumor efficiency was observed in the group administrated by nanogels with mesenchymal stem
cell coating, as well as the excellent biocompatibility with organs (Figure 7) [78].
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Figure 7. (A) The scheme illustrated the preparation of mesenchymal stem cell membrane-coated gelatin
nanogels (SCMGs) and the tumor targeting property; (B) the surface protein analysis of SCMGs to
certify the cell membrane coating; (C) confocal fluorescence images for the cell uptake of SCMGs which
illustrated the colocalization of green labeled gelatin nanogels and red labeled stem cell membranes;
(D) in vivo fluorescence imaging of mice after intravenous injection of SCMGs, that illustrated the
enhanced tumor targeting and prolonged circulation after stem cell membrane coating. Reprinted with
permission from (Small. 2016, 12(30), 4056–4062). Copyright (2016) Wiley Online Library.
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4. Nanogels for Drug Delivery

Most nanogel systems are composed of synthetic polymers or natural biopolymers with crosslinked
structures. The pores of the 3D network in nanogels are suitable for the incorporation of small molecules
or biomacromolecules. Polymeric nanogels as drug carriers present the advantages of artificially
controlling the dosage of drugs by external stimuli, shielding the irritating odor of drugs, improving the
therapeutic efficacy and reducing the adverse effects of drugs [79]. Drugs with severe adverse effects,
short circulation halftime, and easy degradability by enzymes, such as anticancer drugs, and proteins,
are suitable for delivery by chemically crosslinked or physically assembled nanogel systems [80,81].

4.1. Small-Molecule Delivery

Nanogels display significant promise as DDSs due to their encapsulation stability and intelligent
release, in addition to their water solubility, biocompatibility and biodegradability. The current study
of nanogels is mainly focused on overcoming the instability of protein drugs to achieve targeted drug
delivery to the tumor tissue.

DOX, as a hydrophilic model drug, is generally used to investigate the encapsulation and delivery
properties of various nanogels [82]. The drug entrapping and controlled release could be easily
fulfilled by swelling-collapse variation in the presence of environmental stimuli [83]. In addition to the
hydrophilic molecules, some hydrophobic drugs could also be entrapped in the nanogel network. A
Fe3O4 hybrid nanogel system was designed to load the hydrophobic drug rapamycin by interaction
with the hydrophobic surface of Fe3O4 inner core. NIPMAm was introduced as the thermoresponsive
monomer and 2-aminoethyl methacrylate hydrochloride (AEMA) as the pH-sensitive monomer to
construct the hydrophilic shell of the hybrid nanogel. Furthermore, a collagen IV targeting peptide
(KLWVLPK) was conjugated with the amino group of AEMA on the surface of drug-loaded nanogels,
enabling the formulation of nanogels that targeted the injured artery, thereby achieving the vascular
restenosis therapy [84].

4.2. Biomacromolecule Delivery

Unlike chemical drugs, biological macromolecules have the characteristics of large molecular
weight, complex structure and biological functions; however, because of these characteristics, regulating
the stability and permeability of biomacromolecules is challenging [85]. Therefore, such drugs are
transported by a variety of nanometer DDSs [86,87], among which nanogels, composed of nanometer
hydrogels, have an excellent drug-loading capacity, stability and hydrophilicity and the potential to be
good carriers [88].

4.2.1. Proteins Delivery

As proteins are characterized by poor stability, low permeability, enzymatic degradation and a
short half-life, they need to be pharmaceutically modified for therapeutic purposes. Encapsulation
in a variety of polymers is an effective way to control drug release and extend drug retention
time [89]. Natural (e.g., chitosan, dextran, alginate) and synthetic polymers (e.g., polycaprolactone,
acrylic polymers, polyallylamine) were introduced to form nanogels to deliver insulin, with both
showing excellent biocompatibility, high permeability and enhanced glucose-based responsiveness.
The remarkable advantages of these oral nanogels have enabled great effects on hypoglycemia. Despite
the presence of epithelial barriers in the gastrointestinal tract, improved patient compliance was
observed with oral insulin administration compared to insulin injection [90]. Mudassir et al. recently
designed a pH-sensitive polymethyl methacrylate (MMA)/itaconic acid (IA) nanogel as a carrier for
oral insulin to improve its bioavailability [91].
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4.2.2. Nucleic Acid Delivery

Gene therapy is involved in the specific treatments of some genetic diseases by delivery of the
therapeutic DNA or RNA sequences. Among these gene therapies, the application of small interfering
RNA (siRNA) has become an important treatment for gene-related diseases due to the powerful ability
of siRNAs to silence genes and effectively and specifically inhibit gene expression [92]. However, as
nucleic acids, siRNAs are negatively charged hydrophilic compounds that cannot penetrate the cell
surface, and their application is limited by some factors, such as their low transfection rates and short
half-lives due to rapid enzymatic degradation [93]. To counter these problems, naked siRNA can be
embellished by the biomolecule cholesterol, loaded in liposomes, or linked with polymer nanoparticles
during nucleic acid treatment [94]. Furthermore, embellished siRNA can reach specific tissues because
of its physicochemical characteristic. The siRNA therapy was realized by a nanogel-based delivery
platform. Moreover, this approach is a clear direction for other functional oligonucleotide therapies.
The tetrahedral DNA-based (TET) nanogel was introduced as a nonviral vector for siRNA assembly and
provided protection during delivery. This strategy can prevent ribonuclease degradation and enable
cell transfection effectively in vitro and in vivo, suggesting a promising platform for incorporating
multiple devices for increased efficiency (Figure 8) [95].

Pharmaceutics 2020, 12, x FOR PEER REVIEW 14 of 25 

 

strategy can prevent ribonuclease degradation and enable cell transfection effectively in vitro and in 
vivo, suggesting a promising platform for incorporating multiple devices for increased efficiency 
(Figure 8) [95]. 

 
Figure 8. (A) The scheme for preparation of TET-nanogel and mechanism for the intracellular delivery 
of siRNA by crosslinking strategy; (B) Western blot analysis of EGFP expression by different vectors; 
(C) fluorescence microscopy images of gene silencing levels. Republished with permission of Royal 
Society of Chemistry, from [Chemical Communications. 2019, 55, 4222–4225. Edition Number 95, 
Copyright (2020)]; permission conveyed through Copyright Clearance Center, Inc. 

5. Application of Nanogels in Combinational Therapy 

Although different kinds of drugs were successfully encapsulated by nanogels in the 
abovementioned studies, the therapeutic outcomes were still undesirable, which can be largely 
ascribed to disadvantages including poor chemotherapeutic drug selectivity with the generation of 
side effects and development of drug resistance [96,97]. Moreover, the effect of cancer treatment with 
a single anticancer agent may be inconspicuous due to the complex nature of cancer occurrence and 
development [98]. Therefore, combination therapies, especially nanocarrier-based codelivery systems 
including micelles [99], liposomes [100], polymeric NPs [101], noble metal NPs [102] and inorganic 
NPs [103], have been thriving as promising strategies for the treatment of cancer. Nanogels are ideal 
candidates for drug codelivery due to their unique properties, such as their good biocompatibility, 
excellent stability, considerable loading capacity, as well as the controlled drug release ability with 
environmental stimulation [104]. 

5.1. Combinational Chemotherapy 

Combinational chemotherapy is a route for the coadministration of multiple chemotherapeutic 
agents with enhanced therapeutic effects, which mostly utilize appropriate nanocarriers to deliver 
proportional drugs to the disease site [105]. Combinational therapy exhibits some advantages over 
routine single-drug chemotherapy. First, it can alleviate the toxicity and adverse effects of 
chemotherapeutic agents because the drug for combinational therapy is used at a lower dose than in 
single administration. Second, due to the different mechanisms of chemotherapeutic agents, distinct 

Figure 8. (A) The scheme for preparation of TET-nanogel and mechanism for the intracellular delivery
of siRNA by crosslinking strategy; (B) Western blot analysis of EGFP expression by different vectors;
(C) fluorescence microscopy images of gene silencing levels. Republished with permission of Royal
Society of Chemistry, from [Chemical Communications. 2019, 55, 4222–4225. Edition Number 95,
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5. Application of Nanogels in Combinational Therapy

Although different kinds of drugs were successfully encapsulated by nanogels in the
abovementioned studies, the therapeutic outcomes were still undesirable, which can be largely
ascribed to disadvantages including poor chemotherapeutic drug selectivity with the generation of
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side effects and development of drug resistance [96,97]. Moreover, the effect of cancer treatment with a
single anticancer agent may be inconspicuous due to the complex nature of cancer occurrence and
development [98]. Therefore, combination therapies, especially nanocarrier-based codelivery systems
including micelles [99], liposomes [100], polymeric NPs [101], noble metal NPs [102] and inorganic
NPs [103], have been thriving as promising strategies for the treatment of cancer. Nanogels are ideal
candidates for drug codelivery due to their unique properties, such as their good biocompatibility,
excellent stability, considerable loading capacity, as well as the controlled drug release ability with
environmental stimulation [104].

5.1. Combinational Chemotherapy

Combinational chemotherapy is a route for the coadministration of multiple chemotherapeutic
agents with enhanced therapeutic effects, which mostly utilize appropriate nanocarriers to deliver
proportional drugs to the disease site [105]. Combinational therapy exhibits some advantages
over routine single-drug chemotherapy. First, it can alleviate the toxicity and adverse effects of
chemotherapeutic agents because the drug for combinational therapy is used at a lower dose than
in single administration. Second, due to the different mechanisms of chemotherapeutic agents,
distinct therapeutic targets would be activated simultaneously, reducing the development of drug
resistance [106]. Additionally, the coadministration of agents by nanocarriers could display the
on-demand drug release profiles to achieve therapeutic requirement. Despite the differences in
distribution and metabolism of individual drugs, synergistic effects would prospectively be introduced
by codelivery [97]. Nanogels provide a platform for drug codelivery, which is attributed to their 3D
network structure for incorporating with both hydrophilic and hydrophobic compounds. In a recent
study, both glycyrrhizin (GL) and DOX were encapsulated into alginate (ALG) nanogel particles via
the phase inversion temperature emulsification method; the obtained drug-loaded alginate nanogels
(DOX/GL-ALG NGPs) exhibited not only the hepatocellular carcinoma targeting property by GL,
but also the synergistic antitumor effects of GL and DOX (Figure 9) [107]. In addition, ALG nanogels also
presented favorable biocompatibility and low toxicity to hepatic tissues by controlled drug release [108].
These studies also implied that nanogels are an ideal nanoplatform for combination therapy.

5.2. Photo-Chemotherapy

Light has been used in the clinical setting since the beginning of the 20th century, and phototherapies
have been widely used to treat skin diseases (such as lupus) and cancers [109,110]. Currently,
phototherapies are divided into photodynamic therapy (PDT) and photothermal therapy (PTT).
PTT uses photon energy to heat tumors physically, but PDT utilizes photosensitizers (PSs) to generate
cytotoxic reactive oxygen species (ROS) and induce cancer cell death [111]. Phototherapies exhibit
several advantages over traditional radiotherapy and chemotherapy, including their noninvasive
nature, high selectivity, and a low number of side effects [112,113]. However, single phototherapy
cannot completely eradicate a tumor because the laser intensity inevitably decays with the depth of
the biological tissue, and the uneven distribution of the heat generated in the tissue damages normal
tissues [114,115]. Given the nature of chemotherapy, a combination of phototherapy and chemotherapy
based on nanogels as a DDS can effectively solve the above problems. Next, we will introduce the
applications of photothermal chemotherapy and photodynamic chemotherapy.
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Figure 9. (A) The schematic illustration of alginate nanogel co-delivered with glycyrrhizin and
doxorubicin (DOX/GL-ALG NGPs) for the improved anticancer therapy by inactivated macrophage and
targeted drug delivery; the antitumor effect: photograph of tumors (B), body weight variation curve
(C) and tumor growth curve (D) for each group after treatment. Reproduced from (Theranostics. 2019,
9, 6239–6255. Ivyspring International Publisher) distributed under the terms of Creative Commons
Attribution 4.0 International License (CC-BY license).

5.2.1. Photothermal Chemotherapy

Recently, PTT, in which NIR light is absorbed, converted to heat via a photothermal agent and
used to kill cancer cells, has emerged as a novel method to eliminate various types of cancer due to its
simplicity, minimal nature and low systemic toxicity [116]. Most importantly, many studies have shown
that the combination of PTT and chemotherapy can improve the efficiency of cancer therapy [117,118].
Hyperthermic conditions induced the efficient cell uptake of NPs with drug loading, stimulated drug
release, and enhanced therapeutic outcomes. Moreover, chemo-photothermal combination therapy can
augment cell membrane permeability [119,120]. Accordingly, many nanosystems for combined PTT
and chemotherapy, including inorganic NPs [121], micelles [122], and polymeric NPs [123], have been
developed. Nevertheless, a few critical issues lowered the therapeutic outcomes, such as uncontrolled
release and low-dose drug accumulation in tumor tissue. The application of nanogels as an alternative
option can moderately address the above issues [124]. In the recent study, the NIPAM monomer was
crosslinked by reducible linker of BAC and in situ polymerized with graphene oxide (GO) to form the
biodegradable hybridized nanogels (PG) with considerable biocompatibitlity. The redox-sensitivity of
nanogels combined with the GO-induced thermal conversion assessed rapid drug release in tumor
environment. This smart nanoplatform with local photothermal effect and controlled drug release
exhibited the potential for chemo-photothermal synergistic therapy (Figure 10) [125].
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5.2.2. Photodynamic Chemotherapy

PDT has attracted widespread attention as a potential antitumor strategy by locally inducing
cancer cell death [126]. PDT primarily involves the use of light at appropriate wavelengths to activate
PSs, after which energy is transferred from activated PSs to molecular oxygen, producing highly toxic
reactive oxygen species (ROS), especially the singlet oxygen (1O2), inducing tumor cell apoptosis
and death [127,128]. Most of PDT processes are oxygen-dependent, and oxygen is continuously
consumed during PDT, which severely limits the clinical application of PDT, especially in hypoxic
solid tumors [129,130]. In addition, the limited penetration of tumor tissue by the laser reduces the
efficacy of PDT [131]. Therefore, the combination of PDT and chemotherapy offers a potent approach
to achieve synergistic anticancer effects [132,133]. Nanogels have been employed as a multifunctional
delivery platform for chemo-photodynamic combinational therapy. For instance, a redox-sensitive
nanogel was constructed for the delivery of the NHS-BODIPY-Br molecule, a heavy atom-modified
reactive photosensitizer, and anticancer drug DOX. By the accumulation and controlled drug release in
the tumor region, DOX loaded in the nanogel system induced the production of H2O2. Meanwhile,
following laser irradiation, NHS-BODIPY-Br effectively converted H2O2 to 1O2, which resulted in the
remarkably reduced cancer cell survival. The therapeutic effect implied that the nanogel system is a
potential platform for combination chemotherapy with PDT [134].

5.3. Combinatorial Chemo-Immunotherapy

Polysaccharide-based self-assembly nanogels have been applied in tumor-associated antigen
delivery in recent decades [135]. Daisuke M. et al. reported that the cholesteryl pullulan (CHP)
nanogel could deliver a long peptide antigen (LPA) to the draining lymph node. By provoking
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a CD8+ T cell response through medullary macrophages, the CHP-based vaccine was proved the
promising immunotherapeutic effect in animal models [136]. Unlike the directed induction of apoptosis
or autophagy by the cytotoxic drugs, vaccine adjuvants or immunomodulators typically trigger
antitumor immunity by regulating the tumor microenvironment [137–139]. However, the limitations
of tumor immunotherapy include the high cost of therapy, the difficulty of sustained systematic
immunity, and low patient response. The application of nanomedicine combined with immunotherapy
is considered to be a promising, safe, and efficacious tumor treatment strategy [140]. In this study,
the modified cyclodextrin was combined with chitosan derivates to form the pH-sensitive nanogels for
paclitaxel (PTX) loading. Then, the PTX-load NG was further coated by an erythrocyte membrane with
interleukin-2 (IL-2) binding to construct the NRP+I nanoplatform for combinatorial immunotherapy.
With the prolonged circulation and responsive drug release properties, the antitumor performance of
NRP+I in the melanoma model was superior to that of free drugs or monotreatment. With co-delivery
of PTX and IL-2 to the tumor region, the low-dosage of PTX release triggered the calreticulin (CRT)
exposure on tumor cells and further induced the infiltration of CD8+ T cell into tumor tissue.
Furthermore, IL-2 cytokine stripped from the membrane of NRP+I led to the activation of intratumoral
cytotoxic T cells (CTLs) in the tumor microenvironment, which resulted in the synergistic effect of
chemo-immunotherapy (Figure 11) [141].Pharmaceutics 2020, 12, x FOR PEER REVIEW 18 of 25 
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Copyright (2017) American Chemical Society.
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6. Conclusions

Recently, nanogel-based nanoplatforms have become a tremendously promising system of drug
delivery. In this work, the preparation, characterization, properties and biomedical applications
of nanogels are reviewed in detail. Nanogels constructed by chemical crosslinking or physical
self-assembly exhibit the ability to encapsulate hydrophilic or hydrophobic therapeutics, including
but not limited to small-molecule compounds, proteins, DNA/RNA sequences, and even ultrasmall
nanoparticles. The nanosized nature of the carriers endows them with a specific surface area
and inner space, increasing the stability of loaded drugs and prolonging their circulation time in
biological systems. Reactions or the cleavage of chemical bonds in the structure of nanogels have
been shown to trigger the controlled or sustained drug release. Through the design of specific
chemical structures and different methods of production, nanogels can realize diverse responsiveness
(temperature-sensitive, pH-sensitive and redox-sensitive) and enable the stimuli-responsive release of
drugs in the microenvironments of various diseases. To improve therapeutic outcomes and increase
the precision of therapy, nanogels can be modified by specific ligands to achieve active targeting.
The targeting ligand modification of nanogels, such as FA, cRGD, and STn antigen, can further enhance
drug accumulation in disease sites. Moreover, biomembrane-camouflaged nanogels exhibit additional
intelligent targeted delivery features. Consequently, the targeted delivery of therapeutic agents,
as well as the combinational therapy strategy, result in the improved efficacy for disease treatments,
by the introduction of a multifunctional nanogel-based DDS.

However, residual surfactants or unreacted monomers remaining in the nanogel formulation
after synthesis are harmful substances with adverse effects in biomedicine. Physically linked nanogels
might be more appropriate for drug formulation; however, the noncovalent bonds of physically linked
nanogels are unstable, which might lead to premature leakage during circulation. Meanwhile, as a drug
carrier, the drug-loading capacity and controlled drug release behavior of nanogels need to be further
improved, especially for the release of certain drugs at large doses with continuous administration.
In addition, the biosafety and in vivo degradation of nanogels still need exhaustive investigation
because the components of nanogels are artificial polymeric materials
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