Supplementary Information

In vivo biocompatibility of an electrospun, biodegradable dual-carrier containing antibiotic and growth factor in a mouse model - Implications for rapid wound healing

^{1,2}Charu Dwivedi, Himanshu Pandey^{2,3}, Avinash C. Pandey², Sandip Patil⁴, Pramod W. Ramteke*¹ Peter Laux⁵, Andreas Luch⁵ and Ajay Vikram Singh*^{5,6}

¹Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad- 211007 (India).

²Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad- 211002 (India).

³Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad- 211007 (India)

⁴E-Spin Nanotech Pvt Ltd, Kanpur- 208016 (India).

⁵Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany

⁶Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.

*Corresponding author email: *Ajay Vikram Singh- Ajay-Vikram.Singh@bfr.bund.de, Charu Dwivedi* charucas0505@gmail.com; Pramod W. Ramteke* pwramteke@gmail.com*.

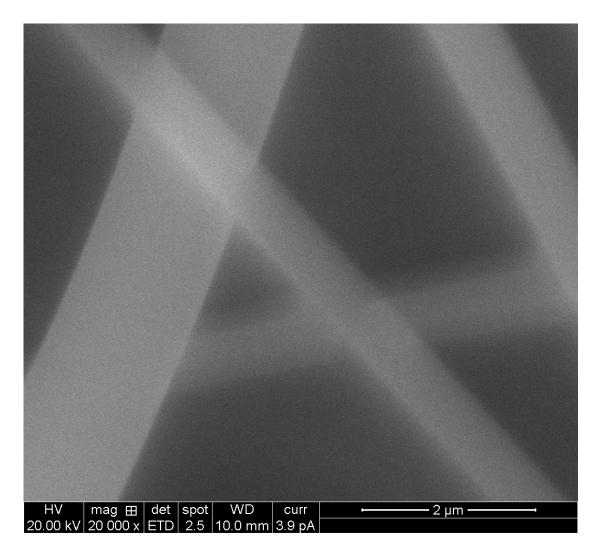


Figure S1. The SEM of nanofibrous scaffolds after gentle rinsing and dehydration.

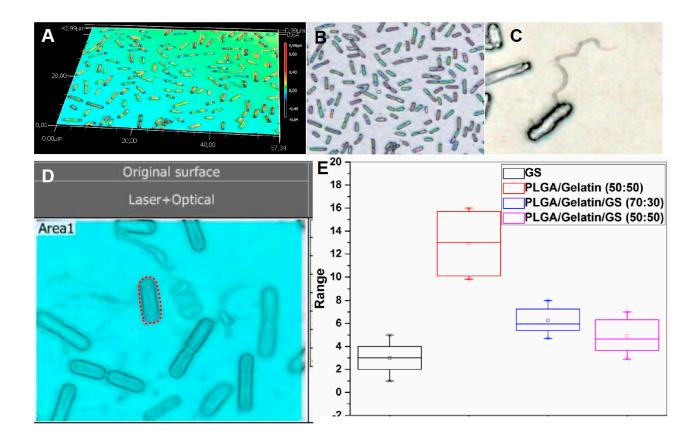


Figure S2. Quantitative analysis of bacterial biovolume on nanofibrous scaffolds. (A-B) 3D height map and optical micrograph of control bacterial cells showing normal morphology and flagella (C). (D-E) Example of extracting individual bacterial biovolume from the optical images (cells shown in dotted red line in D as an example) to quantify the biovolume of bacteria on different surfaces.