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Abstract: Focused ultrasound (FUS) coupled with microbubbles (MB) has been found to be a
promising approach to disrupt the blood-brain barrier (BBB). However, how this disruption affects
drug transport remains unclear. In this study, drug transport in combination therapy of liposomes and
FUS-MB-induced BBB disruption (BBBD) was investigated based on a multiphysics model. A realistic
3D brain tumour model extracted from MR images was applied. The results demonstrated the
advantage of liposomes compared to free doxorubicin injection in further improving treatment when
the BBB is opened under the same delivery conditions using burst sonication. This improvement was
mainly due to the BBBD-enhanced transvascular transport of free doxorubicin and the sustainable
supply of the drug by long-circulating liposomes. Treatment efficacy can be improved in different
ways. Disrupting the BBB simultaneously with liposome bolus injection enables more free drug
molecules to cross the vessel wall, while prolonging the BBBD duration could accelerate liposome
transvascular transport for more effective drug release. However, the drug release rate needs to be
well controlled to balance the trade-off among drug release, transvascular exchange and elimination.
The results obtained in this study could provide suggestions for the future optimisation of this
FUS-MB–liposome combination therapy against brain cancer.

Keywords: blood-brain barrier disruption; brain tumour; drug transport; focused ultrasound;
liposome-mediated delivery; mathematical model

1. Introduction

Malignant glioma is highly invasive and aggressive, with a high mortality rate and short survival
time [1]. Although a number of drugs have been developed with outstanding anticancer effectiveness
shown in preclinical trials, their clinical performance for treating brain tumours remains disappointing.
This could be attributed to the blood-brain barrier (BBB) [2], which is able to prevent over 98% of drugs
from crossing the blood vessel wall in routine chemotherapy [3].

Focused ultrasound (FUS) coupled with systemically injected microbubbles (MB) has been found
to be a promising approach by which to open the BBB [4]. Despite recovering gradually after the
sonication ends [5], the temporary blood–brain barrier disruption (BBBD) can successfully enable
intravenously administrated drugs to enter brain tumours for cell killing. This enhanced transvascular
transport could be more significant for drugs like doxorubicin, to which the BBB is normally nearly
impermeable [6,7]. Given that its clinical use is highly limited by serious adverse effects, especially
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cardiotoxicity, doxorubicin in a liposome-encapsulated form has been approved by the FDA as an
alternative [8]. However, it is not clear how BBBD influences drug transport in liposome-mediated
delivery, which can largely determine delivery outcomes and treatment efficacy.

Numerical simulation has become an effective way to study chemotherapy [9]. It has the advantage
of being able to incorporate realistic tumour and drug properties to mimic multiple drug-delivery
processes, which are difficult to observe directly in in vivo experiments. An initial mathematical
model was set up to examine the roles of different intra-tumoural environments on the delivery
of antibodies [10–12]. In subsequent developments, mathematical descriptions of more realistic
and complex processes were incorporated to tailor the model to different delivery systems and
strategies [13–16]. The delivery of doxorubicin under various delivery conditions has been studied
extensively by means of numerical simulation [17–20], while the performance of free doxorubicin in
combination with FUS-induced BBBD has been evaluated based on an idealised tumour model in
2D [21]. However, there is still a lack of modelling studies on liposome-mediated delivery coupled
with FUS-MB-induced BBBD.

This simulation study aimed to examine the effects of FUS-MB-induced BBBD on drug transport
in liposome-mediated drug delivery. A realistic 3D geometrical model of a brain tumour and its
surrounding tissue was reconstructed from magnetic resonance (MR) images. The multiphysics model
adopted incorporated key delivery processes including FUS- and MB-induced BBBD and its recovery;
drug exchange among blood, tumour and normal tissues; drug convective and diffusive transport in
the interstitial fluid flow; release from liposomes; drug physical degradation and metabolic reactions;
binding with proteins and cell uptake; etc. The delivery outcomes, including the cytotoxicity to tumour
cells and the risk of cardiotoxicity, were evaluated in terms of drug exposure over time in the brain
tumour and blood circulatory system, respectively.

2. Materials and Methods

2.1. Mathematical Model

This mathematical model consisted of several submodules in order to describe the interlinked
physiological and physicochemical processes involved in the drug delivery. These included the
interstitial fluid flow across the entire brain and transport of liposomal and/or free drug among the
blood circulatory system and different tissue compartments.

2.1.1. Interstitial Fluid Flow

Microvasculature in solid tumours is elongated, dilated and tortuous, and its morphological
characteristics can vary considerably with the tumour’s specific type and growth stage [22]. The distance
between capillaries is around 33–98 µm, which is 2–3-fold lower than the dimension of both the tumour
and its surrounding tissues [12]. Hence, a brain tumour and its surrounding tissue can be treated
as porous media, where the Navier–Stokes equation is applicable to describe the incompressible,
Newtonian interstitial fluid flow. The function of microvasculature can then be considered a source
term in the mass equation [11], as follows.

∇·v = Fb (1)

∇(ρvv) = −∇pi + µ∇2v−
(µ
κ

)
v (2)

where the velocity and pressure of interstitial fluid flow are represented by v and pi, respectively.
ρ and µ denote the density and viscosity of interstitial fluid, respectively, and κ is the tissue’s Darcian
permeability. Starling’s law is used to calibrate the flux of fluid loss from blood (Fb).

Fb = Kb
S
V
[pb − pi − σT(πb −πi)] (3)



Pharmaceutics 2020, 12, 69 3 of 22

where pb is the blood pressure and Kb is the hydraulic conductivity of the blood vessel wall. The vascular
density is represented by S/V, which is defined as the area of blood vessel wall in the total tissue
volume. σT is the averaged osmotic reflection coefficient for proteins in blood. πb and πi are the
osmotic pressures of blood and interstitial fluid, respectively.

2.1.2. Direct Delivery of Free Doxorubicin

Figure 1 shows the transport processes of non-encapsulated doxorubicin delivered via bolus
injection. The doxorubicin concentration (C) in the intravascular space (IVS) can be described by

CIVS =
Dose
VF,d

e−kF,ct (4)

where Dose represents the total amount of the drug used in the treatment, and t is time. VF,d stands
for the drug distribution volume, and kF,c is its plasma clearance rate. Free doxorubicin is able to
associate and dissociate with proteins in a dynamic manner towards equilibrium [20]. Therefore, the
intravascular concentration of free doxorubicin (CF,IVS) can be calibrated by the mass conservation
equation as follows.
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ultrasound-and-microbubble (FUS-MB)-induced blood–brain barrier disruption (BBBD). Red dashed
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CIVS = CF,IVS + CB,IVS = CF,IVS(1 + KIVS) (5)

where CB,IVS denotes the concentration of bound doxorubicin in blood and KIVS is the constant of drug
binding with proteins.

Both the brain tumour and its surrounding tissue can be briefly divided into the intracellular
space (ICS), cell membrane (CM), and extracellular space (ECS). Governed by the mass conservation
equation, the free doxorubicin concentration in the entire tissue (CF) can be expressed in the form
of [16,23]

∂CF

∂t
= υECSDF,ECS∇

2CF,ECS −∇·(υECSvCF,ECS) + υECSEx(CF,IVS, CF,ECS) − υECSkF,eCF,ECS − υICSkF,eCF,ICS −
∂CB

∂t
(6)

where υ refers to the volume fraction of each tissue compartment and kF,e is the drug’s elimination rate
due to the drug physical degradation and metabolic reactions.
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The two-way exchange of free doxorubicin between IVS and ECS is determined by the convective
transport with fluid loss from blood and diffusion driven by the transvascular concentration gradient.

Ex(CF,IVS, CF,ECS) =
[
Fb(1− σF)CF,IVS + PF

S
V
(CF,IVS −CF,ECS)

PeF

ePeF − 1

]
(7)

where PF is the transvascular permeability of free doxorubicin, which is a function of time when the

FUS-MB induced BBBD takes place. The Péclet number (PeF) is defined as PeF =
Fb(1−σF)

PFS/V .
Two assumptions are further involved at this point: (I) the dynamic equilibrium of free doxorubicin

concentration can be achieved in different tissue compartments [24] (PICS−ECS = CF,ICS/CF,ECS;
PCM−ECS = CF,CM/CF,ECS) and (II) the concentration of bound drug is linearly related to that of the
drug in its free from [20] (KECS = CB,ECS/CF,ECS; KICS = CB,ICS/CF,ICS). Equation (6) can thus be
rewritten as

∂CF,ECS

∂t
= D∗F,ECS∇

2CF,ECS − v∗·∇CF,ECS − k∗F,eCF,ECS + Ex∗(CF,IVS, CF,ECS) (8)

where v∗ = (υECS/ω)v is the apparent velocity of interstitial fluid flow, D∗F,ECS = (υECS/ω)DF,ECS is
the apparent diffusion coefficient of free drug, k∗F,e = [(υECS + υICS)kF,e + Fb]/ω refers to the apparent
drug elimination rate in tissue, Ex∗(CF,IVS, CF,ECS) = υECSEx(CF,IVS, CF,ECS)/ω is the apparent drug
exchange between IVS and ECS in both the brain tumour and normal tissue and ω is defined as
ω = υECS(1 + KECS) + υICSPICS−ECS(1 + KICS) + (1− υECS − υICS)PCM−ECS.

2.1.3. Delivery of Liposome-Encapsulated Doxorubicin

The drug transport in liposome-mediated delivery via intravenous administration is schematically
shown in Figure 2. The pharmacokinetics of liposome-encapsulated doxorubicin (CL,IVS) can be
expressed as

CL,IVS =
Dose
VL,d

e−(kL,c+krel)t (9)

in which VL,d is the distribution volume of liposomes and kL,c is the plasma clearance rate. krel denotes
the drug release rate.
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The extracellular concentration of liposomal doxorubicin (CL,ECS) can be calculated by

∂CL,ECS

∂t
= DL,ECS∇

2CL,ECS −∇·(vCL,ECS) − krelCL,ECS + Ex(CL,IVS, CL,ECS) (10)
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where DL,ECS is the diffusion coefficient of liposomes in tissue ECS. Ex(CL,IVS, CL,ECS) is defined in the
same way as in Equation (7).

The intravascular concentration of free doxorubicin (CF, IVS) is determined by the transvascular
exchange between IVS and tissue ECS, drug release from liposomes, binding with proteins and
plasma clearance.

∂CF,IVS

∂t
= krelCL,IVS −

Vtissue
VF,d

Ex(CF,IVS, CF,ECS) − kF,cCF,IVS −
∂CB,IVS

∂t
(11)

where Vtissue is the volume of either brain tumour or its surrounding tissue. The extracellular
concentration of free doxorubicin (CF,ECS) is governed by

∂CF,ECS

∂t
= D∗F,ECS∇

2CF,ECS − v∗·∇CF,ECS − k∗F,eCF,ECS + Ex∗(CF,IVS, CF,ECS) + k∗relCL,ECS (12)

where k∗rel = krel/ω refers to the apparent drug release rate from liposomes.

2.2. Model Geometry

The 3D geometrical model of a brain tumour and surrounding normal tissue was reconstructed
from anonymous MR images, which were acquired in three orthogonal planes. These images were
stored on the image database TCIA, and are available for scientific purposes under a Creative
Commons Attribution 3.0 Unported License [25,26]. Each image slice was 1 mm thick, and comprised
256 × 256 pixels. The dimension of each pixel was also 1 mm. Figure 3A shows a representative image
slice as used in this study.
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Figure 3. Model geometry. (A) MR image, and (B) reconstructed 3D geometry of brain tumour (orange)
and its surrounding normal tissue (grey). The brain ventricle is coloured in cyan.

The brain tumour, ventricle and normal tissue were segmented based on the local signal intensity
on each image slice using MIMICS (Materialise HQ, Leuven, Belgium). After being smoothed, these
reconstructed 3D surfaces were imported into ANSYS ICEM CFD (ANSYS Inc., Canonsburg, PA, USA)
to generate the computational mesh. The final volumetric mesh was composed of 4.6 million tetrahedral
elements, which were tested to be fine enough to eliminate the grid-quality dependence. The 3D model
geometry is shown in Figure 3B, where the volume of the brain tumour and its surrounding tissue
were 2.47 × 10−5 m3 and 1.39 × 10−3 m3, respectively.

2.3. Model Parameters

Given that the simulation time window was much shorter than that of tumour growth, the biological
and geometrical properties of brain tumour and normal tissue, as well as the transport properties of
anticancer agents, were treated as being independent of time [17]. The baseline value of each parameter
with respect to its category is listed in Tables 1 and 2. In contrast to doxorubicin, which is unable to
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penetrate the BBB alone [6,7], surface modification with certain ligands successfully improves the
liposome transvascular transport in brain tumour [27,28]. Therefore, the transvascular permeability of
doxorubicin was assumed to be zero without BBBD, while the innate permeability of liposomes was
set as 3.4 × 10−9 m/s [29] in the brain tumour.

Drug transvascular permeation upon BBBD can be described by an exponential decay function [21]
as follows.

P(t) =

P0 + Ps t < Ts

P0 + Ps exp[−kr(t− Ts)] t ≥ Ts
(13)

where P0 is the drug instinct transvascular permeability and Ps refers to the enhancement due to the
BBBD. Ts is the sonication duration. For the small molecular drugs like free doxorubicin, the enhanced
permeability correlates to its molecular weight (MW) [21]:

PMW/PGd−DPTA = 1− 0.5lg(MW) (14)

in which PGd−DPTA is the transvascular permeability of Gd-DPTA, which was measured to
be 2.0 × 10−6 m/s [30] when 0.6 MPa FUS was applied. Under similar sonication conditions,
the transvascular permeability of 120 nm liposomes was about 4.25 times higher than the baseline
value [31]. kr stands for the BBBD recovery rate, which can be calibrated using the semi-empirical
formula [32]

kr = ln2
(
1 + 0.21d2

H

)
/2.34× 104 (15)

where dH is the hydrodynamic diameter (in nm) of the anticancer agents, and can be predicted based
on the Einstein–Stokes equation [32].

Table 1. Parameters for chemotherapeutic drugs *.

Symbol Parameter Unit Liposome Doxorubicin

PICS-ECS Partition coefficient between ICS and ECS - - 1.0 [33]
PCM-ECS Partition coefficient between CM and ECS - - 0.3 [34]

KIVS, KECS, KICS Binding constant in IVS, ECS and ICS - - 3.0 [35]

DECS Diffusion coefficient in tissue ECS m2/s 9.0 × 10−12 (T) [36]
5.8 × 10−12 (N) [36]

3.4 × 10−10 (T) [17]
1.6 × 10−10 (N) [17]

P0 Transvascular permeability with BBBD m/s 3.4 × 10−9 (T) [29]
0.0 (N)

0.0 (T)
0.0 (N)

σ Drug osmotic reflection coefficient - 0.95 (T) [37]
1.0 (N) [37]

0.15 (T) [17]
0.15 (N) [17]

ke Drug elimination rate in tissue s−1 - 5.8 × 10−4 [17]
kc Drug clearance rate in blood s−1 3.9 × 10−6 [38] 2.4 × 10−3 [39]
krel Drug release rate from liposomes s−1 1.0 × 10−4 [40] -
Vd Distribution volume m3 6.4 × 10−3 [36] 7.7 × 10−3 [39]

* T and N refer to the brain tumour and normal brain tissue, respectively.

Table 2. Parameters for the brain tumour and normal tissue.

Symbol Parameter Unit Brain Tumour Normal Tissue

α Volume fraction of ECS - 0.35 [41] 0.20 [33]
β Volume fraction of ICS - 0.55 [41] 0.65 [33]
ρ Density of interstitial fluid kg/m3 1.0 × 103 [42] 1.0 × 103 [42]
µ Viscosity of interstitial fluid kg/m/s 7.8 × 10−4 [42] 7.8 × 10−4 [42]
πb Osmotic pressure of blood Pa 3.4 × 103 [43] 3.4 × 103 [43]
πi Osmotic pressure of interstitial fluid Pa 1.1 × 103 [12] 7.4 × 102 [12]
pb Pressure in intravascular space Pa 4.6 × 103 [43] 4.6 × 103 [43]

S/V Area of blood vessel surface per tissue
volume m−1 2.0 × 104 [12] 7.0 × 103 [12]

σT Osmotic reflection coefficient of tissue - 0.82 [12] 0.91 [12]

Kb
Hydraulic conductivity of blood vessel

wall m/Pa/s 1.1 × 10−12 [16] 1.4 × 10−13 [16]

κ Tissue Darctian permeability m2 6.4 × 10−14 [16] 6.5 × 10−15 [16]
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2.4. Numerical Methods

The mathematical model was implemented in ANSYS FLUENT (ANSYS Inc., Canonsburg, PA,
USA) for numerical solutions. The predicted pressure and velocity correction were correlated by the
SIMPLEC algorithm. The second-order implicit Euler scheme and second-order UPWIND scheme
were employed to achieve temporal and spatial discretisation of governing equations, respectively.
The residual tolerance was set as 1 × 10−5 to control the simulation convergence, and the time step was
fixed at 10 s to achieve the time-step-independent solutions. The governing equations for interstitial
fluid flow were solved first to generate the hydraulic environment in the steady state. The obtained
pressure and velocity were then imported into the submodules of drug transport at time zero to predict
the drug delivery processes [44–46]. Drug concentration was assumed to be zero throughout the whole
domain at the beginning of treatment.

2.5. Boundary Conditions

The gauge pressure on the brain surface and ventricle were specified as 658 Pa [47] and 1447 Pa [43],
respectively, with zero flux of drug. The continuity condition [17] was applied at the interface between
the tumour and normal tissue.

2.6. Quantification of Delivery Outcomes

The drug bioavailability for anticancer effectiveness and risk of cardiotoxicity was measured as
the drug exposure over time (AUC), which is defined as

AUCT =

∫ T

0
C(t)dt (16)

where the T is the considered period of treatment.

3. Results

3.1. Interstitial Fluid Flow

As the drug convective and diffusive transport in tissue ECS are both dependent on the
interstitial fluid, its flow field was expected to play an important role in determining the delivery
outcomes. In this study, the interstitial fluid flow was predicted by solving the governing Equations
(1)–(3) throughout the entire brain, subject to the biological properties and the boundary conditions
described above.

The spatial distribution of interstitial fluid pressure (IFP) on a brain cross-section is shown in
Figure 4A. IFP reduced gradually from the ventricle to brain surface. However, this pressure was
higher in the tumour, as shown in Table 3. This was attributed to the variation of microvasculature in
tumour tissue; on one hand, the vasculature surface is enlarged, since the microvasculature becomes
tortuous and elongated. On the other hand, large pores on vessel surfaces can significantly increase
the hydraulic conductivity of the blood vessels, enhancing fluid leakage into the tumour ECS.

Table 3. Predicted interstitial fluid flow.

Tissue Type IFPavg (Pa) IFVavg (µm/s)

Brain tumour 1071.79 0.43
Normal tissue 876.03 0.13
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As shown in Figure 4B, the interstitial fluid flows across the entire brain from ventricle to brain
surface, driven by the pressure gradient in the same direction. The comparisons presented in Table 3
denote that the interstitial fluid flow was faster in the brain tumour. This was due to the advanced
fluid loss from blood [48] and the high hydraulic conductivity of the tumour tissue [49]. As a result,
the drug convective transport was more effective in tumour. It is worth noting that the interstitial fluid
velocity (IFV) was not uniform in the tumour. Due to the large pressure difference between the tumour
and the brain surface, the velocity was higher in the tumour region, which was more superficial.

3.2. Baseline Study of Drug Transport and Accumulation

A total dose of 50 mg/m2 liposomal doxorubicin was administrated into a 70 kg patient’s
circulatory system by bolus injection [17]. The FUS sonication and MB injection were supposed to start
simultaneously with the chemotherapy, and to last for seconds [50–52]. This sonication duration was
negligible, as it was short compared to the examined treatment duration of 24 h [21].

Figure 5 shows the predicted doxorubicin concentrations in each tissue compartment as a function
of time. As the liposomes were injected into the blood stream over a very short duration (bolus
injection), the intravascular concentration of liposomal doxorubicin concentration (CL,IVS) peaked
when the treatment started and decreased exponentially over time. Free doxorubicin concentration in
IVS (CF,IVS) continued to increase in the first 1.5 h as a result of the continuous drug release from the
liposomes. This was followed by a gradual decline owing to the decrease of CL,IVS and the continuous
drug plasma clearance. Liposomal doxorubicin continued to accumulate in tumour ECS until the
2 h point, driven by the transvascular concentration gradient. However, due to the reduction of this
gradient and drug release, less doxorubicin could remain in the encapsulated form in tumour ECS
as time went on. Since local drug release and the exchange with IVS were the two sources for free
doxorubicin to accumulate in the tumour ECS, CF,ECS reached its peak around 3.5 h after the treatment
started, with a time delay of 2 h compared to CF,IVS.
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Figure 5. The concentration of doxorubicin in different forms in (A) each compartment of the brain
tumour and the surrounding normal tissue. A close look in normal tissue is given in (B).

A close look at the doxorubicin concentration in normal tissue is given in Figure 5B, where the
drug presented similar trends as in the tumour ECS. However, the concentrations were about three
orders of magnitude lower. This is because the drug reached the normal tissue from the tumour by
convective and diffusive transport.

3.3. Comparisons to other Delivery Modes

The delivery outcomes are compared to those of two control studies using the same dose and
administration method in Figure 6. These control studies were specified as (I) direct delivery of free
doxorubicin with BBBD, and (II) liposome-mediated delivery of doxorubicin without BBBD.

When the drug was directly administered in its free form, CF,IVS reached its peak at the beginning
of treatment and decreased sharply to zero in about 1 h. In contrast, liposome-mediated delivery
effectively reduced the drug clearance via the blood, resulting in a gradual change of CF,IVS over time.
Since BBBD does not affect the pharmacokinetics of liposomes and the dynamics of drug release, CF,IVS
presented a similar time courses to liposome-mediated delivery both with and without BBBD.
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Free doxorubicin concentration in tumour ECS (CF,ECS) was strongly dependent on the
delivery mode. Although BBBD successfully enabled doxorubicin to cross the blood vessel wall,
the drug accumulation was less effective in the treatment where free doxorubicin was directly
administrated. This can be attributed to the fast decreases of IVS concentration and drug transvascular
transport, as shown in Figures 6A and 7B, respectively. In contrast, the combination of BBBD and
liposome-mediated delivery significantly improve the drug accumulation in tumour tissue. The drug
concentration in normal tissue showed similar trends as in tumour ECS; however, the magnitude is
three orders lower.
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between IVS and ECS in the brain tumour.

The impacts of BBBD on the drug transvascular flux are shown in Figure 7. The comparisons
indicated that the transvascular transport of liposome-encapsulated doxorubicin was less sensitive
to BBBD. This was due to the fast BBBD recovery, for which half-life time was 7.74 s, as predicted by
Equation (15) from Reference [32].

BBBD greatly affected the transport of free doxorubicin across the vessel wall. The flux under
direct injection was three orders of magnitude higher. However, it decreased to negative in about
30 min, implying that the free doxorubicin began to be transported back from tumour ECS to IVS as
the concentration gradient reversed, so that more drug was lost from the tumour ECS. In contrast,
free doxorubicin in liposome-mediated delivery continued to pass through the vessel wall to the
tumour ECS for 4 h. The drug accumulation in tumour ECS was therefore improved, as shown in
Figure 6B. It is worth noting that the transvascular flux of free doxorubicin remained zero throughout
the entire treatment when using liposomes alone. This is because no free doxorubicin could cross the
blood vessel wall without BBBD.

The outcomes of the different delivery modes are compared in Table 4 in terms of the drug exposure
over time (AUC). It is defined as the area under the curve of free drug concentration against time.
The comparisons show that the combination of BBBD and liposome-mediated delivery successfully
improved the bioavailability of doxorubicin in each compartment of the brain. Although more effective
drug exposure in tumours could improve the drug’s anticancer efficacy, additional attention is required
as the increased drug concentration in the blood circulatory system and normal brain tissue could raise
the risk of adverse effects.

Table 4. AUC24h (mg/mL·s) with different delivery modes.

Delivery Mode IVS Tumour ECS Normal Tissue ECS

Direct administration + BBBD 3.47 1.37 2.54 × 10−3

Liposomes 17.78 9.68 1.07 × 10−2

Liposomes + BBBD 17.78 12.95 1.79 × 10−2

3.4. Impact of Release Rate

As the representative value of the time scale on which the liposomes released the loaded drug,
release rate directly determines the toxicity and anticancer activity of a drug-delivery system [53–55].
It can vary across a wide range, depending on several factors such as the liposome formulation,
fabrication approach, surrounding environment [56,57], etc. Sustainable release over weeks can be
achieved using stealth liposomes [58], while temperature-sensitive liposomes are designed to release
their loads in seconds to minutes [59]. Therefore, the release rate was changed within the range from
1 × 10−6

·s−1 to 1 × 10−3
·s−1 in this study.

The impacts of the release rate on doxorubicin concentrations are shown in Figure 8. It is not
surprising that a slow drug release kept more doxorubicin in the encapsulated form in the blood,
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and thereby was able to provide a sustainable drug supply. A similar response was found for the
liposome concentration in tumour ECS (CL,ECS). This is because, on one hand, a high CL,IVS enabled
the liposome-encapsulated drug to enter the tumour ECS in a continuous manner; on the other hand,
the reduced krel slowed down the drug release in tumour tissue. The CL,ECS in normal tissue had a
similar sensitivity to the release rate, but it was orders of magnitude lower than in tumour tissue.
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Figure 8. The time courses of doxorubicin concentration in treatments using liposomes with different
release rates. Liposome-encapsulated doxorubicin in (A) IVS, (B) tumour and (C) normal tissue ECS;
free doxorubicin in (D) IVS, (E) tumour and (F) normal tissue ECS.

Results also showed that reducing the release rate could effectively lower the concentration peak of
free doxorubicin, and lead to a more gradual variation of drug concentration with time. Although fast
release could sharply raise the amount of free doxorubicin in a short period time, more drug was cleared
out of the tumour due to the high elimination rates in both blood and tissue ECS, as shown in Table 1.
Moreover, since there was no longer enough drug being released from liposomes, the concentration of
free doxorubicin dropped quickly to a low level.

The transvascular fluxes of doxorubicin in the treatment using different liposomes are plotted in
Figure 9. Owing to the reduced availability, less liposomal drug could cross the blood vessel wall when
the release rate was increased. In contrast, the transvascular flux of free doxorubicin became more
volatile with the increase of release rate. As more free drug was released, the high krel could significantly
increase the transvascular concentration gradient after the treatment started. Consequentially, large
amounts of free drug were transported into the tumour ECS. However, due to the fast decrease of
CF,IVS, as shown in Figure 8D, this transvascular flux fell quickly to negative when the free doxorubicin
concentration in blood became lower than in tumour ECS. The transvascular flux gradually restored as
time proceeded, as drug was slowly transported back to the blood.
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The delivery outcomes using liposomes with different release rates are compared in Table 5.
The availability of free drug in the IVS increased with the release rate, whereas the drug exposure in
tissue ECS was non-linearly correlated to the release rate in the examined period. This finding indicates
that the drug release rate can be optimised to maximise the treatment efficacy while maintaining a
similar risk of side effects to the cardiovascular system.

Table 5. AUC24h (mg/mL·s) of the treatments using liposomes with different release rates.

Release Rate (s−1) IVS Tumour ECS Normal Tissue ECS

krel = 1.0 × 10−6 1.28 × 10−3 1.39 × 10−3 3.83 × 10−6

krel = 1.0 × 10−5 9.20 × 10−3 9.69 × 10−3 2.44 × 10−5

krel = 1.0 × 10−4 1.78 × 10−2 1.29 × 10−2 1.79 × 10−5

krel = 1.0 × 10−3 1.83 × 10−2 7.98 × 10−3 9.96 × 10−6

3.5. Impact of BBBD Timing

The starting time point of BBBD is a factor that can be well controlled in clinical operations.
The BBB was disrupted simultaneously with the liposome injection in the baseline study. The delivery
outcomes were compared to those of treatments in which BBBD was induced at 30, 60 and 90 min
after the chemotherapy started, as shown in Figure 10. Given that the BBBD has no effect on liposome
pharmacokinetics and release dynamics, identical time courses of CL,IVS and CF,IVS were found in each
treatment. Although the liposomes presented similar concentration profiles in the brain tumour, less
free doxorubicin was available for cell killing when the BBB opening was postponed. This was the
same in normal tissue, since all the drug came from tumour ECS by convection and diffusion.
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Liposome-encapsulated doxorubicin in (A) IVS, (B) tumour and (C) normal tissue ECS; free doxorubicin
in (D) IVS, (E) tumour and (F) normal tissue ECS.

The transvascular flux in treatments with different sonication timings is shown in Figure 11.
Results showed that the transvascular flux of liposomes was reduced by postponing the BBBD.
However, since the enhanced PL dropped quickly to its normal level, changing the BBBD timing had
no obvious impact on the liposome ECS concentration in tumour tissue, as shown in Figure 10B.
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Figure 11. The time courses of drug transvascular flux in the treatments with different BBBD timings.
(A) Liposome-encapsulated doxorubicin and (B) free doxorubicin.

This was different from free doxorubicin—its transvascular flux jumped to a higher peak during
BBBD; however, it must be noted that there was no exchange of free doxorubicin between blood and
tumour tissue before the BBBD occurred. As a result, the transvascular flux over the entire treatment
period was low, and the free doxorubicin accumulation in tumour tissue was therefore reduced,
as shown in Figure 10E.
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The delivery outcomes compared in Table 6 show that for liposome-mediated delivery by bolus
injection, reduction of anticancer effectiveness could be introduced when BBBD is postponed. However,
the risk of adverse effects to the cardiovascular system remain similar.

Table 6. AUC24h (mg/mL·s) of the treatments with different BBBD timings.

Delay (min) IVS Tumour ECS Normal Tissue ECS

0 min 1.78 × 10−2 1.29 × 10−2 1.79 × 10−5

30 min 1.78 × 10−2 1.27 × 10−2 1.77 × 10−5

60 min 1.78 × 10−2 1.19 × 10−2 1.73 × 10−5

90 min 1.78 × 10−2 1.12 × 10−2 1.69 × 10−5

3.6. Impact of Sonication Duration

The time window of FUS sonication is another controllable factor in clinical settings. It usually
lasts for seconds in preclinical trials [50–52], whereas a 40 min sonication was applied in a previous
in vivo experiment to increase doxorubicin delivery [60]. Hence, the delivery with FUS sonication for
15, 30 and 45 min was compared to the baseline study to examine the effects of this factor.

The doxorubicin concentration in treatments with different sonication durations are shown in
Figure 12. Given that BBBD has no impact on liposome transport within blood, the encapsulated
doxorubicin presented the same time course for IVS concentration in different treatments. Similar
trends were found for free doxorubicin IVS concentration, as this mainly determined by local drug
release and plasma clearance which are both independent of BBBD. In contrast, the drug concentrations
in tumour and normal tissue ECS were increased by prolonging the FUS sonication.
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Figure 12. The time courses of doxorubicin concentrations in treatments with different sonication
durations. Liposome-encapsulated doxorubicin in (A) IVS, (B) tumour and (C) normal tissue ECS; free
doxorubicin in (D) IVS, (E) tumour and (F) normal tissue ECS.

The impacts of sonication duration on the drug transvascular flux are given in Figure 13 as a
function of time. Results showed that the IVS–ECS exchange of liposomal doxorubicin began to decline
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after the treatment started. However, this decline could be effectively slowed down by prolonging
the FUS sonication, due to the enhanced liposome transvascular permeability. Consequentially, more
liposomes were able to accumulate in the tumour ECS, as shown in Figure 12B. A sharp fall was
observed after the sonication ended, because of the fast recovery of BBBD to liposomes [32].

Pharmaceutics 2020, 12, x 14 of 21 

 

Consequentially, more liposomes were able to accumulate in the tumour ECS, as shown in Figure 

12B. A sharp fall was observed after the sonication ended, because of the fast recovery of BBBD to 

liposomes [32]. 

 

Figure 13. The time courses of drug transvascular flux in the treatments with different sonication 

durations. (A) Liposome-encapsulated doxorubicin and (B) free doxorubicin. 

Prolonging the sonication duration had limited impact on the gain of free drug from the blood, 

but resulted in the increase of drug loss by blood drainage. This is because the BBBD-enhanced 𝑃𝐹 

remained at a higher level for free doxorubicin transport back to the blood. As a result, the improved 

drug release from liposomes was assumed to be the main reason for the effective free drug 

accumulation in tumour ECS shown in Figure 12E. 

Table 7 compares the delivery outcomes of treatments with different sonication durations. 

Results showed that the anticancer efficacy could be successfully improved by increasing the FUS 

functioning time window. Simultaneously, the risk of adverse effects to brain normal tissue could 

also be increased. However, the similar drug availability in blood indicates that the sonication 

duration would have limited effects on the risk of cardiotoxicity. 

Table 7. AUC24h (mg/mL∙s) of the treatments with different sonication durations. 

Sonication Duration (min) IVS Tumour ECS Normal Tissue ECS 

Burst 1.78 × 10−2 1.29 × 10−2 1.79 × 10−5 

15 min 1.78 × 10−2 1.48 × 10−2 2.02 × 10−5 

30 min 1.78 × 10−2 1.61 × 10−2 2.19 × 10−5 

45 min 1.78 × 10−2 1.70 × 10−2 2.31 × 10−5 

4. Discussion 

FUS and MB can successfully open the BBB, and thereby enable doxorubicin accumulation in 

tumour ECS for treatment. Modelling predictions further demonstrated that liposome-encapsulated 

drugs could effectively improve the delivery outcomes of combination therapy with FUS and MB. 

Owing to the fast recovery of BBBD to liposomes, burst FUS sonication had very limited impact on 

the transvascular transport of liposomal drug, as shown in Figure 7A. Therefore, the advantage of 

the FUS-MB-liposome combined delivery was mainly due to the improved transvascular 

permeability of free doxorubicin and sustainable drug supply by the long-circulating liposomes. 

In order to examine the impact of enhanced liposome transvascular permeability on the delivery 

outcomes, the sonication duration was prolonged up to 45 min. Although the loss of free doxorubicin 

by capillary drainage was slightly raised, as shown in Figure 13, the modelling results showed that 

keeping the BBB open for a longer time effectively improved the accumulation of both the liposome-

encapsulated and free doxorubicin, which could lead to better therapy. However, it is important to 

note that the enhancement of drug transvascular permeability is very limited when FUS is applied in 

isolation [31]. Therefore, the pharmacokinetics of MB must be considered in treatment design in order 

to achieve continuous BBBD. Since sonication has been generally performed for few seconds in 

Figure 13. The time courses of drug transvascular flux in the treatments with different sonication
durations. (A) Liposome-encapsulated doxorubicin and (B) free doxorubicin.

Prolonging the sonication duration had limited impact on the gain of free drug from the blood,
but resulted in the increase of drug loss by blood drainage. This is because the BBBD-enhanced PF

remained at a higher level for free doxorubicin transport back to the blood. As a result, the improved
drug release from liposomes was assumed to be the main reason for the effective free drug accumulation
in tumour ECS shown in Figure 12E.

Table 7 compares the delivery outcomes of treatments with different sonication durations. Results
showed that the anticancer efficacy could be successfully improved by increasing the FUS functioning
time window. Simultaneously, the risk of adverse effects to brain normal tissue could also be increased.
However, the similar drug availability in blood indicates that the sonication duration would have
limited effects on the risk of cardiotoxicity.

Table 7. AUC24h (mg/mL·s) of the treatments with different sonication durations.

Sonication Duration (min) IVS Tumour ECS Normal Tissue ECS

Burst 1.78 × 10−2 1.29 × 10−2 1.79 × 10−5

15 min 1.78 × 10−2 1.48 × 10−2 2.02 × 10−5

30 min 1.78 × 10−2 1.61 × 10−2 2.19 × 10−5

45 min 1.78 × 10−2 1.70 × 10−2 2.31 × 10−5

4. Discussion

FUS and MB can successfully open the BBB, and thereby enable doxorubicin accumulation in
tumour ECS for treatment. Modelling predictions further demonstrated that liposome-encapsulated
drugs could effectively improve the delivery outcomes of combination therapy with FUS and MB.
Owing to the fast recovery of BBBD to liposomes, burst FUS sonication had very limited impact on the
transvascular transport of liposomal drug, as shown in Figure 7A. Therefore, the advantage of the
FUS-MB-liposome combined delivery was mainly due to the improved transvascular permeability of
free doxorubicin and sustainable drug supply by the long-circulating liposomes.

In order to examine the impact of enhanced liposome transvascular permeability on the delivery
outcomes, the sonication duration was prolonged up to 45 min. Although the loss of free doxorubicin
by capillary drainage was slightly raised, as shown in Figure 13, the modelling results showed
that keeping the BBB open for a longer time effectively improved the accumulation of both the
liposome-encapsulated and free doxorubicin, which could lead to better therapy. However, it is
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important to note that the enhancement of drug transvascular permeability is very limited when FUS
is applied in isolation [31]. Therefore, the pharmacokinetics of MB must be considered in treatment
design in order to achieve continuous BBBD. Since sonication has been generally performed for few
seconds in preclinical trials, how to prolong FUS sonication and MB circulation for continuous BBBD
needs to be explored in both experiments and simulations in the future.

Serval factors influence BBBD, including the frequency and power of FUS [61–63], sonication
schedule [21,51], pharmacokinetics and dimensions of MB [64–66], molecular weight or size of the
delivered agents [29,67], the biological properties of the microvasculature, etc. Despite several in vivo
experiments having been carried out under different conditions [50,68–70], there is still a lack of
a comprehensive mathematical model with which to describe the dependence of the permeability
enhancement on the aforementioned key factors. Therefore, parameter studies were not performed in
this pilot study to understand their effects. Extensive experimental data are required to establish a
model for optimisation of this treatment design.

The treatment efficacy was found to be non-linearly correlated to the drug release rate.
On one hand, the fast release enabled more drug to be released, achieving a high concentration
in a short period of time. However, as shown in Table 1, the elimination and plasma clearance rate
of free drug was orders of magnitude higher than when using liposomes. Consequently, the drug
concentration reduced quickly to zero, leading to a low drug exposure over time in the tumour. On
the other hand, the slow release could theoretically lead to a sustainable supply of free drug. It is
still important to note that liposomes are continuously washed out by plasma clearance. As a result,
drugs are highly likely to be cleared out of the body before even being released. Therefore, the release
rate needs to be optimised to maximise anticancer effectiveness by maintaining a balance among
drug release, transvascular exchange and elimination. A general liposome with the same release rate
in IVS and ECS was applied in this study. However, this rate could be different depending on the
intratumoural environment. For instance, drug release from pH-sensitive liposomes could be much
quicker in tumour ECS than in blood, as acidity of the environments differs [71]. Thermosensitive
liposomes are designed to be stable at body temperature, while a burst drug release can be achieved
when the environmental temperature is above the pre-designed threshold [56,59]. Subsequent studies
could therefore focus on the relationship between release rate and intratumoural environment in order
to provide suggestions for improvement of the liposome properties.

The BBB can be permeabilised using FUS in a non-invasive, reversible manner. With the guidance
of transcranial MR imaging, the targeting accuracy of FUS can be further improved to achieve localised
treatment [72]. In practice, ultrasound contrast agents in the form of microbubbles are intravenously
administrated as a first step. This is followed by the projection of FUS into the designed region
of the brain. Triggered by the ultrasound, the microbubbles become activated to produce a range
of chemical, mechanical and thermal effects that can transiently disrupt the tight junctions of the
endothelial cells on the blood vessel wall [73]. The ability of this BBBD to improve drug delivery
has been reported in terms of animal experiments in literature [74]. Moreover, there has been no
significant brain tissue damage found in clinical trials [75], demonstrating the accuracy and safety of
this combination drug-delivery strategy.

A multiphysics model was employed in this study to examine the effects of FUS- and MB-induced
BBBD on drug transport in chemotherapy. The IFV was predicted as 0.43 and 0.13 µm/s in the brain
tumour and its surrounding tissue, respectively, values which are both well within the range of 0.1 to 1.0
µm/s measured previously in in vivo experiments [33,43]. As compared to liposome-mediated delivery
without BBBD, the doxorubicin concentration at 2 h after sonication was 2.08 times higher when FUS
and MB were applied. This finding agrees with the animal experiments where FUS-MB-induced
improvement was measured in the range of 1.51- to 2.65-fold [76]. Besides the BBBD model based on
semi-empirical formulas from experiments [21,32], the drug transport model has been widely applied
in previous numerical studies on drug delivery and validated by comparison with experimental results.
The IFP and IFV were calculated as 1500 Pa [77] and 0.17 µm/s [12], respectively, which were within the
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experimental ranges of 586 to 4200 Pa [78] and 0.13 to 0.20 µm/s [79]. Model-predicted drug transport
profiles were well fit to the measurements reported from ex vivo experiments, with the coefficient
of multiple determination reaching 0.83 [80]. Although comparisons to animal experiments remain
qualitative for small molecular drugs [81,82], the prediction accuracy can be largely improved for the
drug vehicles in nanoscale [83]. Therefore, since this study was focused on drug transport rather than
model development, the work of model validation was not duplicated here.

The present study offers some new insight into the enhancement of liposome-mediated drug
delivery into brain tumour via FUS and MB; however, there were several assumptions involved. (I) FUS
sonication is usually performed using an ultrasound transducer with its focus point swapping across
the brain tumour, so the BBBD could be non-uniform across the entire brain. As the optimisation of
FUS trajectory for achieving homogeneous BBBD was beyond the scope of this study, the enhancement
of drug transvascular permeability was assumed to be perfectly restricted within the brain tumour
and uniformly distributed. (II) Liposomes are able to cross the cell membrane by endocytosis and
then release the drug intracellularly [84]. However, as with the liposomes used in study, polyethylene
glycol (PEG) is usually applied to modify the liposome surface in order to achieve extensive survival
time in blood circulation. This ligand effectively inhibits endocytosis by forming a steric barrier to
prevent liposome–cell membrane interaction [85,86]. Therefore, endocytosis was not considered here,
and liposomes were assumed to be impermeable to cell membrane. (III) The spatial distribution
of microvasculature can be highly heterogeneous in large tumours. This heterogeneity can affect
local drug supply, and thereby influence drug transport and accumulation. The microvasculature
was assumed to be homogeneously distributed in the brain tumour, as there was a lack of relevant
information that could be obtained from available medical images. This assumption could be relaxed
by using dynamic, contrast-enhanced MR images [81], from which vasculature density can be predicted
based on the time course of signal intensity at each image pixel.

It is of note that the mathematical model was developed to cover the key biophysical and
physicochemical processes in drug delivery. The applied model parameters refer to the representative
values that were extracted from the literature. The model predictions could be used for qualitative
comparisons to examine the effects of specified processes, so as to provide guidance for the optimisation
of treatment regimens and liposome properties. The modelling accuracy could be improved by
employing patient-specific information and developing mathematical descriptions for particular
processes in drug delivery. These would require extensive support from medical imaging and in vivo
experiments, respectively.

5. Conclusions

Drug transport in the liposome-mediated delivery coupled with FUS- and MB-induced BBBD was
investigated by means of numerical simulation in this study. A 3D brain tumour model reconstructed
from MR images was applied with the aim of capturing the realistic geometrical characteristics of
the lesion. Although doxorubicin could enter the tumour ECS when the BBB was disrupted by
FUS and MB, modelling predictions demonstrated that the use of liposomes could further improve
the treatment efficacy under the same delivery conditions. This improvement mainly relied on the
enhanced transvascular permeability of free doxorubicin and the sustainable drug supply from the
long-circulating liposomes when burst FUS sonication was applied. The anticancer effectiveness of this
treatment could be improved by extending the sonication time window, which largely improved the
accumulation of both liposomal and free drug in tumour ECS. The release rate needs to be optimised to
achieve an acceptable trade-off among drug release, transvascular exchange and elimination. The BBBD
is recommended to be carried out simultaneously with the bolus injection of liposomes, as late BBBD
reduces the anticancer efficacy but retains a similar risk of cardiotoxicity. Results obtained from
this study could provide suggestions for the future optimisation of FUS-MB–liposome-mediated
drug delivery.
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