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Abstract: Methotrexate, which is widely used in the treatment of cancer and immune-related diseases,
has limitations in use because of its low bioavailability, short half-life, and tissue toxicity. Thus, in this
study, a nano-sized water-in-oil-in-water (W/O/W) double emulsion containing methotrexate was
prepared to enhance its lymphatic delivery and bioavailability. Based on the results from solubility
testing and a pseudo-ternary diagram study, olive oil as the oil, Labrasol as a surfactant, and ethanol
as a co-surfactant, were selected as the optimal components for the nanoemulsion. The prepared
nanoemulsion was evaluated for size, zeta potential, encapsulation efficiency, pH, morphology,
and in vitro release profiles. Furthermore, pharmacokinetics and lymphatic targeting efficiency were
assessed after oral and intravenous administration of methotrexate-loaded nanoemulsion to rats.
Mean droplet size, zeta potential, encapsulation efficiency, and pH of formulated nanoemulsion
were 173.77 ± 5.76 nm, −35.63 ± 0.78 mV, 90.37 ± 0.96%, and 4.07 ± 0.03, respectively. In vitro
release profile of the formulation indicated a higher dissolution and faster rate of methotrexate
than that of free drug. The prepared nanoemulsion showed significant increases in maximum
plasma concentration, area under the plasma concentration-time curve, half-life, oral bioavailability,
and lymphatic targeting efficiency in both oral and intravenous administration. Therefore, our research
proposes a methotrexate-loaded nanoemulsion as a good candidate for enhancing targeted lymphatic
delivery of methotrexate.
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1. Introduction

Interest has been steady in the lymphatic system as a pathway for lipid absorption,
cancer metastasis, and immune system response. The system has an important role in tissue fluid
balance, intestinal absorption of lipid, and immunological functions [1,2]. In addition to its role in
normal physiology, the lymphatic system is known to be involved in cancer progression because
cancer cells can spread to lymph nodes through lymphatic vessels [3,4]. The lymphatic system
has also attracted attention for potentially suppressing cancer metastasis and effectively treating
immune-related diseases. As tumor-induced lymphatic remodeling, lymphatic vessel contraction
around cancer cells occurs, thereby promoting the spread of cancer cells through altered lymph flow [4].
Therefore, this suggests that lymphatic delivery of anticancer drugs is very important for effective
metastatic cancer treatment. Increasing the lymphatic delivery of anticancer drugs and immune-related
drugs could improve the therapeutic effects while reducing side effects; in addition, the therapeutic
effects might be possible with low doses. In this regard, lymphatic targeting and drug delivery using
formulation of anticancer and immune-related drugs could be of great interest for cancer and immune
disease treatment.
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In a recent report [5], investigators proposed that a lipid coating on the surface of cancer cells
in the lymphatic system was a major cause of higher survival and metastasis of cancer cells that
were injected into the lymphatic system than were the ones injected into the blood. That study’s
findings are further strong evidence that the lymphatic system is a major pathway for cancer metastasis.
These findings also suggest that studies on lymphatic targeting and migration of anticancer drugs are
crucial, and, in fact, researchers have studied a number of targeting strategies and benefits based on
the structural and physiological characteristics of the lymphatic system related to drug delivery [6–9].
Researchers have also reported on improving bioavailability and efficacy through formulations of
conventional drugs [10–13]. Formulation with polyaminoacid nanocapsule has been attempted to
improve lymphatic delivery of docetaxel as an anticancer drug [10]. In addition to anticancer drugs,
there were several studies to formulate nanostructured lipid carriers [11], solid lipid nanoparticles [12],
and self-microemulsifying drug delivery systems [13] to improve lymphatic delivery for mebendazole,
quetiapine, and saquinavir, respectively.

Methotrexate, a folic acid antagonist, has frequently been used as an anticancer and immune-related
drug for treating various tumors and autoimmune and inflammatory diseases [14,15]. However,
methotrexate has limitations in use because of its low oral bioavailability, short half-life, and severe
adverse effects [16,17]. The major side effects of methotrexate have been reported as hepatotoxicity,
nephrotoxicity, neurotoxicity, and pulmonary toxicity [16]. To increase the therapeutic effects while
resolving these limitations, improvement of drug delivery system through the formulation development
of methotrexate has been required. Toward this end, researchers have reported on various methotrexate
formulations including micelles [18,19], microsphere [20], nanoparticles [21,22], liposomes [23],
and polymersome [24]. In fact, in our previous study [25], we encapsulated methotrexate in
nanoparticles composed of poly(lactic-co-glycolic acid) and evaluated its in vivo distribution and
lymphatic delivery and we did observe improved lymphatic transport and bioavailability and longer
half-life than with free drug.

Formulations using polymers have mechanical stability because of a hardened surface and a solid
core, but their structural rigidity makes these formulations less flexible, which may limit penetration
into the vascular wall [8,26]. In addition, these hard particles may trigger more phagocytosis by
phagocytic elements, and they may cause pain or allergic reactions when administered [27]. In contrast,
formulations with a fluid surface, including emulsions, flow more easily through the blood vessels and
into the lymph nodes [8]. Nano-sized emulsions are at a sufficiently small scale to penetrate into the
lymph, and they have a larger surface area that provides greater absorption [28]. Although there is a
concern about instability in the fluid system as a disadvantage of nanoemulsions, it can be sufficiently
stabilized through the selection of appropriate emulsifiers (surfactants, co-surfactants, etc.) and an
optimized ratio between components [29]. In addition, formulations can be stabilized by using the
proper emulsion type. In addition to conventional single emulsions (oil-in-water or water-in-oil),
multiple emulsions such as water-in-oil-in-water (W/O/W) are attracting attention as a potentially
more stable drug delivery system [30]. W/O/W double emulsions consist of water-in-oil emulsions
dispersed in a second continuous water phase. Compared with single emulsions, double emulsions can
better protect the encapsulated compounds and resist degradation by the external environment [31,32].
Therefore, in this study, we considered W/O/W nanoemulsion an appropriate formulation for improving
lymphatic delivery and bioavailability of methotrexate.

To the best of our knowledge, no researchers have evaluated lymphatic migration and distribution
in the body for nanoemulsion containing methotrexate. Nanoemulsification could increase therapeutic
effects owing to the improved bioavailability and delivery to the target tissue. In addition, nanoparticles
with a hard surface (prepared in our previous report [25]) and nanoemulsions with a soft structure have
differences in composition and physicochemical properties even though their nanoscale properties are
similar. Accordingly, the two formulations are considered to differ in pharmacokinetic profiles and
distribution in the body.
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Therefore, for this study, a formulation of methotrexate-loaded nanoemulsions was developed and
its in vivo distribution and pharmacokinetic characteristics were evaluated. In particular, lymphatic
delivery of methotrexate-loaded nanoemulsion is an interesting topic that has not been previously
reported. As mentioned above, to overcome the limitations of methotrexate, it was necessary to
study different formulations for improved targeted delivery. To maximize the therapeutic efficacy of
methotrexate and reduce side effects. In this regard, it is crucial to evaluate the lymphatic delivery
of the nanoemulsion formulation. Based on this in vivo pharmacokinetic study of methotrexate
nanoemulsions, we expect to expand research into therapeutic effects, toxicity, and safety of
nanoemulsions in the future.

2. Materials and Methods

2.1. Materials and Reagents

Methotrexate (purity ≥ 99%), phenacetin (purity ≥ 99%), castor oil, corn oil, mineral oil, olive oil,
soybean oil, Cremophor® EL, Span® 80, Span® 85, Tween® 80, phosphate buffered saline (PBS),
and hydrochloride (HCl) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Labrasol® was
supplied by Daejung Chemicals & Metal Co., Ltd. (Siheung-si, Gyeonggi-do, Republic of Korea).
Ethanol and sodium chloride (NaCl) were purchased from Duksan (Ansan-si, Gyeonggi-do,
Republic of Korea). LC-MS grade methanol, acetonitrile, water (18.2 mΩ), and HPLC-grade ethyl
acetate were obtained from Fisher Scientific (Fair Lawn, NJ, USA). LC-MS grade formic acid was
supplied by Tokyo Chemical Industry (Tokyo, Japan). All other reagents used for the experiments
were in analytical grades.

2.2. Screening of Solubility

The solubility of various oils (castor oil, corn oil, mineral oil, olive oil, and soybean oil) and
surfactants (Cremophor EL, Labrasol, Span 80, Span 85, and Tween 80) for methotrexate was evaluated to
determine the suitable components for nanoemulsion containing methotrexate. Excess amounts (5 mg)
of methotrexate were placed in capped vials with 1 mL of each oil or surfactant. Then, the mixture
was vortex-mixed and kept in a shaking (70 opm) water bath at 25 ◦C for 72 h. After reaching
equilibrium, the samples were centrifuged at 10,000× g for 10 min. The supernatant was taken and
diluted with methanol to quantify the methotrexate; concentrations were determined by UPLC-MS/MS
(Shimadzu Corp., Kyoto, Japan). The UPLC-MS/MS method used here is the same as the method in
our previous study [25]. Brief analysis conditions are described in Section 2.6.2. Quantification of
Methotrexate in Biological Samples. As a co-surfactant, ethanol was fixed without a separate solubility
test by referring to previously reported studies [33–35]. In other words, optimization through
solubility screening of oil and surfactant for methotrexate was the main focus for the preparation of
methotrexate-loaded nanoemulsion in this study, and co-surfactant, which plays a relatively auxiliary
role, was selected by referring to the previous studies.

2.3. Constructing Pseudo-Ternary Phase Diagrams

We developed a pseudo-ternary phase diagram to determine the optimal composition and
component ratio for the nanoemulsion. We used water titration to construct the diagrams [36].
Based on the results of the solubility screening tests (at 25 ◦C in water bath), the selected oil was
mixed with surfactant or a surfactant/co-surfactant mixture (Smix) at ratios ranging from 1:9 to 9:1
(v/v). Herein, Smix was made with different ratios (v/v) of 0.5:1, 1:1, 2:1, 4:1, and 1:0 (100% surfactant).
Each mixture was titrated dropwise with deionized water (DIW) under gentle stirring. By visual
inspection, we determined the time point at which the mixture became turbid to be the end point
of titration.
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2.4. Preparing the Nanoemulsion

Based on the obtained pseudo-ternary diagrams, we prepared W/O/W double nanoemulsion using
olive oil, Labrasol and ethanol as oil, surfactant, and co-surfactant, respectively. First, methotrexate was
mixed in oil at a ratio of 1:2 (w/v). Next, to prepare W/O emulsion, the mixture of oil and Smix was titrated
with DIW at a rate of 1 mL/min under stirring at 500 rpm with a magnetic stirrer (GCMS-G, Global Lab,
Siheung-si, Gyeonggi-do, Republic of Korea). Then, the obtained mixture was stirred at 24,000 rpm for
5 min by high speed homogenization (PT-3100, Kinematica AG, Luzern, Switzerland) in an ice bath;
we performed this homogenization process a total of three times. Afterward, a fine W/O nanoemulsion
was obtained using a microfluidizer (LV1, Microfluidics, Westwood, MA, USA) for three passes.
W/O/W double emulsion was prepared by mixing the obtained W/O emulsion and the external water
phase with homogenization at 10,000 rpm for 10 min. The preparation conditions of methotrexate-loaded
nanoemulsion were optimized through the following tests: (1) surfactant/co-surfactant ratio (v/v)
in water-in-oil (W1/O) emulsion; (2) volume ratio (v/v) of internal water phase to oil phase (W1:O),
and W1/O emulsion phase to external water phase to external water phase (W1/O:W2); (3) Ratio (w/v)
of methotrexate:oil in nanoemulsion; (4) number of microfluidizer passes.

2.5. In Vitro Characterization of Nanoemulsion

2.5.1. Droplet Size, Zeta Potential, and pH

We assessed droplet size by dynamic light scattering (DLS; SZ-100, Horiba Scientific, Kyoto,
Japan), and we measured zeta potential of nanoemulsion using a zeta potential analyzer (SZ-100,
Horiba Scientific, Kyoto, Japan). The prepared nanoemulsion was diluted with DIW (1/20, w/v) and
gently mixed for 1 min. The samples were loaded on the measurement cells maintained at 25 ◦C.
The pH of prepared formulation was determined using a pH meter (SevenEasy, Mettler-Toledo,
Zürich, Switzerland). We performed these preparation procedures twice more and evaluated the
physicochemical properties through the same process as above.

2.5.2. Drug Encapsulation Efficiency

To determine the drug encapsulation efficiency (EE) in nanoemulsion, the formulation was
centrifuged at 13,500× g for 15 min. We collected unencapsulated methotrexate from the supernatant.
Then, the supernatant was diluted with methanol to quantify the amount of unencapsulated drug by
UPLC-MS/MS [25]. The analysis conditions are briefly introduced in Section 2.6.2. Quantification of
Methotrexate in Biological Samples. We calculated EE as follows:

EE (%) =
amount o f methotrexate in f ormulation− amount o f methotrexate in supernatant

amount o f methotrexate in f ormulation
× 100

2.5.3. Stability Study

We tested the stability of the methotrexate-loaded nanoemulsion through measuring changes in its
physicochemical properties (droplet size, zeta potential, EE, and pH) over time. The samples were stored
at room temperature (25 ± 1 ◦C). The analyses were conducted 1, 3, 7, and 14 days after preparation.
The 14-day period set in this study was a period in which stability was sufficiently guaranteed to
carry out in vitro and in vivo studies after preparing formulation. Accordingly, the stability of the
formulation for a short period up to 14 days was confirmed.

2.5.4. Morphological Analysis

We examined the morphological features of methotrexate-loaded nanoemulsion using
field-emission transmission electron microscope (FE-TEM; JEM-2100F, JEOL Ltd., Tokyo, Japan).
Before observation, the samples were placed on a carbon-coated nickel grid and dried at 25 ◦C.
The samples were observed at an acceleration voltage of 200 kV.
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2.5.5. In Vitro Release Study

We conducted in vitro methotrexate release tests using dialysis [37,38] under different pH
environments (pH 1.2 (HCl/NaCl solution) and 7.4 (PBS solution)). In order to predict the drug
release pattern in gastric fluid and general in vivo environment following oral and intravenous
(IV) IV administration of formulation or drug, the in vitro environment was set to pH 1.2 and 7.4.
In other words, pH 1.2 and 7.4 environments set here potentially represent the gastric fluid and blood
environments, respectively. Briefly, dialysis tubes (molecular weight cut-off 12 kDa; Sigma-Aldrich)
containing 1.5 mL of methotrexate-loaded nanoemulsion and methotrexate solution were immersed into
10 mL of each pH medium and agitated at 37 ◦C and a rate of 50 opm in a water bath. Whole medium
(10 mL) was withdrawn 5, 10, 20, 30, 45, and 75 min after incubation, and the same volume of fresh
medium was immediately replaced. The amount of methotrexate released in each medium was
measured using UPLC-MS/MS.

2.6. In Vivo Studies of Nanoemulsion

2.6.1. Animal Experiments

Male Sprague–Dawley rats (7–9 weeks, 245–260 g) were purchased from Damul Science (Daejeon,
Republic of Korea). Prior to experiments, all rats were housed under environmentally controlled
temperature (23 ± 1 ◦C) and relative humidity (50 ± 5%). They were given a 12 h/12 h light/dark
cycle, with food and water provided ad libitum. Animal experiments were approved by Chonnam
National University Animal Experimental Ethics Committee, Republic of Korea (approval number:
CNU IACUC-YB-2017-47, 6.7.2017). The procedures were conducted according to the revised Guidelines
for Ethical Conduct in the Care and Use of Animals and the rules of Good Laboratory Practice. The rats
were fasted overnight before drug administration with free access to water, and then they were
randomly divided into one of four groups (n = 5 in each group) as follows: oral administration
for free methotrexate or methotrexate-loaded nanoemulsion at a dose of 0.06 mg/kg methotrexate
and IV administration for free methotrexate or methotrexate-loaded nanoemulsion at a dose of
0.024 mg/kg methotrexate. The dosage volume was 2 mL/kg for oral administration and 0.8 mL/kg
for IV administration. Herein, the doses of drug administered to rats were set in consideration of the
methotrexate concentration (0.03 mg/mL) in the nanoemulsion formulation optimized in this study.
Free methotrexate or methotrexate-loaded nanoemulsion was administered using oral gavage, and IV
administration was into the tail vein of lightly ether-anesthetized rats. Approximately 0.25-mL samples
of blood were taken from the jugular vein at predetermined time points (0, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8,
and 12 h after administration) and then placed in heparinized microtubes (Axygen, Inc., Union City,
CA, USA). After the blood samples were centrifuged at 10,000× g for 10 min, the separated plasma
samples were stored at −80 ◦C until analysis.

In addition, rats were also randomly divided into to the experimental groups described above
to evaluate the delivery of methotrexate to lymphatic system and tissues. After 2.5 h of drug
administration, whole blood was drawn from the rat abdominal aorta. Then, the lymphatic system
(axillary and mesenteric lymph nodes) and tissues (liver, kidney, spleen, and thymus) were collected.
These samples were diluted with phosphate buffered saline at a 1/4 (w/v) ratio and immediately
homogenized. The suspensions were stored at −80 ◦C until analysis.

2.6.2. Quantification of Methotrexate in Biological Samples

We determined the methotrexate concentrations in the rat plasma, lymph nodes, and tissues
using a validated UPLC-MS/MS method with reference to the analytical method in our previous
study [25]. Briefly, methotrexate in biological samples was extracted using the solvents mixed with
acetonitrile-ethyl acetate (9/1, v/v). Extracts were dried under nitrogen gas, and the dried residue was
reconstituted in the mobile phase and injected into the LC-MS/MS system. Optimized chromatographic
separation of methotrexate was conducted with a KINETEX core-shell C18 column (50 mm × 2.1 mm
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inner diameter, 1.7 µm particle size, Phenomenex, Torrance, CA, USA) at 40 ◦C. The mobile phase
condition was 0.1% (v/v) formic acid in water (mobile phase A) and acetonitrile (mobile phase B)
with a flow rate of 0.3 mL/min on the gradient control. Samples were quantified under positive
electrospray ionization using multiple reaction monitoring modes at m/z 454.7→308.1 for methotrexate
and m/z 180.0→110.1 for phenacetin (as an internal standard). The calibration curves obtained from all
biological samples were in the range of 0.1–1000 ng/mL, with correlation coefficients (r2) > 0.99.

2.6.3. Pharmacokinetic Analysis

Pharmacokinetic parameters were estimated by noncompartmental analysis using Phoenix
WinNonlin™ software (version 8.2, Certara, Princeton, NJ, USA). Area under the plasma
concentration-time curve (AUC) from 0 to t h (AUC0-t) was calculated by the linear trapezoidal rule.
AUC from 0 to infinity (AUC0–∞) was calculated as AUC0–t + Ct/k (Ct was the last measured concentration,
and k was the elimination rate constant in terminal phase). The maximum plasma concentration (Cmax)
and the time to reach Cmax (Tmax) were determined based on the plasma concentration-time curve.
Half-life (t1/2) was calculated by the formula 0.693/k. Clearance (CL) and volume of distribution (Vd) were
defined as dose/AUC0–∞, IV and dose/k·AUC0–∞, IV, respectively. Absolute oral bioavailability (F) for each
formulation was calculated as (doseIV·AUC0–∞, oral)/(doseoral·AUC0–∞, IV) × 100. Targeting efficiencies
of methotrexate to the lymphatic system and tissues were calculated as the ratio of the concentration of
methotrexate in lymph nodes or tissues to plasma at 2.5 h after administration in each group. All data
are expressed as mean ± standard deviation (SD).

2.7. Statistical Analysis

Statistical significance was analyzed using Student’s t test with significance at p < 0.05.
The Statistical Package for the Social Sciences (SPSS) software (version 25, IBM, Armonk, NY, USA)
was used for statistical analyses.

3. Results and Discussion

3.1. Screening of Solubility

To develop an optimal nanoemulsion, it is necessary to identify components with high solubility
for methotrexate. Excellent drug solubility in the oils and surfactants that constitute the nanoemulsion
can increase the drug loading capacity in the formulation, thereby improving the drug bioavailability
and target deliver. For this study, we selected the candidate oils and surfactants from among
substances widely used in pharmaceutical formulations including nanoemulsions [39,40]. The solubility
(at 25 ◦C) for methotrexate in various vehicles is presented in Figure 1. We observed the highest
solubility in olive oil (12.81 ± 3.21 µg/mL, p < 0.05), and therefore, we determined the oil phase
to be olive oil. Among the tested surfactants, Tween 80 and Labrasol showed higher solubility
(337.61 ± 108.58 and 339.04 ± 101.81 µg/mL, respectively) than other surfactants, and there was no
significant difference between the two (p > 0.05). Based on these results, we selected Tween 80 and
Labrasol as candidate surfactants.

As already mentioned above (Section 2.2. Screening of Solubility), we used ethanol as a co-surfactant
in this study. This is because ethanol as a co-surfactant can reduce the interfacial tension and provide
a flexible interfacial layer [34,41]. Several previous researchers used ethanol as a co-surfactant for
nanoemulsion [42,43]. In particular, to prepare methotrexate nanoemulsion, there was also a study on
using it as an co-surfactant after the solubility of ethanol for methotrexate was tested [35].

3.2. Pseudo-Ternary Phase Diagrams

Pseudo-ternary phase diagrams give information on the phase behaviors of mixtures with
various component concentrations [13,36]. Based on the results of the solubility screening test,
the pseudo-ternary phase diagrams were drawn using olive oil, water, and Tween 80 or Labrasol;
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Figure 2 depicts the diagram with water, olive oil and each surfactant, and the gray areas on the diagram
represent nanoemulsion zone that have a transparent appearance. Figure 2A,B show the phase diagrams
with Tween 80 and Labrasol used as surfactants, respectively. The area with Labrasol was broader,
and, thus, we used it in the next step to study the effects of combination with co-surfactant. The phase
diagrams with Smix at different ratios (0.5:1, 1:1, 2:1, and 4:1, v/v) are shown in Figure 2C–F. We observed
that the Smix with the smallest surfactant ratio (Figure 2C) showed the smallest nanoemulsion area and
that the largest area appeared when the ratio of surfactant and co-surfactant was 1:1 (v/v) (Figure 2D).
The nanoemulsion area gradually decreased as the surfactant ratio increased thereafter. Therefore,
we selected a 1:1 ratio (v/v) of Smix as the optimal combination for a stable nanoemulsion.
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3.3. Preparing the Nanoemulsion

As mentioned in the introduction, considering its properties and advantages, we judged the
W/O/W nanoemulsion to be a suitable formulation for improving lymphatic drug delivery and
bioavailability. In other words, W/O/W emulsions were expected to have better drug protection and
degradation prevention by external environment than single (W/O or O/W) emulsions. However,
in this regard, it seems necessary to conduct in-depth stability evaluation studies according to multiple
emulsions and single emulsions in the future.

To prepare a suitable W/O/W nanoemulsion for methotrexate, we next explored the appropriate
composition ratio of the formulation components. We also optimized the manufacturing process.

3.3.1. Surfactant/Co-Surfactant Ratio in Water-in-Oil (W1/O) Emulsion

Based on the obtained pseudo-ternary phase diagram, Smix is composed of surfactant (Labrasol)
and co-surfactant (ethanol) at a ratio of 1:1 (v/v). To determine the optimal ratio of Smix in emulsion,
the effect of Smix on droplet size was tested. Smix ratio (v/v) in W1/O emulsion was varied 40, 50,
and 60% while fixing the W1:O ratio as 1:4 (v/v). As shown in Table 1, the smallest W1/O emulsion
(379.4 ± 21.43 nm) was produced when the proportion of Smix was 60% (v/v). Moreover, on visual
inspection, the emulsion appeared homogeneous, and no phase separation was observed for more
than 24 h. The other two emulsions (40 and 50% Smix ratio (v/v) in W1/O) were 18.1 and 13.2 times
larger than the 60% Smix ratio (v/v). We observed rapid phase separation within 5 min, which indicates
the instability of these formulations; therefore, we determined the optimal ratio of Smix in W1/O
emulsion to be 60% (v/v) for a suitable W/O/W nanoemulsion. As the proportion of surfactant increases,
it appears that the particle size decreases due to effective emulsification at the interface. However,
an excessive amount of surfactant may cause formulation instability and in vivo toxic effects [44,45],
so conditions of more than 60% Smix (v/v) were excluded.

Table 1. Effect of Smix ratio (v/v) on the size of W1/O emulsion (at 25 ◦C, n = 3, mean ± SD).

Smix (%, v/v) W1/O (%, v/v) Size (nm)

40 12/48 6865.13 ± 438.91
50 10/40 5018.33 ± 52.21

60 † 8/32 379.4 ± 21.43

Smix means surfactant/co-surfactant mixture. † Selected.

3.3.2. Volume Ratio of Internal Water Phase to Oil Phase (W1:O) and W1/O Emulsion Phase to External
Water Phase (W1/O:W2)

To investigate the droplet size depending on the ratio of oil and water phases (W1 and W2),
the formulation was prepared by varying the phase volume ratio of W1:O and W1/O:W2. First, W/O/W
emulsions were prepared by varying the W1:O ratio (v/v) as 10:90, 20:80, 30:70, and 40:60 while W1/O:W2

ratio (v/v) was arbitrarily fixed at 1:3. The Smix ratio (v/v) in W1/O emulsion was set to 60%, which was
optimized in the previous test (mentioned in 3.3.1. Surfactant/co-surfactant ratio in water-in-oil (W1/O)
emulsion). Table 2 shows that the smallest nanoemulsion, 449.27 ± 31.68 nm, was produced with a
W1:O ratio of 20:80 (v/v). The differences in droplet size were significant between the various volume
ratios (p < 0.05), and from the results, we selected 20:80 (v/v) as the optimal ratio.

Second, we measured the nanoemulsion size changes with the different W1/O:W2 ratios when
W1:O was fixed at 20:80 (v/v) and the Smix ratio (v/v) in W1/O emulsion was also set to 60% as optimized
in the previous test (3.3.1. Surfactant/co-surfactant ratio in water-in-oil (W1/O) emulsion). Among the
three W1/O:W2 volume ratios (v/v), 1:3 showed the smallest emulsion (449.27 ± 31.68 nm; shown in
Table 3). The results suggested that the 1:3 ratio (v/v) of W1/O:W2 was suitable for W/O/W nanoemulsion.
Finally, we determined the optimal component composition for the W1/O/W2 emulsion as 15% (v/v) for
Smix, 2% (v/v) for W1, 8% (v/v) for O, and 75% (v/v) for W2.
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Table 2. Effect of W1:O ratio (v/v) on droplet size of double emulsion (at 25 ◦C, n = 3, mean ± SD).

W1:O Ratio (v/v) Size (nm)

10:90 1130.73 ± 112.04
20:80 † 449.27 ± 31.68
30:70 586.73 ± 20.87
40:60 5035.20 ± 579.16

Smix ratio in W1/O emulsion was fixed as 60% (v/v). W1/O:W2 ratio was fixed as 1:3 (v/v). † Selected.

Table 3. Effect of W1/O:W2 ratio (v/v) on droplet size of double emulsion (at 25 ◦C, n = 3, mean ± SD).

W1/O:W2 Ratio (v/v) Size (nm)

1:2 1142.17 ± 102.62
1:3 † 449.27 ± 31.68
1:4 1812.30 ± 232.11

Smix ratio in W1/O emulsion was fixed as 60% (v/v), W1/O ratio was fixed as 20:80 (v/v), † Selected.

3.3.3. Ratio of Methotrexate:Oil in Nanoemulsion

To determine the optimal ratio of methotrexate that can be enclosed in nanoemulsion, the size
change was confirmed by varying the ratios of methotrexate and oil phase to 0:1, 1:4, 1:2, 1:1, and 2:1 (w/v).
The composition of W1/O/W2 emulsion was as follows: 15% (v/v) for Smix, 2% (v/v) for W1, 8% (v/v) for
O, and 75% (v/v) for W2. As shown in Table 4, compared with the blank nanoemulsion (containing
no methotrexate, 0:1, w/v), the remaining conditions containing drug all increased in size. This may
be because as drug is encapsulated in the formulation, the internal phase of formulation increases,
resulting in an increase in droplet size compared to the blank. The results show the same trend as
the previous study [25]. In addition, when methotrexate was contained with a ratio of 1:2 (w/v),
the droplet size was the smallest at significance of p < 0.05, and at other ratios, the size increased
significantly. This might be related to the size change and instability of the nanoemulsion depending
on the methotrexate ratio. Based on our results, ratio of methotrexate and oil was optimized to be
1:2 (w/v).

Table 4. Effect of methotrexate/oil ratio (w/v) on droplet size of double emulsion (at 25 ◦C, n = 3, mean± SD).

Methotrexate/Oil Ratio (w/v) Size (nm)

0:1 449.27 ± 31.68
1:4 1142.00 ± 117.55

1:2 † 530.53 ± 40.19
1:1 713.43 ± 43.75
2:1 2206.67 ± 249.35

The composition of W1/O/W2 emulsion consisted of 15% (v/v) for Smix, 2% (v/v) for W1, 8% (v/v) for O, and 75% (v/v)
for W2. † Selected.

3.3.4. Number of Microfluidizer Passes

In this study, we used a microfluidizer to reproducibly formulate a fine, homogeneous nano-sized
emulsion. Microfluidization requires multiple passes to achieve a constant droplet size [46].
To evaluate the influence of the number of microfluidizer passes used to make the W1/O emulsion,
the physicochemical properties of the double emulsion were measured by varying the number of
passes from 0 to 5. Figure 3 shows the size and zeta potential of the methotrexate-loaded W/O/W
nanoemulsions according to the number of passes. Reflecting the results of the optimization tests
performed above, the composition of the W1/O/W2 emulsion was 15% (v/v) for Smix, 2% (v/v) for
W1, 8% (v/v) for O, and 75% (v/v) for W2. The ratio of methotrexate and oil was 1:2 (w/v). As the
number of passes increased from 0 to 3, the mean droplet size decreased from 530.53 ± 40.19 to
173.77 ± 5.76 nm. Moreover, the zeta potential had negative values under −30 mV (−42.40 ± 1.25 to
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−35.63 ± 0.78 mV), without much difference. In three microfluidizer passes, the smallest nanoemulsion
was 173.77 ± 5.76 nm (p < 0.05). However, the emulsion sizes increased dramatically with four and
five passes, and the zeta potentials increased close to neutral (−2.20 ± 1.21 and −0.37 ± 0.31 mV).
This appears to have resulted in formulation instability or changes (in size and zeta potential) due to
excessive physical stress.
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Figure 3. Effect of the number of microfluidizer passes on droplet size and zeta potential of
methotrexate-loaded water-in-oil-in-water (W/O/W) nanoemulsion. Each value represents the mean
and SD (n = 3, at 25 ◦C). * p < 0.05 in droplet size. The composition of W1/O/W2 emulsion consisted of
15% (v/v) for Smix, 2% (v/v) for W1, 8% (v/v) for O, and 75% (v/v) for W2. The ratio of methotrexate and
oil was 1:2 (w/v).

The physicochemical properties of emulsion including droplet size and zeta potential are affected
by the number of passes through a microfluidizer, which gives high shear stress to droplets. In our
study, the droplet size decreased in up to three passes. This is because the repeated passes through the
microfluidizer increase the probability that each droplet will experience high pressure [47]. However,
the size increased rapidly, and its zeta potential also changed rapidly after exceeding three passes.
Zeta potential indicates physical stability and electrostatic interactions between particles [35,48].
Emulsions with high zeta potential of greater 30 (negative or positive) are considered to be electrically
stable, whereas emulsions with a low zeta potential tend to coagulate or flocculate, possibly resulting
in poor physical stability [49]. Excessive shear of the microfluidizer appeared to cause the breakdown
and instability of the formulation in four and five passes. Based on these findings, we concluded that
three passes of the microfluidic cycle best stabilized the nanoemulsion of the composition and ratio
we selected.

3.4. In Vitro Characterization

3.4.1. Physicochemical Characteristics

We next evaluated the selected nanoemulsion for droplet size, zeta potential, EE, and pH. The final
nanoemulsion consisted of 15% (v/v) for Smix, 2% (v/v) for W1, 8% (v/v) for O, 75% (v/v) for W2, 1:2 ratio
(w/v) of methotrexate:oil, and three microfluidizer passes (all based on the optimization test results).

The nanoemulsion containing methotrexate was 173.77 ± 5.76 nm in size. In addition,
the polydispersity index value was 0.10, and a uniform size distribution was shown. The proper size
of nanoemulsion is an important factor because tiny particles (below 10 nm) can be eliminated by
renal filtration, while large particles (above 200 nm) can be easily recognized by the reticuloendothelial
system [50,51]. In other words, the size of methotrexate-loaded nanoemulsion we prepared in this study
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was within the target range. As mentioned above, emulsions primarily require zeta potential higher
than ±30 mV, which ensures the physical stability. The zeta potential of the nanoemulsion we prepared
was −35.63 ± 0.78 mV, indicating a stable formulation. The EE and pH of prepared nanoemulsion
were 90.37 ± 0.96% and 4.07 ± 0.03, respectively; the pH of the formulation may be attributed to the
weakly acidic nature of methotrexate. According to previous studies [52,53], the suitable pH range for
both oral and IV administration was 2–9. Therefore, the pH of methotrexate-loaded nanoemulsions
prepared in this study was judged to be suitable for both oral and IV administration.

We assessed the stability of the nanoemulsion formulation based on the changes in size,
zeta potential, EE, and pH after storage at room temperature under shading conditions after two weeks.
Compared with the properties of nanoemulsion immediately after formulation (0 day), there were
no significant differences (p > 0.05) in size, zeta potential, EE, and pH at 1, 3, 7, and 14 days after
preparation (Table 5). These results indicate that the methotrexate-loaded nanoemulsion was stable
over 14 days.

Table 5. Stability profiles on physicochemical characteristics of nanoemulsion (at 25 ◦C, n = 3, mean ± SD).

Time (Day) Size (nm) Zeta Potential (mV) Encapsulation Efficiency (%) pH

0 173.77 ± 5.76 −35.63 ± 0.78 90.37 ± 0.96 4.07 ± 0.03
1 178.23 ± 6.95 −35.57 ± 0.65 90.20 ± 1.21 4.08 ± 0.06
3 178.83 ± 9.14 −35.43 ± 0.78 90.77 ± 1.12 4.11 ± 0.05
7 178.47 ± 4.96 −35.23 ± 0.80 89.57 ± 0.47 4.06 ± 0.05

14 178.57 ± 5.73 −34.93 ± 0.65 90.13 ± 1.46 4.09 ± 0.06

The condition of W1/O/W2 emulsion consisted of 15% (v/v) for Smix, 2% (v/v) for W1, 8% (v/v) for O, 75% (v/v) for W2,
1:2 ratio (w/v) of methotrexate:oil, and three microfluidizer passes.

3.4.2. Morphology

The morphological features of the finally optimized methotrexate-loaded nanoemulsion obtained
using FE-TEM are shown in Figure 4. The conditions of the finally prepared formulation are as follows:
(1) 15% (v/v) for Smix, 2% (v/v) for W1, 8% (v/v) for O, 75% (v/v) for W1 in W/O/W2 nanoemulsion (2)
1:2 ratio (w/v) of methotrexate:oil, and (3) three microfluidizer passes. The formulation was spherical,
and the droplet size seen on FE-TEM is in agreement with the result of DLS measurement.
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Figure 4. Field-emission transmission electron microscope (FE-TEM) image of methotrexate-loaded
nanoemulsion (15% (v/v) for Smix, 2% (v/v) for W1, 8% (v/v) for O, 75% (v/v) for W2, 1:2 ratio (w/v) of
methotrexate:oil, and three microfluidizer passes).
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3.4.3. In Vitro Drug Release

We investigated the initial in vitro release pattern of the nanoemulsion and free methotrexate
using dialysis membrane filtration. Herein, the prepared nanoemulsion consisted of 15% (v/v) for
Smix, 2% (v/v) for W1, 8% (v/v) for O, 75% (v/v) for W2, 1:2 ratio (w/v) of methotrexate:oil, and three
microfluidizer passes. Taking into account the molecular weight of the drug and the characteristics of
the emulsion type, we expected the release to occur within a short period of time, and thus, this short
period was our focus. In the previously reported studies [13,54], drug release from formulations,
such as emulsions, proceeded quickly within a relatively short time (about 60 min). Therefore, in this
study, in vitro release test was set up to 75 min after incubation by referring to these previous studies.
In Figure 5, in vitro release of methotrexate from the nanoemulsion was faster than that of free drug
in both pH environments. The cumulative degrees of released methotrexate from the nanoemulsion
for 75 min were 1.4 times (pH 7.4) and 2 times (pH 1.2) higher than the control. In addition, the drug
release rate in the nanoemulsion was significantly higher at all time points; we attributed this result to
the properties of nanoemulsion. Nanoemulsions have nano-sized small droplets, large surface area,
and high interfacial area required for dissolution [35,55]. Therefore, the small droplet size and large
surface area due to the structure or physical properties of nanoemulsions could cause rapid drug
release in the media and passage through the dialysis membrane (by further reducing the free energy).
In addition, it is thought that the surfactant contained in the formulation could have influenced
the permeability of dialysis membrane. The in vitro release pattern (rapid drug release from the
formulation) observed in our study tended to be consistent with previous related studies [13,55].
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(A) and pH 7.4 (B) medium. Values are presented as the mean ± standard deviation (n = 3). * p < 0.05
compared with free methotrexate.

Additionally, more free methotrexate was released at pH 7.4 than at pH 1.2 until the last 75 min.
This is because methotrexate is a weak acid, and thus, it is more soluble in a neutral environment than
in an acidic environment. In case of nanoemulsion in contrast, there was no significant difference in the
release rate by pH environment until the final time. This was likely because the drug was protected
from the external environment by being encapsulated in the nanoemulsion.

3.5. In Vivo Studies

3.5.1. Quantification of Methotrexate in Biological Samples

As mentioned in Section 2.6.2. Determining Methotrexate in Biological Samples, we quantified the
methotrexate concentrations in rat biological samples following our previously conducted method [25].
We thoroughly validated UPLC-MS/MS as a method for determining the concentrations for linearity,
precision, accuracy, stability, recovery, and matrix effect following Food and Drug Administration
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validation guidance [56]. The relevant contents were presented in detail in our previous report [25].
The analytical method we used to quantify methotrexate in rat samples was well applied in this study.

3.5.2. Pharmacokinetics and Targeting Delivery Study

In the two rat groups that received oral administration of methotrexate (free and as methotrexate-
loaded nanoemulsion), we observed no significant side effects or lethality within at least 24 h after
administration. In contrast, in our preliminary study, we observed 60% mortality and hematuria in rats
when a volume of 1.5 mL/kg of methotrexate-loaded nanoemulsion was administered intravenously;
moreover, lethality occurred within 5 min after administration of the formulation. It appeared
that a relatively high amount of surfactant in formulation was injected into blood vessels to cause
hemolysis [57]. Accordingly, when we applied a lower volume of 0.8 mL/kg in IV administration,
we observed no side effects including lethality or hematuria.

We conducted pharmacokinetic analysis of methotrexate after oral or IV administration of free
methotrexate or methotrexate-loaded nanoemulsion to rats. Plasma concentration-time profiles
of methotrexate are presented in Figure 6. Compared with the control (free methotrexate),
the nanoemulsion formulation contributed to significantly (p < 0.05) higher plasma methotrexate
concentrations over the whole time period, and the drug remained in plasma for a longer period in
both oral and IV administration. When nanoemulsion was administered, methotrexate was detected in
rat plasma up to 12 h after both oral and IV administration, whereas free methotrexate was detected
only up to 8 h after administration. Methotrexate was eliminated from the nanoemulsion more slowly
in the plasma than was the free drug.
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administration of free methotrexate (-•-) or methotrexate-loaded nanoemulsion (-#-). Data are presented
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Table 6 lists the pharmacokinetic parameters of methotrexate estimated by noncompartmental
analysis. The AUC, Cmax, t1/2, and Vd of methotrexate from nanoemulsion were significantly greater
than those of control, with lower CL (p < 0.05). This result is also consistent with the pharmacokinetic
finding of the slower elimination of methotrexate in nanoemulsion. In contrast, there were no significant
differences in Tmax after oral administration between the two formulations, indicating that there is
no significant difference in the methotrexate absorption rate in the gastrointestinal tract between free
drug and nanoemulsion. However, when comparing the Cmax between formulations, the degree of
drug absorption in the nanoemulsion was greater than that of free drug. In addition, nanoemulsion
increased the F of methotrexate from 12.71 to 38.77%, about three times higher than in the control
group. In our results, nanoemulsion improved the bioavailability of methotrexate and enabled its long
retention in the blood.
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Table 6. Pharmacokinetic parameters of methotrexate in rats after oral or intravenous administration
of free methotrexate and methotrexate-loaded nanoemulsion (n = 5, mean ± SD).

Parameters
Oral (0.06 mg/kg as Methotrexate) IV (0.024 mg/kg as Methotrexate)

Free Nanoemulsion Free Nanoemulsion

AUC0–t (ng·h/mL) 29.31 ± 7.70 288.35 ± 51.14 * 93.10 ± 17.72 268.94 ± 41.85 *
AUC0–∞ (ng·h/mL) 29.62 ± 7.77 291.34 ± 54.01 * 93.20 ± 17.70 300.56 ± 36.10 *

Cmax (ng/mL) 12.13 ± 3.38 81.72 ± 23.01 * - -
Tmax (h) 0.70 ± 0.21 1.35 ± 0.60 - -
t1/2 (h) 1.11 ± 0.20 1.58 ± 0.30 * 0.83 ± 0.15 6.38 ± 1.77 *

CL (mL/h·kg) - - 263.98 ± 43.02 80.94 ± 11.38 *
Vd (mL/kg) - - 320.49 ± 88.50 748.38 ± 232.69 *

F (%) 12.71 38.77 - -

* p < 0.05 between free methotrexate and nanoemulsion groups.

To evaluate the improvement in lymphatic delivery of the formulation, we compared lymphatic
targeting efficiency by calculating the ratio of the concentration in lymph nodes to the concentration
in plasma. Overall, drug concentration and targeting efficiency in axillary and mesenteric lymph
nodes were significantly higher (p < 0.05) with methotrexate-loaded nanoemulsion in both oral and IV
routes (Figure 7). The nanoemulsion enhanced lymphatic targeting efficiency of methotrexate from
4.8 to 6.9 times. The results showed that nanoemulsion more effectively transported methotrexate
to the lymphatic tissue, and we expect that this increased lymphatic target delivery would allow
for lower drug doses in clinical use. The size characteristics of nanoemulsions might be related
to the enhanced lymphatic delivery of methotrexate in both oral and IV routes. In other words,
the nano-sized formulation would have increased passive diffusion and delivery of drug to lymphatic
tissue. In addition, oral administration of nanoemulsion showed a stronger rate of delivery to the
mesenteric lymph node than to the axillary node, whereas the targeting after IV administration was
greater to the axillary lymph node. We consider that this difference occurred because of the difference
in distribution caused by the different administration routes. Moreover, Labrasol, a surfactant that
enhances intestinal membrane permeability, might have helped to increase the absorption of drug in
the gastrointestinal tract [58,59].
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Figure 7. Lymphatic targeting efficiency of methotrexate to axillary and mesenteric lymph nodes at
2.5 h after oral (A) or intravenous (B) administration of free methotrexate and methotrexate-loaded
nanoemulsion to rats. Vertical bars represent standard deviation of the mean (n = 5). * p < 0.05
compared with free methotrexate.

To confirm the distribution in tissues rather than in the lymphatic system, we quantified the
methotrexate in four rat organs: the spleen and thymus, which are immune-related organs, and the
liver and kidney, which are known as the sites of major methotrexate side effects. We calculated
targeting efficiency for each organ using the same method we used to measure lymphatic targeting



Pharmaceutics 2020, 12, 978 15 of 18

efficiency; Figure 8 shows the methotrexate targeting efficiencies in the spleen, thymus, liver, and kidney.
Contrary to the results in lymph nodes, there were no distinct differences in targeting delivery to
most tissues between nanoemulsion and free drug. When the prepared emulsion was administered
intravenously, the targeting efficiency in the spleen was higher, but the efficiency to the liver, kidney,
and thymus was not significantly different from that in the control group with both oral and IV
administration. In particular, we confirmed that compared with free drug, the nanoemulsion did not
distribute significantly more methotrexate to the liver and kidney, which are organs related to major
methotrexate side effects, while increasing the transition to lymph nodes.
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To summarize the results of tissue distribution study, we confirmed that nanoemulsion was a
formulation that could significantly improve lymphatic delivery without significantly greater side
effects of methotrexate than free methotrexate at the same drug dose. This suggests the possibility of
improving the therapeutic effect of methotrexate, which is widely used for immune-related diseases
in addition to anticancer treatment, by delivering more methotrexate to the immune system than
conventional drug through nanoemulsification. Based on this pharmacokinetic study, it is necessary to
study the efficacy of methotrexate-loaded nanoemulsions for disease models in the future. Moreover,
it can be expanded to clinical studies of methotrexate-loaded nanoemulsions.

4. Conclusions

In this study, we prepared nanoemulsion as a drug delivery system to improve lymphatic
delivery of methotrexate. In consideration of the solubility of methotrexate, we selected olive oil and
Labrasol as the appropriate oil and surfactant for the nanoemulsion. We optimized the preparation
process and conditions using microfluidization to prepare an optimal nano-sized W/O/W emulsion.
By evaluating the physicochemical properties, we confirmed that the prepared nanoemulsion was
in a stable, uniform nano-sized formulation. Additionally, an in vitro release test showed that
methotrexate-loaded nanoemulsion released the drug more rapidly than the free drug was released.
From in vivo studies, we observed significantly elevated Cmax, AUC, half-life, and bioavailability in
both oral and IV administration of nanoemulsion, and the targeting efficiency to lymph nodes also
significantly improved. We conclude that the nanoemulsion we prepared in this study could be a good
candidate formulation for improving lymphatic transport of drugs. Moreover, it might also contribute
to lowering clinical drug doses and, thus, reducing side effects.
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