Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques
Abstract
:1. Introduction
2. Drug Detection and Quantification
2.1. Optical Spectroscopy
2.1.1. Molecular Absorption
2.1.2. Molecular Emission
2.1.3. Enzyme-Linked Immunosorbent Assay
2.2. High Performance Liquid Chromatography
2.3. Mass Spectroscopy
2.4. Quantitative Polymerase Chain Reaction
3. Release Assays and Interpretation of Release Kinetics
3.1. Drug Release Methods
3.1.1. Agitation
3.1.2. Temperature
3.1.3. Release Media Volume
3.1.4. pH
3.1.5. Composition of the Release Media
3.2. Release Kinetics and Mathematical Modeling
3.3. Statistical Analysis
4. Drug Diffusion Evaluation Methods
4.1. Computational Predictions
4.2. Franz Cell Diffusion Assay
4.3. Nuclear Magnetic Resonance Spectroscopy
4.4. Fluorescence Microscopy Techniques
4.4.1. Fluorescence Recovery after Photobleaching
4.4.2. Fluorescence Correlation Spectroscopy
4.5. Microfluidics
5. In Vitro and In Vivo Evaluation of Hydrogel Drug Delivery Systems
5.1. In Vitro
5.1.1. 2D In Vitro Models
5.1.2. 3D In Vitro Models
5.2. In Vivo
6. Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Calori, I.R.; Braga, G.; Carvalho, C.; Bi, H.; Tedesco, A.C. Polymer scaffolds as drug delivery systems. Eur. Polym. J. 2020, 129, 109621. [Google Scholar] [CrossRef]
- Nairon, K.G.; DePalma, T.; Sivakumar, H.; Skardal, A. Chapter 3. Tunable Hydrogel Systems for Delivery and Release of Cell-Secreted and Synthetic Therapeutic Products. In Controlled Drug Delivery Systems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 29–53. [Google Scholar] [CrossRef]
- Naahidi, S.; Jafari, M.; Logan, M.; Wang, Y.; Yuan, Y.; Bae, H.; Dixon, B.; Chen, P. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 2017, 35, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Loessner, D.; Meinert, C.; Kaemmerer, E.; Martine, L.C.; Yue, K.; Levett, P.A.; Klein, T.J.; Melchels, F.P.W.; Khademhosseini, A.; Hutmacher, D.W. Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nat. Protoc. 2016, 11, 727–746. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tao, G.; Wang, Y.; Cai, R.; Chang, H.; Song, K.; Zuo, H.; Zhao, P.; Xia, Q.; He, H. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application. Mater. Sci. Eng. C 2019, 101, 341–351. [Google Scholar] [CrossRef]
- García-Fernández, L.; Olmeda-Lozano, M.; Benito-Garzón, L.; Pérez-Caballer, A.; Román, J.S.; Vázquez-Lasa, B. Injectable hydrogel-based drug delivery system for cartilage regeneration. Mater. Sci. Eng. C 2020, 110, 110702. [Google Scholar] [CrossRef]
- Ma, X.; Xu, T.; Chen, W.; Qin, H.; Chi, B.; Ye, Z. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery. Carbohydr. Polym. 2018, 179, 100–109. [Google Scholar] [CrossRef]
- Aguilar, L.M.C.; Silva, S.M.; Moulton, S.E. Growth factor delivery: Defining the next generation platforms for tissue engineering. J. Control. Release 2019, 306, 40–58. [Google Scholar] [CrossRef]
- Wang, P.; Huang, S.; Hu, Z.; Yang, W.; Lan, Y.; Zhu, J.; Hancharou, A.; Guo, R.; Tang, B. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater. 2019, 100, 191–201. [Google Scholar] [CrossRef]
- Chalanqui, M.J.; Pentlavalli, S.; McCrudden, C.; Chambers, P.; Ziminska, M.; Dunne, N.; McCarthy, H.O. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. Mater. Sci. Eng. C 2019, 95, 409–421. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Zhang, L.; Xu, M. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr. Polym. 2020, 234, 115920. [Google Scholar] [CrossRef] [PubMed]
- Rezk, A.I.; Obiweluozor, F.O.; Choukrani, G.; Park, C.H.; Kim, C.S. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer chemotherapy. Int. J. Biol. Macromol. 2019, 141, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Ehrbar, M.; Djonov, V.G.; Schnell, C.; Tschanz, S.A.; Martiny-Baron, G.; Schenk, U.; Wood, J.; Burri, P.H.; Hubbell, J.A.; Zisch, A.H. Cell-Demanded Liberation of VEGF121 from Fibrin Implants Induces Local and Controlled Blood Vessel Growth. Circ. Res. 2004, 94, 1124–1132. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Takei, T.; Yoshihara, R.; Danjo, S.; Fukuhara, Y.; Evans, C.; Tomimatsu, R.; Ohzuno, Y.; Yoshida, M. Hydrophobically-modified gelatin hydrogel as a carrier for charged hydrophilic drugs and hydrophobic drugs. Int. J. Biol. Macromol. 2020, 149, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.P.; Trinca, R.B.; Felisberti, M.I. Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs. Int. J. Pharm. 2018, 546, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Pizano, M.D.; Vélaz, I.; Peñas, F.J.; Zavala-Rivera, P.; Rosas-Durazo, A.J.; Maldonado-Arce, A.D.; Martínez-Barbosa, M.E. Effect of freeze-thawing conditions for preparation of chitosan-poly (vinyl alcohol) hydrogels and drug release studies. Carbohydr. Polym. 2018, 195, 476–485. [Google Scholar] [CrossRef]
- Laverty, G.; Gorman, S.P.; Gilmore, B.F. Antimicrobial peptide incorporated poly (2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J. Biomed. Mater. Res. Part A 2012, 100A, 1803–1814. [Google Scholar] [CrossRef][Green Version]
- Qiao, Y.; Xu, S.; Zhu, T.; Tang, N.; Bai, X.; Zheng, C. Preparation of printable double-network hydrogels with rapid self-healing and high elasticity based on hyaluronic acid for controlled drug release. Polymer 2020, 186, 121994. [Google Scholar] [CrossRef]
- Onaciu, A.; Munteanu, R.A.; Moldovan, A.I.; Moldovan, C.S.; Berindan-Neagoe, I. Hydrogels Based Drug Delivery Synthesis, Characterization and Administration. Pharmaceutics 2019, 11, 432. [Google Scholar] [CrossRef][Green Version]
- Tan, L.; Xu, X.; Song, J.; Luo, F.; Qian, Z. Synthesis, Characterization, and Acute Oral Toxicity Evaluation of pH-Sensitive Hydrogel Based on MPEG, Poly(ε-caprolactone), and Itaconic Acid. BioMed Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef][Green Version]
- Bastiancich, C.; Bianco, J.; Vanvarenberg, K.; Ucakar, B.; Joudiou, N.; Gallez, B.; Bastiat, G.; Lagarce, F.; Préat, V.; Danhier, F. Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection. J. Control. Release 2017, 264, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Basso, J.; Miranda, A.; Nunes, S.; Cova, T.; Sousa, J.; Vitorino, C.; Pais, A. Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels 2018, 4, 62. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sharma, R.; Pathak, K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm. Dev. Technol. 2011, 16, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Gondil, V.S.; Chhibber, S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int. J. Pharm. 2019, 572, 118779. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Minhas, M.U.; Ahmad, M.; Sohail, M.; Khalid, Q.; Abdullah, O. Synthesis and evaluation of topical hydrogel membranes; a novel approach to treat skin disorders. J. Mater. Sci. Mater. Med. 2018, 29, 191. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, A.F.; Serro, A.; Colaço, R.; Chauhan, A. Optimization of intraocular lens hydrogels for dual drug release: Experimentation and modelling. Eur. J. Pharm. Biopharm. 2019, 141, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Raghuwanshi, V.S.; Garnier, G. Characterisation of hydrogels: Linking the nano to the microscale. Adv. Colloid Interface Sci. 2019, 274, 102044. [Google Scholar] [CrossRef] [PubMed]
- Dragan, E.S.; Dinu, M.V. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. React. Funct. Polym. 2020, 146, 104372. [Google Scholar] [CrossRef]
- Xiang, J.; Shen, L.; Hong, Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur. Polym. J. 2020, 130, 109609. [Google Scholar] [CrossRef]
- Esposito, C.L.; Kirilov, P.; Roullin, V.G. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J. Control. Release 2018, 271, 1–20. [Google Scholar] [CrossRef]
- Chutipongtanate, S.; Watcharatanyatip, K.; Homvises, T.; Jaturongkakul, K.; Thongboonkerd, V. Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: Detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta 2012, 98, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Kastellorizios, M.; Burgess, D.J. In Vitro Drug Release Testing and In Vivo/In Vitro Correlation for Long Acting Implants and Injections. In Long Acting Injections and Implants; Springer Science and Business Media LLC: New York, NY, USA, 2011; pp. 475–503. [Google Scholar]
- Yuzawa, J.; Suzuki, T.; Ishikawa, M.; Takeda, M.; Hanafusa, S.; Imai, K. The efficacy of high performance liquid chromatography (HPLC) for the diagnosis of intoxication patients in the emergency room and ICU. Crit. Care 2003, 7, P242. [Google Scholar] [CrossRef]
- Han, Y.; Shchukin, D.; Fernandes, P.; Mutihac, R.-C.; Möhwald, H. Mechanism and kinetics of controlled drug release by temperature stimuli responsive protein nanocontainers. Soft Matter 2010, 6, 4942–4947. [Google Scholar] [CrossRef]
- Ilgin, P.; Ozay, H.; Ozay, O. A new dual stimuli responsive hydrogel: Modeling approaches for the prediction of drug loading and release profile. Eur. Polym. J. 2019, 113, 244–253. [Google Scholar] [CrossRef]
- Pan, G.; Bao, Y.-J.; Xu, J.; Liu, T.; Qiu, Y.-Y.; Shi, X.-J.; Yu, H.; Jia, T.-T.; Yuan, X.; Yin, P.-H.; et al. Esterase-responsive polymeric prodrug-based tumor targeting nanoparticles for improved anti-tumor performance against colon cancer. RSC Adv. 2016, 6, 42109–42119. [Google Scholar] [CrossRef]
- Mantle, M.D. NMR and MRI studies of drug delivery systems. Curr. Opin. Colloid Interface Sci. 2013, 18, 214–227. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Zhang, Y.; Dong, D.; Zhang, E.; Ji, F.; Qin, Z.; Yang, J.; Yao, F. Establishment of a Physical Model for Solute Diffusion in Hydrogel: Understanding the Diffusion of Proteins in Poly(sulfobetaine methacrylate) Hydrogel. J. Phys. Chem. B 2017, 121, 800–814. [Google Scholar] [CrossRef]
- Bertz, A.; Ehlers, J.-E.; Wöhl-Bruhn, S.; Bunjes, H.; Gericke, K.-H.; Menzel, H. Mobility of Green Fluorescent Protein in Hydrogel-Based Drug-Delivery Systems Studied by Anisotropy and Fluorescence Recovery after Photobleaching. Macromol. Biosci. 2013, 13, 215–226. [Google Scholar] [CrossRef]
- Krishnan, L.; Schudel, A.; Rouse, T.; Garcia, A.J.; Thomas, S.N.; Guldberg, R.E.; McDevitt, T.C. A rapid method for determining protein diffusion through hydrogels for regenerative medicine applications. APL Bioeng. 2018, 2, 026110. [Google Scholar] [CrossRef][Green Version]
- Bray, L.J.; Binner, M.; Holzheu, A.; Friedrichs, J.; Freudenberg, U.; Hutmacher, D.W.; Werner, C. Multi-parametric hydrogels support 3D invitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 2015, 53, 609–620. [Google Scholar] [CrossRef][Green Version]
- Jang, H.; Zhi, K.; Wang, J.; Zhao, H.; Li, B.; Yang, X. Enhanced therapeutic effect of paclitaxel with a natural polysaccharide carrier for local injection in breast cancer. Int. J. Biol. Macromol. 2020, 148, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Solomevich, S.O.; Bychkovsky, P.M.; Yurkshtovich, T.L.; Golub, N.V.; Mirchuk, P.Y.; Revtovich, M.Y.; Shmak, A.I. Biodegradable pH-sensitive prospidine-loaded dextran phosphate based hydrogels for local tumor therapy. Carbohydr. Polym. 2019, 226, 115308. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bozzato, E.; Joudiou, N.; Ghiassinejad, S.; Danhier, F.; Gallez, B.; Préat, V. Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. J. Control. Release 2019, 309, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Schesny, M.K.; Monaghan, M.; Bindermann, A.H.; Freund, D.; Seifert, M.; Eble, J.A.; Vogel, S.; Gawaz, M.P.; Hinderer, S.; Schenke-Layland, K. Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels. Biomaterials 2014, 35, 7180–7187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Danhier, F.; Bastiancich, C.; Joudiou, N.; Ganipineni, L.P.; Tsakiris, N.; Gallez, B.; Rieux, A.D.; Jankovski, A.; Bianco, J.; et al. Post-resection treatment of glioblastoma with an injectable nanomedicine-loaded photopolymerizable hydrogel induces long-term survival. Int. J. Pharm. 2018, 548, 522–529. [Google Scholar] [CrossRef]
- Tang, C.; Miller, A.F.; Saiani, A. Peptide hydrogels as mucoadhesives for local drug delivery. Int. J. Pharm. 2014, 465, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.M.T.; Castro, T.G.; Costa, F.M.G.; Melle-Franco, M.; Hilliou, L.; Hamley, I.W.; Coutinho, P.J.G.; Martins, J.A.; Ferreira, P.M.T. Self-assembled RGD dehydropeptide hydrogels for drug delivery applications. J. Mater. Chem. B 2017, 5, 8607–8617. [Google Scholar] [CrossRef][Green Version]
- Tao, M.; Liu, J.; He, S.; Xu, K.; Zhong, W. In situ hydrogelation of forky peptides in prostate tissue for drug delivery. Soft Matter 2019, 15, 4200–4207. [Google Scholar] [CrossRef]
- Fuwa, K.; Valle, B.L. The Physical Basis of Analytical Atomic Absorption Spectrometry. The Pertinence of the Beer-Lambert Law. Anal. Chem. 1963, 35, 942–946. [Google Scholar] [CrossRef]
- Ingle, J.D.J.; Crouch, S.R. Spectrochemical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1988. [Google Scholar]
- Bower, P.; JoVE Science Education. Analytical Chemistry. Available online: https://www.jove.com/science-education/10204/ultraviolet-visible-uv-vis-spectroscopy (accessed on 17 May 2020).
- Marczenko, Z. Analytical absorption spectrophotometry in the visible and ultraviolet. The principles. Anal. Chim. Acta 1991, 242, 301. [Google Scholar] [CrossRef]
- Lobinski, R.; Marczenko, Z. Recent Advances in Ultraviolet-Visible Spectrophotometry. Crit. Rev. Anal. Chem. 1992, 23, 55–111. [Google Scholar] [CrossRef]
- Gorog, S. Ultraviolet-Visible Spectrophotometry in Pharmaceutical Analysis; CPC Press: Boca Raton, FL, USA, 2018; ISBN 1351094327. [Google Scholar]
- Basu, S.; Pacelli, S.; Paul, A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater. 2020, 105, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tao, Y.; Xu, W.; Xiao, S.; Du, S.; Zhou, Y.; Hasan, A. Rheological and controlled release properties of hydrogels based on mushroom hyperbranched polysaccharide and xanthan gum. Int. J. Biol. Macromol. 2018, 120, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
- Leung, B.; Dharmaratne, P.; Yan, W.; Chan, B.C.; Lau, C.B.; Fung, K.-P.; Ip, M.; Leung, S.S. Development of thermosensitive hydrogel containing methylene blue for topical antimicrobial photodynamic therapy. J. Photochem. Photobiol. B Biol. 2020, 203, 111776. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Teo, Y.Y.; Ramesh, S.; Ramesh, K.; Mushtaq, M.W. Rheological behavior of biodegradable N-succinyl chitosan-g-poly (acrylic acid) hydrogels and their applications as drug carrier and in vitro theophylline release. Int. J. Biol. Macromol. 2018, 117, 454–466. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Z. A pH-sensitive microemulsion-filled gellan gum hydrogel encapsulated apigenin: Characterization and in vitro release kinetics. Colloids Surf. B Biointerfaces 2019, 178, 245–252. [Google Scholar] [CrossRef]
- Pimenta, A.F.; Serro, A.; Colaço, R.; Chauhan, A. Drug delivery to the eye anterior chamber by intraocular lenses: An in vivo concentration estimation model. Eur. J. Pharm. Biopharm. 2018, 133, 63–69. [Google Scholar] [CrossRef]
- Tamahkar, E.; Özkahraman, B.; Süloğlu, A.K.; Idil, N.; Perçin, I. A novel multilayer hydrogel wound dressing for antibiotic release. J. Drug Deliv. Sci. Technol. 2020, 58, 101536. [Google Scholar] [CrossRef]
- Mikac, U.; Sepe, A.; Gradišek, A.; Kristl, J.; Apih, T. Dynamics of water and xanthan chains in hydrogels studied by NMR relaxometry and their influence on drug release. Int. J. Pharm. 2019, 563, 373–383. [Google Scholar] [CrossRef]
- Sheikh, F.A.; Hussain, M.A.; Ashraf, M.U.; Haseeb, M.T.; Farid-Ul-Haq, M. Linseed hydrogel based floating drug delivery system for fluoroquinolone antibiotics: Design, in vitro drug release and in vivo real-time floating detection. Saudi Pharm. J. 2020, 28, 538–549. [Google Scholar] [CrossRef]
- Klučáková, M.; Jarábková, S.; Velcer, T.; Kalina, M.; Pekař, M. Transport of a model diffusion probe in polyelectrolyte-surfactant hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2019, 573, 73–79. [Google Scholar] [CrossRef]
- Ata, S.; Rasool, A.; Islam, A.; Bibi, I.; Rizwan, M.; Azeem, M.K.; Qureshi, A.U.R.; Iqbal, M. Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int. J. Biol. Macromol. 2020, 155, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Potiwiput, S.; Fan, M.; Yuan, G.; Li, S.; Zhou, T.; Li, J.; Jia, Y.; Xiong, D.; Hu, X.; Ling, Z.; et al. Dual-crosslinked alginate/carboxymethyl chitosan hydrogel containing in situ synthesized calcium phosphate particles for drug delivery application. Mater. Chem. Phys. 2020, 241, 122354. [Google Scholar] [CrossRef]
- Kalkhoran, A.H.Z.; Vahidi, O.; Naghib, S.M. A new mathematical approach to predict the actual drug release from hydrogels. Eur. J. Pharm. Sci. 2018, 111, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, F.; Casalegno, M.; Ferro, M.; Rossi, F.; Raos, G.; Mele, A. Evidence of superdiffusive nanoscale motion in anionic polymeric hydrogels: Analysis of PGSE- NMR data and comparison with drug release properties. J. Control. Release 2019, 305, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Colombo, I.; Grassi, M.; Lapasin, R.; Pricl, S. Determination of the drug diffusion coefficient in swollen hydrogel polymeric matrices by means of the inverse sectioning method. J. Control. Release 1997, 47, 305–314. [Google Scholar] [CrossRef]
- Dehghan-Baniani, D.; Chen, Y.; Wang, D.; Bagheri, R.; Solouk, A.; Wu, H. Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids Surf. B Biointerfaces 2020, 192, 111059. [Google Scholar] [CrossRef]
- Savory, J.; Pu, P.H.; Sunderman, F.W. A Biuret Method for Determination of Protein in Normal Urine. Clin. Chem. 1968, 14, 1160–1171. [Google Scholar] [CrossRef]
- Keppy, N.K.; Allen, M.W. The Biuret Method for the Determination of Total Protein Using an Evolution Array 8-Position Cell Changer; Thermo Fisher Scientific: Waltham, MA, USA, 2009. [Google Scholar]
- Martina, V.; Vojtech, K. A Comparison of Biuret, Lowry and Bradford Methods for Measuring the Egg’s Protein. Available online: https://mnet.mendelu.cz/mendelnet2015/articles/62_vrsanska_1167.pdf (accessed on 15 November 2020).
- Aakanchha, J.; Richa, J.; Sourabh, J. Quantitative Analysis of Proteins by Various Methods Including Biuret; Springer Science and Business Media LLC: Berlin, Germany, 2020; pp. 185–189. [Google Scholar]
- Jahanban-Esfahlan, A.; Roufegarinejad, L.; Jahanban-Esfahlan, R.; Tabibiazar, M.; Amarowicz, R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta 2020, 207, 120317. [Google Scholar] [CrossRef]
- Wiechelman, K.J.; Braun, R.D.; Fitzpatrick, J.D. Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation. Anal. Biochem. 1988, 175, 231–237. [Google Scholar] [CrossRef]
- Walker, J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation; Springer Science and Business Media LLC: Berlin, Germany, 2009; pp. 11–15. [Google Scholar]
- Voznesenskiy, S.S.; Gamayunov, E.L.; Popik, A.Y.; Markina, Z.V.; Orlova, T.Y. Temperature dependence of the parameters of laser-induced fluorescence and species composition of phytoplankton: The theory and the experiments. Algal Res. 2019, 44, 101719. [Google Scholar] [CrossRef]
- Wang, Q.; Zou, C.; Wang, L.; Gao, X.; Wu, J.; Tan, S.; Wu, G. Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer. Acta Biomater. 2019, 94, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, L.; Mahalingaiah, P.K.S.; Singh, K.P. Treatment schedule and estrogen receptor-status influence acquisition of doxorubicin resistance in breast cancer cells. Eur. J. Pharm. Sci. 2017, 104, 424–433. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.; Auda, G.; Agrawal, S.; Taylor, A.; Backstrom, Z.; Mondal, D.; Moroz, K.; Dash, S. In vivo anticancer synergy mechanism of doxorubicin and verapamil combination treatment is impaired in BALB/c mice with metastatic breast cancer. Exp. Mol. Pathol. 2014, 97, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Chandra, A.; Kaur, A.; Sabnis, N.; Lacko, A.; Gryczynski, Z.; Fudala, R.; Gryczynski, I. Fluorescence properties of doxorubicin in PBS buffer and PVA films. J. Photochem. Photobiol. B Biol. 2017, 170, 65–69. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cheewatanakornkool, K.; Niratisai, S.; Manchun, S.; Dass, C.R.; Sriamornsak, P. Characterization and in vitro release studies of oral microbeads containing thiolated pectin-doxorubicin conjugates for colorectal cancer treatment. Asian J. Pharm. Sci. 2017, 12, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Lan, Y.; Cao, M.; Ma, X.; Cao, A.; Sun, Y.; Yang, J.; Li, L.; Liu, Y. Glycyrrhetinic acid-conjugated polymeric prodrug micelles co-delivered with doxorubicin as combination therapy treatment for liver cancer. Colloids Surf. B Biointerfaces 2019, 175, 106–115. [Google Scholar] [CrossRef]
- Cabeza, L.; Ortiz, R.; Prados, J.; Delgado, A.; Martín-Villena, M.J.; Clares, B.; Perazzoli, G.; Entrena, J.M.; Melguizo, C.; Arias, J.L. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study. Eur. J. Pharm. Sci. 2017, 102, 24–34. [Google Scholar] [CrossRef]
- Dong, X.; Yang, A.; Bai, Y.; Kong, D.; Lv, F. Dual fluorescence imaging-guided programmed delivery of doxorubicin and CpG nanoparticles to modulate tumor microenvironment for effective chemo-immunotherapy. Biomaterials 2020, 230, 119659. [Google Scholar] [CrossRef]
- Karvinen, J.; Ihalainen, T.O.; Calejo, M.T.; Jönkkäri, I.; Kellomäki, M. Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies. Mater. Sci. Eng. C 2019, 94, 1056–1066. [Google Scholar] [CrossRef]
- Sun, S.; Xiao, Q.R.; Wei, J.; Wei, Y.Y.; Wang, Y.; Gao, P.C.; Jiang, Y. Bioinspired DNA self-assembly for targeted cancer cell imaging and drug delivery. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 585, 124182. [Google Scholar] [CrossRef]
- Kumari, S.; Prasad, S.R.; Mandal, D.; Das, P. Carbon dot-DNA-protoporphyrin hybrid hydrogel for sustained photoinduced antimicrobial activity. J. Colloid Interface Sci. 2019, 553, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Kimna, C.; Lieleg, O. Engineering an orchestrated release avalanche from hydrogels using DNA-nanotechnology. J. Control. Release 2019, 304, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Carthew, J.; Donderwinkel, I.; Shrestha, S.; Truong, V.X.; Forsythe, J.S.; Frith, J.E. In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Acta Biomater. 2020, 101, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Vigata, M.; Meinert, C.; Pahoff, S.; Bock, N.; Hutmacher, D.W. Gelatin Methacryloyl Hydrogels Control the Localized Delivery of Albumin-Bound Paclitaxel. Polymers 2020, 12, 501. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, S.; Garcia-D’Angeli, A.; Brennan, J.P.; Huo, Q. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst 2013, 139, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Rehmann, M.S.; Skeens, K.M.; Kharkar, P.M.; Ford, E.M.; Maverakis, E.; Lee, K.H.; Kloxin, A.M. Tuning and Predicting Mesh Size and Protein Release from Step Growth Hydrogels. Biomacromolecules 2017, 18, 3131–3142. [Google Scholar] [CrossRef]
- Eicher, A.-C.; Dobler, D.; Kiselmann, C.; Schmidts, T.; Runkel, F. Dermal delivery of therapeutic DNAzymes via chitosan hydrogels. Int. J. Pharm. 2019, 563, 208–216. [Google Scholar] [CrossRef]
- Bock, N.; Dargaville, T.R.; Kirby, G.T.S.; Hutmacher, D.W.; Woodruff, M.A. Growth Factor-Loaded Microparticles for Tissue Engineering: The Discrepancies of In Vitro Characterization Assays. Tissue Eng. Part C: Methods 2016, 22, 142–154. [Google Scholar] [CrossRef][Green Version]
- Missirlis, D.; Kawamura, R.; Tirelli, N.; Hubbell, J.A. Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. Eur. J. Pharm. Sci. 2006, 29, 120–129. [Google Scholar] [CrossRef]
- Runja, C.; Ravikumar, P.; Avanapu, S.R. A Validated Stability Indicating RP-HPLC Method Development and Validation for Simultaneous Estimation of Aliskiren Hemifumarate and Amlodipine Besylate in Pharmaceutical Dosage Form. Chromatogr. Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Gallastegui, A.; Spesia, M.B.; Dell’Erba, I.E.; Chesta, C.A.; Previtali, C.M.; Palacios, R.E.; Gómez, M.L. Controlled release of antibiotics from photopolymerized hydrogels: Kinetics and microbiological studies. Mater. Sci. Eng. C 2019, 102, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Nazlı, A.B.; Açıkel, Y.S. Loading of cancer drug resveratrol to pH-Sensitive, smart, alginate-chitosan hydrogels and investigation of controlled release kinetics. J. Drug Deliv. Sci. Technol. 2019, 53, 101199. [Google Scholar] [CrossRef]
- Peng, K.; Tomatsu, I.; Korobko, A.V.; Kros, A. Cyclodextrin–dextran based in situ hydrogel formation: A carrier for hydrophobic drugs. Soft Matter 2009, 6, 85–87. [Google Scholar] [CrossRef]
- Martin, L. Sustained buccal delivery of the hydrophobic drug denbufylline using physically cross-linked palmitoyl glycol chitosan hydrogels. Eur. J. Pharm. Biopharm. 2003, 55, 35–45. [Google Scholar] [CrossRef]
- Koeber, R.; Klünemann, H.H.; Waimer, R.; Koestlbacher, A.; Wittmann, M.; Brandl, R.; Doerfelt, A.; Jahner, T.; Melchner, D.; Haen, D.E. Implementation of a cost-effective HPLC/UV-approach for medical routine quantification of donepezil in human serum. J. Chromatogr. B 2012, 881, 1–11. [Google Scholar] [CrossRef]
- Perreault, H.; Lattová, E. Mass Spectrometry. In Comprehensive Biotechnology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 1, pp. 669–677. ISBN 9780080885049. [Google Scholar]
- Siegel, J.; Saukko, P. Encyclopedia of Forensic Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Yamada, Y.; Ninomiya, S.; Hiraoka, K.; Chen, L.C. Development of Remote Sampling ESI Mass Spectrometry for the Rapid and Automatic Analysis of Multiple Samples. Mass Spectrom. 2017, 5, 0068. [Google Scholar] [CrossRef][Green Version]
- Kaufmann, R. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: A novel analytical tool in molecular biology and biotechnology. J. Biotechnol. 1995, 41, 155–175. [Google Scholar] [CrossRef]
- Zenobi, R.; Knochenmuss, R. Ion formation in maldi mass spectrometry. Mass Spectrom. Rev. 1998, 17, 337–366. [Google Scholar] [CrossRef]
- Khamis, M.M.; Adamko, D.J.; El-Aneed, A. Strategies and Challenges In Method Development and Validation for the Absolute Quantification of Endogenous Biomarker Metabolites Using Liquid Chromatography-Tandem Mass Spectrometry. Mass Spectrom. Rev. 2019. [CrossRef]
- Bartlett, J.M.S.; Stirling, D.; Bartlett, J.M.S.; Stirling, D. A Short History of the Polymerase Chain Reaction. In PCR Protocols; Humana Press: Totowa, NJ, USA, 2003; pp. 3–6. [Google Scholar]
- Khamanga, S.M.M.; Walker, R.B. The Effects of Buffer Molarity, Agitation Rate, and Mesh Size on Verapamil Release from Modified-Release Mini-Tablets Using USP Apparatus 3. Dissolution Technol. 2007, 14, 19–23. [Google Scholar] [CrossRef]
- Caccavo, D. An overview on the mathematical modeling of hydrogels’ behavior for drug delivery systems. Int. J. Pharm. 2019, 560, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Seeger, N.; Lange, S.; Klein, S. Impact of Vibration and Agitation Speed on Dissolution of USP Prednisone Tablets RS and Various IR Tablet Formulations. AAPS PharmSciTech 2015, 16, 759–766. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shah, V.P.; Gurbarg, M.; Noory, A.; Dighe, S.; Skelly, J.P. Influence of Higher Rates of Agitation on Release Patterns of Immediate-Release Drug Products. J. Pharm. Sci. 1992, 81, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Walters, P.A.; Rowley, G. Effect of drug concentration and agitation rate on drug release from thixotropic gels for hard gelatin capsules. J. Pharm. Pharmacol. 1998, 50, 58. [Google Scholar] [CrossRef]
- Zhang, R.; Tao, Y.; Xu, Q.; Liu, N.; Chen, P.; Zhou, Y.; Bai, Z. Rheological and ion-conductive properties of injectable and self-healing hydrogels based on xanthan gum and silk fibroin. Int. J. Biol. Macromol. 2020, 144, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Onuki, Y.; Yakou, S.; Takayama, K. Effect of temperature-increase rate on drug release characteristics of dextran microspheres prepared by emulsion solvent evaporation process. Int. J. Pharm. 2006, 324, 144–151. [Google Scholar] [CrossRef]
- Aydin, N.E. Effect of Temperature on Drug Release: Production of 5-FU-Encapsulated Hydroxyapatite-Gelatin Polymer Composites via Spray Drying and Analysis of In Vitro Kinetics. Int. J. Polym. Sci. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Guan, P.; Du, C.; Tian, Y.; Ding, S.; Li, Z.; Yan, C. A novel controllable molecularly imprinted drug delivery system based on the photothermal effect of graphene oxide quantum dots. J. Mater. Sci. 2019, 54, 9124–9139. [Google Scholar] [CrossRef]
- Kahali, N.; Khanam, J. A Novel HPLC Method Validation Based on Analytical Techniques of Metoclopramide Benzamide Derivative (Metoclopramide Base) and its Determination from Solid Dispersion by Solvent Evaporation Method. J. Appl. Pharm. Sci. 2018, 8, 18–026. [Google Scholar]
- Nazir, I.; Asim, M.H.; Dizdarević, A.; Bernkop-Schnürch, A. Self-emulsifying drug delivery systems: Impact of stability of hydrophobic ion pairs on drug release. Int. J. Pharm. 2019, 561, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.; Perivilli, S.; Podolsky, D.; Stippler, E.S.; Walfish, S. The Critical Role of the USP Performance Verification Test in Dissolution Testing and Qualification of the Paddle Apparatus. Dissolution Technol. 2019, 26, 6–12. [Google Scholar] [CrossRef]
- Luo, Z.; Sun, W.; Fang, J.; Lee, K.; Li, S.; Gu, Z.; Dokmeci, M.R.; Khademhosseini, A. Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Adv. Health Mater. 2018, 8, e1801054. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.C.; Kuminek, G.; Cardoso, S.G.; Rodríguez-Hornedo, N. The role of pH and dose/solubility ratio on cocrystal dissolution, drug supersaturation and precipitation. Eur. J. Pharm. Sci. 2020, 152, 105422. [Google Scholar] [CrossRef]
- Hate, S.S.; Reutzel-Edens, S.M.; Taylor, L.S. Influence of Drug-Silica Electrostatic Interactions on Drug Release from Mesoporous Silica-Based Oral Delivery Systems. Mol. Pharm. 2020, 17, 3435–3446. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.; Zou, L.; McClements, D.J. Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release. Food Hydrocoll. 2016, 58, 308–315. [Google Scholar] [CrossRef][Green Version]
- Zou, X.; Zhao, X.; Ye, L.; Wang, Q.; Li, H. Preparation and drug release behavior of pH-responsive bovine serum albumin-loaded chitosan microspheres. J. Ind. Eng. Chem. 2015, 21, 1389–1397. [Google Scholar] [CrossRef]
- Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S.S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; et al. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 2018, 127, 138–166. [Google Scholar] [CrossRef]
- Ninan, N.; Forget, A.; Shastri, V.P.; Voelcker, N.H.; Blencowe, A. Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS Appl. Mater. Interfaces 2016, 8, 28511–28521. [Google Scholar] [CrossRef]
- Banerjee, I.; Mishra, D.; Das, T.; Maiti, T.K. Wound pH-Responsive Sustained Release of Therapeutics from a Poly(NIPAAm-co-AAc) Hydrogel. J. Biomater. Sci. Polym. Ed. 2012, 23, 111–132. [Google Scholar] [CrossRef]
- Klein, S. The Use of Biorelevant Dissolution Media to Forecast the In Vivo Performance of a Drug. AAPS J. 2010, 12, 397–406. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stippler, E.; Kopp, S.; Dressman, J.B. Comparison of US Pharmacopeia Simulated Intestinal Fluid TS (without pancreatin) and Phosphate Standard Buffer pH 6.8, TS of the International Pharmacopoeia with Respect to Their Use in In Vitro Dissolution Testing. Dissolution Technol. 2004, 11, 6–10. [Google Scholar] [CrossRef]
- Jaunarajs, K.L.E.; Standaert, D.G.; Viegas, T.X.; Bentley, M.D.; Fang, Z.; Dizman, B.; Yoon, K.; Weimer, R.; Ravenscroft, P.; Johnston, T.H.; et al. Rotigotine polyoxazoline conjugate SER-214 provides robust and sustained antiparkinsonian benefit. Mov. Disord. 2013, 28, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, J.; Dorn, H.C.; Zhang, C. Assembly of Bio-Nanoparticles for Double Controlled Drug Release. PLoS ONE 2013, 8, e74679. [Google Scholar] [CrossRef][Green Version]
- Baishya, H. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets Anti-Psychotic Drug Matrix View project Acyclovir Powder for Solution for Infusion View project. Artic. J. Dev. Drugs 2017, 6. [Google Scholar] [CrossRef]
- Qureshi, D.; Nayak, S.K.; Maji, S.; Anis, A.; Kim, D.; Pal, K. Environment sensitive hydrogels for drug delivery applications. Eur. Polym. J. 2019, 120, 109220. [Google Scholar] [CrossRef]
- Chiarappa, G.; Abrami, M.; Farra, R.; Dapas, B.; Grassi, G.; Grassi, M. Drug delivery from polymeric matrices. In 13th International Symposium on Process Systems Engineering (PSE 2018); Elsevier BV: Amsterdam, The Netherlands, 2018; Volume 42, pp. 325–356. [Google Scholar]
- Grassi, M.; Grassi, G. Application of mathematical modeling in sustained release delivery systems. Expert Opin. Drug Deliv. 2014, 11, 1299–1321. [Google Scholar] [CrossRef]
- Lin, C.-C.; Metters, A.T. Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv. Drug Deliv. Rev. 2006, 58, 1379–1408. [Google Scholar] [CrossRef]
- Lao, L.L.; Peppas, N.A.; Boey, F.Y.C.; Venkatraman, S.S. Modeling of drug release from bulk-degrading polymers. Int. J. Pharm. 2011, 418, 28–41. [Google Scholar] [CrossRef]
- Rezaei, A.; Nasirpour, A. Evaluation of Release Kinetics and Mechanisms of Curcumin and Curcumin-β-Cyclodextrin Inclusion Complex Incorporated in Electrospun Almond Gum/PVA Nanofibers in Simulated Saliva and Simulated Gastrointestinal Conditions. BioNanoScience 2019, 9, 438–445. [Google Scholar] [CrossRef][Green Version]
- Lai, T.C.; Yu, J.; Tsai, W.B. Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. J. Mater. Chem. B 2016, 4, 2304–2313. [Google Scholar] [CrossRef] [PubMed]
- Obata, Y.; Nishino, T.; Kushibiki, T.; Tomoshige, R.; Xia, Z.; Miyazaki, M.; Abe, K.; Koji, T.; Tabata, Y.; Kohno, S. HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice. Acta Biomater. 2012, 8, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- Sellen, D.B. The Diffusion of Compact Macromolecules Within Hydrogels. Br. Polym. J. 1986, 18, 28–31. [Google Scholar] [CrossRef]
- Merrill, E.W.; A Dennison, K.; Sung, C. Partitioning and diffusion of solutes in hydrogels of poly(ethylene oxide). Biomaterials 1993, 14, 1117–1126. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, A. Exploration of arabinogalactan of gum polysaccharide potential in hydrogel formation and controlled drug delivery applications. Int. J. Biol. Macromol. 2020, 147, 482–492. [Google Scholar] [CrossRef]
- Seo, J.-E.; Kim, S.; Kim, B.-H. In vitro skin absorption tests of three types of parabens using a Franz diffusion cell. J. Expo. Sci. Environ. Epidemiol. 2016, 27, 320–325. [Google Scholar] [CrossRef]
- Diffusion Testing Fundamentals. (n.d.). PermeGear. Available online: www.permegear.com (accessed on 15 November 2020).
- Fernández-García, R.; Statts, L.; De Jesus, J.A.; Ayuela, M.A.D.-; Bautista, L.; Simão, R.; Bolás-Fernández, F.; Ballesteros, M.P.; Laurenti, M.D.; Passero, L.F.D.; et al. Ultradeformable Lipid Vesicles Localize Amphotericin B in the Dermis for the Treatment of Infectious Skin Diseases. ACS Infect. Dis. 2020, 6, 2647–2660. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, C.; Zhang, X.; Zhen, Z.; Wang, P.; Li, J.; Yi, D.; Jin, Y.; Yang, D. Permeation measurement of gestodene for some biodegradable materials using Franz diffusion cells. Saudi Pharm. J. 2015, 23, 413–420. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ng, S.-F.; Rouse, J.J.; Sanderson, F.D.; Eccleston, G.M. The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study. Arch. Pharmacal Res. 2012, 35, 579–593. [Google Scholar] [CrossRef]
- Ng, S.-F.; Rouse, J.J.; Sanderson, F.D.; Meidan, V.; Eccleston, G.M. Validation of a Static Franz Diffusion Cell System for In Vitro Permeation Studies. AAPS PharmSciTech 2010, 11, 1432–1441. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lalatsa, A.; Patel, P.V.; Sun, Y.; Kiun, C.C.; Karimi, F.; Zekonyte, J.; Emeriewen, K.; Saleh, G.M. Transcutaneous anaesthetic nano-enabled hydrogels for eyelid surgery. Int. J. Pharm. 2020, 577, 119003. [Google Scholar] [CrossRef]
- Lalatsa, A.; Statts, L.; De Jesus, J.A.; Adewusi, O.; Dea-Ayuela, M.A.; Bolas-Fernandez, F.; Laurenti, M.D.; Passero, L.F.D.; Serrano, D.R. Topical buparvaquone nano-enabled hydrogels for cutaneous leishmaniasis. Int. J. Pharm. 2020, 588, 119734. [Google Scholar] [CrossRef]
- Fiorati, A.; Contessi, N.; Baschenis, E.; Altomare, L.; Faré, S.; Schieroni, A.G.; Piovani, D.; Mendichi, R.; Ferro, M.; Castiglione, F.; et al. TEMPO-Nanocellulose/Ca2+ Hydrogels: Ibuprofen Drug Diffusion and In Vitro Cytocompatibility. Materials 2020, 13, 183. [Google Scholar] [CrossRef][Green Version]
- Gao, P.; Fagerness, P.E. Diffusion in HPMC Gels. I. Determination of Drug and Water Diffusivity by Pulsed-Field-Gradient Spin-Echo NMR. Pharm. Res. 1995, 12, 955–964. [Google Scholar] [CrossRef]
- Rossi, F.; Castiglione, F.; Salvalaglio, M.; Ferro, M.; Moioli, M.; Mauri, E.; Masi, M.; Mele, A. On the parallelism between the mechanisms behind chromatography and drug delivery: The role of interactions with a stationary phase. Phys. Chem. Chem. Phys. 2017, 19, 11518–11528. [Google Scholar] [CrossRef]
- Santoro, M.; Marchetti, P.; Rossi, F.; Perale, G.; Castiglione, F.; Mele, A.; Masi, M. Smart Approach To Evaluate Drug Diffusivity in Injectable Agar−Carbomer Hydrogels for Drug Delivery. J. Phys. Chem. B 2011, 115, 2503–2510. [Google Scholar] [CrossRef]
- Brandl, F.; Kastner, F.; Gschwind, R.M.; Blunk, T.; Tessmar, J.; Goepferich, A. Hydrogel-based drug delivery systems: Comparison of drug diffusivity and release kinetics. J. Control. Release 2010, 142, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, C.; Coviello, T.; Matricardi, P.; Alhaique, F.; Capitani, D.; Lamanna, R. Anisotropic enhanced water diffusion in scleroglucan gel tablets. Soft Matter 2011, 7, 6068–6075. [Google Scholar] [CrossRef]
- Alam, T.M.; Hibbs, M.R. Characterization of Heterogeneous Solvent Diffusion Environments in Anion Exchange Membranes. Macromolecules 2014, 47, 1073–1084. [Google Scholar] [CrossRef]
- Kaemmerer, E.; Melchels, F.P.; Holzapfel, B.M.; Meckel, T.; Hutmacher, D.W.; Loessner, D. Gelatine methacrylamide-based hydrogels: An alternative three-dimensional cancer cell culture system. Acta Biomater. 2014, 10, 2551–2562. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.C.; Pochan, D.J.; Wagner, N.J.; Schneider, J.P. Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels. Biomaterials 2009, 30, 1339–1347. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Henke, M.; Brandl, F.; Goepferich, A.; Teßmar, J. Size-dependent release of fluorescent macromolecules and nanoparticles from radically cross-linked hydrogels. Eur. J. Pharm. Biopharm. 2010, 74, 184–192. [Google Scholar] [CrossRef]
- Cha, C.; Jeong, J.H.; Shim, J.; Kong, H. Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains. Acta Biomater. 2011, 7, 3719–3728. [Google Scholar] [CrossRef]
- Kim, S.A.; Sanabria, H.; Digman, M.A.; Gratton, E.; Schwille, P.; Zipfel, W.R.; Waxham, M.N. Quantifying translational mobility in neurons: Comparison between current optical techniques. J. Neurosci. 2010, 30, 16409–16416. [Google Scholar] [CrossRef]
- Meseth, U.; Wohland, T.; Rigler, R.; Vogel, H. Resolution of Fluorescence Correlation Measurements. Biophys. J. 1999, 76, 1619–1631. [Google Scholar] [CrossRef][Green Version]
- Calizo, R.C.; Scarlata, S. Discrepancy between fluorescence correlation spectroscopy and fluorescence recovery after photobleaching diffusion measurements of G-protein-coupled receptors. Anal. Biochem. 2013, 440, 40–48. [Google Scholar] [CrossRef][Green Version]
- Macháň, R.; Foo, Y.H.; Wohland, T. On the Equivalence of FCS and FRAP: Simultaneous Lipid Membrane Measurements. Biophys. J. 2016, 111, 152–161. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wöll, D. Fluorescence correlation spectroscopy in polymer science. RSC Adv. 2014, 4, 2447–2465. [Google Scholar] [CrossRef]
- Chenette, E.J. Milestone 10: FCS and FRAP: Illuminating Cellular Processes; Springer Science and Business Media LLC: Berlin, Germany, 2009; Volume 11. [Google Scholar]
- Zustiak, S.P.; Boukari, H.; Leach, J.B. Solute diffusion and interactions in cross-linked poly(ethylene glycol) hydrogels studied by Fluorescence Correlation Spectroscopy. Soft Matter 2010, 6, 3609–3618. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vagias, A.; Sergelen, K.; Koynov, K.; Košovan, P.; Dostalek, J.; Jonas, U.; Knoll, W.; Fytas, G. Diffusion and Permeation of Labeled IgG in Grafted Hydrogels. Macromolecules 2017, 50, 4770–4779. [Google Scholar] [CrossRef]
- Sandrin, D.; Wagner, D.; Sitta, C.E.; Thoma, R.; Felekyan, S.; Hermes, H.E.; Janiak, C.; Amadeu, N.D.S.; Kühnemuth, R.; Löwen, H.; et al. Diffusion of macromolecules in a polymer hydrogel: From microscopic to macroscopic scales. Phys. Chem. Chem. Phys. 2016, 18, 12860–12876. [Google Scholar] [CrossRef]
- Lehmann, S.; Seiffert, S.; Richtering, W. Spatially Resolved Tracer Diffusion in Complex Responsive Hydrogels. J. Am. Chem. Soc. 2012, 134, 15963–15969. [Google Scholar] [CrossRef]
- Nandy, A.; Chakraborty, S.; Nandi, S.; Bhattacharyya, K.; Mukherjee, S. Structure, Activity, and Dynamics of Human Serum Albumin in a Crowded Pluronic F127 Hydrogel. J. Phys. Chem. B 2019, 123, 3397–3408. [Google Scholar] [CrossRef]
- Polacheck, W.J.; Kutys, M.L.; Tefft, J.B.; Chen, C.S. Microfabricated blood vessels for modeling the vascular transport barrier. Nat. Protoc. 2019, 14, 1425–1454. [Google Scholar] [CrossRef]
- Shin, Y.; Han, S.; Jeon, J.S.; Yamamoto, K.; Zervantonakis, I.K.; Sudo, R.; Kamm, R.D.; Chung, S. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protoc. 2012, 7, 1247–1259. [Google Scholar] [CrossRef][Green Version]
- Chung, S.; Sudo, R.; Zervantonakis, I.K.; Rimchala, T.; Kamm, R.D. Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform. Adv. Mater. 2009, 21, 4863–4867. [Google Scholar] [CrossRef]
- Chung, S.; Sudo, R.; Mack, P.J.; Wan, C.-R.; Vickerman, V.; Kamm, R.D. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip. 2009, 9, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.S.; Han, S.; Shin, Y.; Kwon, G.H.; Kamm, R.D.; Lee, S.-H.; Chung, S. Sprouting Angiogenesis under a Chemical Gradient Regulated by Interactions with an Endothelial Monolayer in a Microfluidic Platform. Anal. Chem. 2011, 83, 8454–8459. [Google Scholar] [CrossRef] [PubMed]
- Anguiano, M.; Castilla, C.; Maška, M.; Ederra, C.; Peláez, R.; Morales, X.; Muñoz-Arrieta, G.; Mujika, M.; Kozubek, M.; Muñoz-Barrutia, A.; et al. Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis. PLoS ONE 2017, 12, e0171417. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ahn, S.I.; Sei, Y.J.; Park, H.-J.; Kim, J.; Ryu, Y.; Choi, J.J.; Sung, H.-J.; Macdonald, T.J.; Levey, A.I.; Kim, Y. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat. Commun. 2020, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Cuchiara, M.P.; Allen, A.C.; Chen, T.M.; Miller, J.S.; West, J.L. Multilayer microfluidic PEGDA hydrogels. Biomaterials 2010, 31, 5491–5497. [Google Scholar] [CrossRef]
- Marshall, L.E.; Koomullil, R.; Frost, A.R.; Berry, J.L. Computational and Experimental Analysis of Fluid Transport Through Three-Dimensional Collagen–Matrigel Hydrogels. Ann. Biomed. Eng. 2016, 45, 1027–1038. [Google Scholar] [CrossRef]
- Evans, S.M.; Litzenberger, A.L.; Ellenberger, A.E.; Maneval, J.; Jablonski, E.L.; Vogel, B.M. A microfluidic method to measure small molecule diffusion in hydrogels. Mater. Sci. Eng. C 2014, 35, 322–334. [Google Scholar] [CrossRef]
- Groothuis, F.A.; Heringa, M.B.; Nicol, B.; Hermens, J.L.; Blaauboer, B.J.; Kramer, N.I. Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations. Toxicology 2015, 332, 30–40. [Google Scholar] [CrossRef][Green Version]
- Alhaque, S.; Themis, M.; Rashidi, H. Three-dimensional cell culture: From evolution to revolution. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170216. [Google Scholar] [CrossRef]
- Vertrees, R.A.; Jordan, J.M.; Solley, T.; Goodwin, T.J. Tissue Culture Models. In Molecular Pathology Library; Springer Science and Business Media LLC: Berlin, Germany, 2009; Volume 2, pp. 159–182. [Google Scholar]
- Abbott, A. Cell culture: Biology’s new dimension. Nature 2003, 424, 870–872. [Google Scholar] [CrossRef]
- Quent, V.M.C.; Theodoropoulos, C.; Hutmacher, D.W.; Reichert, J.C. Differential osteogenicity of multiple donor-derived human mesenchymal stem cells and osteoblasts in monolayer, scaffold-based 3D culture and in vivo. Biomed. Tech. 2016, 61, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, C.T.; Boakye-Agyeman, F.; Brinkman, C.L.; Reid, J.M.; Patel, R.; Bajzer, Z.; Dadsetan, M.; Yaszemski, M.J. Controlled Delivery of Vancomycin via Charged Hydrogels. PLoS ONE 2016, 11, e0146401. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baker, B.M.; Chen, C.S. Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012, 125, 3015–3024. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cukierman, E.; Pankov, R.; Stevens, D.R.; Yamada, K.M. Taking Cell-Matrix Adhesions to the Third Dimension. Science 2001, 294, 1708–1712. [Google Scholar] [CrossRef]
- Kleinman, H.K.; Philp, D.; Hoffman, M.P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 2003, 14, 526–532. [Google Scholar] [CrossRef]
- Bissell, M.J.; Radisky, D.C.; Rizki, A.; Weaver, V.M.; Petersen, O.W. The organizing principle: Microenvironmental influences in the normal and malignant breast. Differentiation 2002, 70, 537–546. [Google Scholar] [CrossRef][Green Version]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123 Pt 24, 4195–4200. [Google Scholar] [CrossRef][Green Version]
- Hynes, R.O. The extracellular matrix: Not just pretty fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef][Green Version]
- Chim, L.K.; Mikos, A.G. Biomechanical forces in tissue engineered tumor models. Curr. Opin. Biomed. Eng. 2018, 6, 42–50. [Google Scholar] [CrossRef]
- Roy, V.; Magne, B.; Vaillancourt-Audet, M.; Blais, M.; Chabaud, S.; Grammond, E.; Piquet, L.; Fradette, J.; Laverdière, I.; Moulin, V.J.; et al. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BioMed Res. Int. 2020, 2020, 6051210. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pradhan, S.; Hassani, I.; Clary, J.M.; Lipke, E.A. Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications. Tissue Eng. Part B Rev. 2016, 22, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Klouda, L.; Bouten, C.; Schenke-Layland, K. The Future of Tissue Engineering. Curr. Opin. Biomed. Eng. 2018, 6. [Google Scholar] [CrossRef]
- Castells-Sala, C.; Alemany-Ribes, M.; Fernandez-Muiños, T.; Recha-Sancho, L.; Lopez-Chicon, P.; Aloy-Reverté, C.; Caballero-Camino, J.; Márquez-Gil, A.; Semino, C.E. Current Applications of Tissue Engineering in Biomedicine. J. Biochip Tissue chip 2013. [Google Scholar] [CrossRef]
- Van Cauwenberghe, C. The Regenerative Medicine Standards Landscape; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Alonso-Nocelo, M.; Raimondo, T.M.; Vining, K.H.; López-López, R.; De La Fuente, M.; Mooney, D.J. Matrix stiffness and tumor-associated macrophages modulate epithelial to mesenchymal transition of human adenocarcinoma cells. Biofabrication 2018, 10, 035004. [Google Scholar] [CrossRef]
- Miri, A.K.; Hosseinabadi, H.G.; Cecen, B.; Hassan, S.; Zhang, Y.S. Permeability mapping of gelatin methacryloyl hydrogels. Acta Biomater. 2018, 77, 38–47. [Google Scholar] [CrossRef]
- Modaresifar, K.; Hadjizadeh, A.; Niknejad, H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1–10. [Google Scholar] [CrossRef][Green Version]
- Annabi, N.; Rana, D.; Sani, E.S.; Portillo-Lara, R.; Gifford, J.L.; Fares, M.M.; Mithieux, S.M.; Weiss, A.S. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 2017, 139, 229–243. [Google Scholar] [CrossRef][Green Version]
- Domig, K.J.; Mayrhofer, S.; Zitz, U.; Mair, C.; Petersson, A.; Amtmann, E.; Mayer, H.K.; Kneifel, W. Antibiotic susceptibility testing of Bifidobacterium thermophilum and Bifidobacterium pseudolongum strains: Broth microdilution vs. agar disc diffusion assay. Int. J. Food Microbiol. 2007, 120, 191–195. [Google Scholar] [CrossRef]
- Bray, L.J.; Hutmacher, D.W.; Bock, N. Addressing Patient Specificity in the Engineering of Tumor Models. Front. Bioeng. Biotechnol. 2019, 7, 217. [Google Scholar] [CrossRef][Green Version]
- Rezaee, R.; Abdollahi, M. The importance of translatability in drug discovery. Expert Opin. Drug Discov. 2017, 12, 237–239. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhao, M.; Lepak, A.J.; Andes, D.R. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorganic Med. Chem. 2016, 24, 6390–6400. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Jiang, X.; Mao, B.; Li, Q.-X. The design, analysis and application of mouse clinical trials in oncology drug development. BMC Cancer 2019, 19. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Day, C.-P.; Merlino, G.; Van Dyke, T. Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges. Cell 2015, 163, 39–53. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vandamme, T. Use of rodents as models of human diseases. J. Pharm. Bioallied Sci. 2014, 6, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Herrero, A.; Calvo, I.A.; Flandes-Iparraguirre, M.; Landgraf, M.; Lahr, C.A.; Shafiee, A.; Granero-Moltó, F.; Saez, B.; Mazo, M.M.; Paiva, B.; et al. Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers 2020, 12, 2205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tian, Y.; Zhu, Z.; Xu, H.; Li, X.; Zheng, D.; Sun, W. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation. Sci. Rep. 2016, 6, 26546. [Google Scholar] [CrossRef][Green Version]
- Chen, P.; Xia, C.; Mei, S.; Wang, J.; Shan, Z.; Lin, X.; Fan, S. Intra-articular delivery of sinomenium encapsulated by chitosan microspheres and photo-crosslinked GelMA hydrogel ameliorates osteoarthritis by effectively regulating autophagy. Biomaterials 2016, 81, 1–13. [Google Scholar] [CrossRef]
- Li, Z.; He, C.; Yuan, B.; Dong, X.; Chen, X. Injectable Polysaccharide Hydrogels as Biocompatible Platforms for Localized and Sustained Delivery of Antibiotics for Preventing Local Infections. Macromol. Biosci. 2016, 17, 1600347. [Google Scholar] [CrossRef]
- Savi, F.M.; Lawrence, F.; Hutmacher, D.W.; Woodruff, M.A.; Bray, L.J.; Wille, M.-L. Histomorphometric Evaluation of Critical-Sized Bone Defects Using Osteomeasure and Aperio Image Analysis Systems. Tissue Eng. Part C Methods 2019, 25, 732–741. [Google Scholar] [CrossRef]
- Medeiros Savi, F.; Mieszczanek, P.; Revert, S.; Wille, M.-L.; Bray, L.J. A New Automated Histomorphometric MATLAB Algorithm for Immunohistochemistry Analysis Using Whole Slide Imaging. Tissue Eng. Part C Methods 2020, 26, 462–474. [Google Scholar] [CrossRef] [PubMed]
- Rizzardi, A.E.; Johnson, A.T.; Vogel, R.I.; Pambuccian, S.E.; Henriksen, J.C.; Skubitz, A.P.N.; Metzger, G.J.; Schmechel, S.C. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn. Pathol. 2012, 7, 42. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Parija, S.C.; Mandal, J. Ethics of involving animals in research. Trop. Parasitol. 2013, 3, 4–6. [Google Scholar] [CrossRef] [PubMed]
Criteria | UV-Vis Absorbance | Fluorescence | ELISA | HPLC-UV | HPLC MS | (RT)-qPCR |
---|---|---|---|---|---|---|
Convenience | +++ | +++ | +++ | ++ | + | + |
Low cost | +++ | +++ | ++ | ++ | + | + |
Complexity | + | + | + | ++ | +++ | +++ |
Sensitivity | + | ++ | ++ | ++ | +++ | +++ |
Selectivity | + | ++ | +++ | ++ | +++ | +++ |
Hydrogel Material(s) | Molecule | Molecule Function | Application | Wavelength of Detection (nm) | Ref |
---|---|---|---|---|---|
Oxidized dextran, gelatin, and hyaluronic acid | Naproxen | Anti-inflammatory | Tissue engineering | 230 | [7] |
Dexamethasone | Anti-inflammatory | 243 | |||
Silk sericin, polyvinyl alcohol | Gentamicin | Antibiotic | Wound dressing | 335 | [6] |
Aspirin | Anti-inflammatory | 280 | |||
Poloxamer 407 | Methylene blue | Model molecule | Antimicrobial photodynamic therapy | 664 | [59] |
Salecan, chitosan | Vitamin C | Nutrient | Food supplementation | 265 | [12] |
N-succinyl chitosan-g-poly (acrylic acid) | Theophylline | Bronchodilator | Respiratory diseases | 272 | [60] |
Gellan gum | Apigenin | Bronchodilator | Asthma | N.G. | [61] |
2-Hydroxyethyl methacrylate, methyl methacrylate | Moxifloxacin | Antibiotic | Post-cataract removal prophylaxis | 190 to 230 | [27,62] |
Diclofenac | Anti-inflammatory | ||||
Levofloxacin | Antibiotic | ||||
Diclofenac | Anti-inflammatory | ||||
Ketorolac | Anti-inflammatory | ||||
Carboxylated polyvinyl alcohol, gelatin, hyaluronic acid | Ampicillin | Antibiotic | Wound dressing | 275 | [63] |
Chitosan, polyvinyl alcohol | Diflunisal | Anti-inflammatory | N.A. | 252 | [17] |
Hyaluronic acid, dextran, β-cyclodextrin | Resveratrol | Anti-inflammatory | Wound healing | 305 | [10] |
Xanthan | Pentoxifylline | Blood thinner | N.A. | 274 | [64] |
Alginate polydopamine | Bortezomib | Anticancer | Cancer | 270 | [13] |
Polyethylene glycol, polycaprolactone-triol | Diclofenac | Anti-inflammatory | Oral delivery | 277 | [16] |
Linseed polysaccharide | Moxifloxacin | Antibiotic | Oral delivery | 95 | [65] |
Hyaluronan, dextran | Nile red de | Model molecule | Diffusion model | N.G. | [66] |
Chitosan, polyvinyl pyrrolidone | Cefixime | Antibiotic | N.A. | 288 | [67] |
Alginate, carboxymethyl chitosan | Tetracycline hydrochloride | Hydrophilic Antibiotic | N.A. | 363 | [68] |
Silver sulfadiazine | Hydrophobic Antibiotic | N.A. | 254 | ||
Poly(N-isopropylacrylamide), N-tert-butylmaleimic acid | Rhodamine 6G | Model molecule | N.A. | 527 | [36] |
Graphene, gelatin | Zoledronic acid | bisphosphonates | N.A. | N.G. | [69] |
Anionic agarose-carbomer | Ibuprofen | Anti-inflammatory | Diffusion mechanism | 264 | [70] |
Acrylamide-modified hyaluronic acid, folic acid, Fe3+ | Acetylsalicylic acid (aspirin) | Analgesic | Wound dressing | N.G. | [19] |
Scleroglucan | Theophylline | Bronchodilator | Drug diffusion model | 271 | [71] |
DNA, oxidized alginate | Simvastatin | Local stem cell differentiation | Tissue engineering | 240 | [57] |
Chitosan | Kartogenin | Cell differentiation | Cartilage tissue engineering | 278.4 | [72] |
Hydrogel Material(s) | Molecule | Molecule Function | Application | Wavelength of Detection (nm) | Ref |
---|---|---|---|---|---|
Gelatin | Fluorescein | Model hydrophobic molecule | Tissue engineering | Ex: 485, Em: 535 | [15] |
Poly(ethylene glycol) dimethacrylate, poly lactic-co-glycolic acid | Paclitaxel-Oregon GreenTM | Anticancer | Local cancer therapy | Ex: 488 | [45] |
Hyaluronan, alginate, gellan gum | Dextran-FITC | Diffusion model | Diffusion | Ex: 488, Em: 496–650 | [89] |
Hyaluronic acid, poly γ-glutamic acid | BSA-FITC | Model molecule | Cartilage tissue engineering | Ex: 493 | [8] |
Aptamer-tethered single-stranded DNA | Doxorubicin | Anticancer | Cancer | Em: 510 | [90] |
SYBR Green I-dye | Model molecule | Cell imaging | Em: 497 | ||
Carbon Dot, protoporphyrin IX, DNA | protoporphyrin IX | Antibacterial | Antibacterial photodynamic therapy | Em:410 | [91] |
DNA, Ag, agarose | Atto425 dye | Dye | Release model | Ex: 355, Em: 460 | [92] |
Atto550 dye | Dye | Ex: 355, Em: 460 | |||
Gelatin norbornene, poly(ethylene glycol) dithiol | microRNA | Cell differentiation (osteogenic) | Tissue engineering | N.G | [93] |
Hydrogel Material(s) | Molecule | Release Media | Volume of Release Media (mL) | Sampled Volume Refreshed | Enzyme | pH | Temperature (°C) | Agitation (rpm) | Ref |
---|---|---|---|---|---|---|---|---|---|
Oxidized dextran, gelatin, and hyaluronic acid | Naproxen | PBS | 10 | No | No | 7.4 | 37 | No | [7] |
Dexamethasone | |||||||||
Silk sericin, polyvinyl alcohol | Aspirin | PBS | N.G | No | No | 7.4 | 37 | No | [6] |
Gentamicin | |||||||||
Poloxamer 407 | Methylene blue | PBS | 15 | Yes | No | N.G | 37 | 100 | [59] |
Salecan, chitosan | Vitamin C | SGF, SIF | 50 | Yes | Yes | 1.2, 6.8 | 37 | 50 | [12] |
N-succinyl chitosan-g-poly (acrylic acid) | Theophylline | SGF, SIF | N.G | No | Yes | 1.2, 7.4 | 37 | No | [60] |
Alginate, Chitosan | Resveratrol | HCl, PBS | 100 | No | No | 1.2, 5.5, 6.8, 7.4 | 37 | 110 | [102] |
Gellan gum | Apigenin | PBS | 50 | No | No | 1, 1.2, 2, 3, 4, 5, 6, 7, 7.4, 8 | 37 | 100 | [61] |
2-Hydroxyethyl methacrylate, methyl methacrylate | Moxifloxacin | PBS | 15 | No | No | N.G | 20–24 | 150 | [27,62] |
Diclofenac | |||||||||
Ketorolac | |||||||||
Levofloxacin | |||||||||
Carboxylated polyvinyl alcohol, gelatin, hyaluronic acid | Ampicillin | N.G | N.G | Yes | No | 7.4 | 37 | No | [63] |
Chitosan, polyvinyl alcohol | Diflunisal | PBS | 50 | Yes | No | 7.4 | RT | Yes | [17] |
Hyaluronic acid, dextran, β-cyclodextrin | Resveratrol | PBS | 20 | Yes | No | N.G | N.G | No | [10] |
Xanthan gum, silk fibroin, hyperbranched mushroom polysaccharide | BSA | PBS (0.02% of NaN3) | 30 | Yes | No | N.G | N.G | No | [58,118] |
5-fluorouracil | |||||||||
Gelatin | Fluorescein | PBS | N.G | Yes | No | N.G | 4, 37 | Yes | [15] |
Xanthan | Pentoxifylline | Pure H2O, HCl | 900 | No | No | 1.2, 7 | 37 ± 0.5 | 50 | [64] |
Alginate polydopamine | Bortezomib | PBS | N.G | No | No | 6.5, 7.4 | N.G | No | [13] |
Polyethylene glycol, polycaprolactone-triol | Diclofenac | HCl/KCl solution, PBS | 10 | Yes | No | 1.6, 7.4 | 37.5 | Yes | [16] |
Linseed polysaccharide | Moxifloxacin | N.G (USP 37) | 900 | Yes | N.G? | 1.2, 4.5, 6.8 | 37 ± 0.1 | 100 | [65] |
Hyaluronan, dextran | Nile red | Saline solution | 5 | No | No | N.G | 25 ± 1 | No | [66] |
Chitosan, polyvinyl pyrrolidone | Cefixime | SGF | 500 | No | No | 1.2 | N.G | No | [67] |
Alginate, carboxymethyl chitosan | Tetracycline hydrochloride | PBS | 18 | Yes | No | 7.4 | 37 | 70 | [68] |
Silver sulfadiazine | |||||||||
Poly(N-isopropylacrylamide), N-tert-butylmaleimic acid | Rhodamine 6G | SGF, isotonic serum (NaCl), SIF | N.G | N.G | N.G? | 1.2, 7, 7.2 | 23, 37 | No | [36] |
Graphene, gelatin | Zoledronic acid | PBS | N.G | Yes | No | N.G | 37 | No | [69] |
Anionic agarose-carbomer | Ibuprofen | PBS | N.G | Yes | No | 7.4 | 37 | No | [70] |
Acrylamide-modified hyaluronic acid, folic acid, Fe3+ | acetylsalicylic acid (aspirin) | PBS | 4 | Yes | No | 6.4, 7.4, 8.4 | 37 | 60 | [19] |
DNA, oxidized alginate | Simvastatin | PBS/Ethanol (1:1) | 0.4 | Yes | No | 4.5 | 37 | 60 | [57] |
Chitosan | Kartogenin | PBS | 2 | Yes | No | 7.4 | 37 | No | [72] |
Hyaluronic acid, poly γ-glutamic acid | BSA-FITC | PBS | 10 | Yes | No | 7.4 | 37 | Yes | [8] |
Carbon Dot, protoporphyrin IX, DNA | protoporphyrin IX | PBS | N.G | Yes | No | 7.4 | 37 | No | [91] |
Gelatin norbornene, poly(ethylene glycol) dithiol | microRNA | PBS | 0.1 | No | No | N.G | N.G | No | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020, 12, 1188. https://doi.org/10.3390/pharmaceutics12121188
Vigata M, Meinert C, Hutmacher DW, Bock N. Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics. 2020; 12(12):1188. https://doi.org/10.3390/pharmaceutics12121188
Chicago/Turabian StyleVigata, Margaux, Christoph Meinert, Dietmar W. Hutmacher, and Nathalie Bock. 2020. "Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques" Pharmaceutics 12, no. 12: 1188. https://doi.org/10.3390/pharmaceutics12121188