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Abstract: With the well-known advantages of additive manufacturing methods such as
three-dimensional (3D) printing in drug delivery, it is disappointing that only one product has
been successful in achieving regulatory approval in the past few years. Further research and
development is required in this area to introduce more 3D printed products into the market. Our
study investigates the potential of fixed dose combination solid dispersion drug products generated
via 3D printing. Two model drugs—fluorescein sodium (FS) and 5-aminosalicyclic acid (5-ASA)—were
impregnated onto a polyvinyl alcohol (PVA) filament, and the influence of solvent choice in optimal
drug loading as well as other influences such as the physicochemical and mechanical properties of
the resultant filaments were investigated prior to development of the resultant drug products. Key
outcomes of this work included the improvement of filament drug loading by one- to threefold due
to solvent choice on the basis of its polarity and the generation of a 3D-printed product confirmed to
be a solid dispersion fixed dose combination with the two model drugs exhibiting favourable in vitro
dissolution characteristics.

Keywords: 3D printing; amorphous solid dispersion; additive manufacturing; poor solubility; fixed
dose combination

1. Introduction

A fixed-dose combination (FDC) product is a single dosage form that incorporates two or more
active pharmaceutical ingredients (APIs) [1,2]. Between 2013 and 2018, the European Medicines Agency
(EMA) approved 66 FDCs, most of which were antiretrovirals for human immunodeficiency virus
(HIV) infections [3]. FDC products have several advantages over conventional medicinal products,
namely, greater efficacy (43%, n = 33) and compliance (18%, n = 14) [4-7]. However, disadvantages
have been highlighted, such as a reduction in medication adherence (24%-26%) in some cases [8,9].

The use of three-dimensional (3D) printing in drug delivery is still in its infancy compared to
traditional technologies; however, research and development is rapidly expanding in this area due to
the benefits of 3D printing to develop personalized patient-specific dosage forms with tailored release
profiles [10-13]. Traditional powder direct compression techniques to generate FDC medicinal products
is not suitable [14-19]. Currently, the only regulatory approved (by the Food and Drug Administration
(FDA)) 3D printed medicinal product is the oro-dispersible levetiracetam tablet, Spritam developed by
Aprecia Pharmaceuticals in 2015 [20]. The number of regulatory approved 3D printed drug products
remains limited due to the number of printers available to comply with good manufacture practice
(GMP), high variability of 3D printers, and end product quality [21-24]. Fused deposition modelling
(FDM) uses heat to melt thermoplastic polymers into the molten state and the object to be printed is
designed by computer-aided drafting, which enables it to be printed layer-by-layer as the printer nozzle
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deposits the extrudate [15,25]. FDM 3D printing has been explored extensively in the development of
medicinal products and, more specifically, FDC products. FDM 3D printing is capable of producing
drug products with multiple active pharmaceutical ingredients in various compartments, which is
advantageous in developing patient-centric formulations to reduce multiple daily dosing, therefore
improving patient compliance and therapeutic efficiency [26-28].

The use of solid dispersion technology has been explored in FDM 3D printing [26]. In the study
described here, we firstly explored the influence of solvent type on filament (polyvinyl alcohol (PVA))
drug loading using the drug impregnation method. We then manufactured solid dispersion FDC
3D printed dosage forms using the drug-solvent-filament combination, which gave the highest drug
loading. Physicochemical characterization of the filaments was conducted and an evaluation of
filament and FDC mechanical properties by way of hardness and tensile strength were also evaluated.
In vitro drug dissolution studies on the FDC 3D printed dosage forms were also conducted [29,30].

Several studies have used the drug impregnation method to load drugs onto polymer filaments
for 3D printing. In the case of PVA filaments, this is commonly done by soaking the filament in a
highly saturated drug solution. However, this method can result in low drug-loading (<2% w/w) due
to slow drug diffusion into polymer [17,24,29-31]. The general drug-loading differences using different
solvents such as ethanol (EtOH) and methanol (MeOH) for this filament drug loading method still
remains relatively unknown. Studies conducted on 3D-printed FDC often separate APIs into different
compartments such as the DuoCaplet design by Goyanes et al. [23]. The potential of FDM-printed
monolithic FDC design, by incorporating two APlIs into the same polymer filament, is yet to be
investigated in terms of ability to independently tailor the different APIs release. This study aimed to
explore the potential of increasing drug-loading efficiency by altering solvent choice, and to study
the in vitro dissolution profiles of the FDM-printed monolithic FDC tablet developed. Fluorescein
sodium (FS) and 5-aminosalicyclic acid (5-ASA) were chosen as model drugs due to their proven
FDM-printability [29,30]. PVA was selected as main polymer as it is the only commercially extruded
polymer filament that would dissolve in vivo [29].

2. Materials and Methods

2.1. Materials

Fluorescein sodium salt (FS, 376.27 g/mol, decomposition temperature = 315-395 °C), absolute
ethanol, and methanol >99.8% were manufactured by Sigma-Aldrich, United Kingdom. Dimethyl
sulfoxide (DMSO) was purchased from Honeywell. 5-Aminosalicyclic acid (5-ASA, 153.14 g/mol,
decomposition temperature = 280 °C) purchased from FLUKA was donated by University College
London School of Pharmacy. Polyvinyl alcohol (PVA) filament, 1.75 mm diameter, was purchased from
RS-Pro. Phosphate buffer (pH 6.8) tablets were purchased from Millipore Corporation.

2.2. Methods

2.2.1. Filament Preparation

Drug-containing filaments were prepared using the method described by Goyanes et al. [29,30].
In brief, 5 m of PVA filament was soaked in the drug-solvent mixture (100 mL) and stirred magnetically
at 470 rpm for 24 h. The drug-loaded filaments were then heated (60 °C) in an oven (Pickstone
Ovens, Island Scientific, Isle of Wight, UK) to facilitate rapid solvent evaporation (=2 h). Resultant
filaments were protected from light and moisture with aluminum foil and desiccants, respectively.
Tagami et al. [31] suggested that this method of drug load requires the use of a saturated drug solution.
Therefore, the drug concentrations chosen were based on drug concentrations (of FS and 5-ASA) used
in previous studies [29,30]. Table 1 outlines the solvents, drug choices, and concentrations for the
preparation of drug-loaded and solvent-soaked filaments. The names of the filament samples are
included in brackets.
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Table 1. Solvent, drug, and drug concentrations used.

Active Pharmaceutical Dimethyl Sulfoxide
Ingredient (API) Ethanol (EtOH) Methanol (MeOH) (DMSO)
PVA
Fluorescein sodium 2.0% wfv 2.5% wfv 2.5% wjv
(FS) (FS-EtOH) (2.5%FS-MeOH) (FS-DMSO)
5-aminosalicyclic acid 1.0% wfv 1.25% wjv 1.25% wjv
(5-ASA) (5-ASA-EtOH) (5-ASA-MeOH) (5-ASA-DMSO)

2.5% wfv FS and 1.25% w/v

FS and 5-ASA 5-ASA (FDC-MeOH)

2.2.2. Solid State Characterization of Filaments

X-Ray Powder Diffration

Structural characterization of filaments produced was conducted using a D/Max-BR diffractometer
(RigaKu, Tokyo, Japan) with Cu K« radiation operating at 40 kV and 15 mA (Cu Kalpha radiation)
over the 20 range 10-50° with a step size of 0.02° at 2°/min.

2.2.3. 3D-Printed Drug Product Design and Optimization

Tablets were designed using TinkerCAD and were then imported as stl. format into MakerBot
Desktop Beta (V3.10.1.1389) (MakerBot Industries. Brooklyn, NY, USA). Tablets were printed with
PVA filament and drug loaded filaments using a MakerBot Replicator 2X (MakerBot Inc., Brooklyn,
NY USA) with the following dimensions 10.45 x 10.54 x 1.2 mm [30]. Printer settings were standard
resolution, 230 °C extrusion and 20 °C platform temperature, 100% hexagonal infill with raft option
deactivated when printing drug-loaded tablets but activated for blank PVA tablets [24]. Printed tablets
were assessed for weight uniformity.

2.2.4. Morphology Studies

Scanning Electron Microscopy

Hitachi S5000 Emission Gun (FEG) (Hitachi, Maidenhead, UK) with Tungsten Tip (25 kV) was
used to examine gold-coated (10 nm thickness) PVA tablet. Images were captured using secondary
electron detector from Xx70 to x10.9 K magnification.

2.2.5. Crushing Strength

The crushing strength tests were conducted using a C50 Tablet Hardness and Compression tester
(Engineering System, Nottingham, United Kingdom) on PVA and drug-loaded filaments. Figure 1
shows the sample orientation in the tester. Filament hardness was recorded as mean crushing
strength (kg).

Filament
\ < Force

ol b

Loading platen Loading plunger

Figure 1. Orientation of filaments between loading plunger and platen. Increasing force was applied
by loading plunger towards the platen. Direction of force is indicated by the arrow («).
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2.2.6. Solubility, Drug Content, and In Vitro Drug Dissolution Studies

Solubility Studies

Solubility studies were conducted on FS and 5-ASA dissolved in the in vitro dissolution media,
pH 6.8 phosphate buffer, and PVA solutions. Different amounts of PVA filament were dissolved in
pH 6.8 phosphate buffers to prepare PVA-pH 6.8 solutions. Excess API (either FS or 5-ASA) was added
to PVA solutions and vigorously stirred for 72 h at 37 + 0.5 °C at 150 rpm. The saturated solutions
were then filtered using a 0.45 um membrane, and the API concentration in the filtrate was determined
spectrophotometrically at 330 nm for 5-ASA and 490 nm for FS.

Calculation of Drug Content in PVA Filaments

Drug-loaded filaments were dissolved in pH 6.8 phosphate buffer and assayed
spectrophotometrically (Perkin Elmer Lambda 35 Spectrophotometer) (PerkinElmer, Inc. Waltham,
MA, USA) at 330 nm for 5-ASA and 490 nm for FS. PVA did not interfere with the UV analysis. Drug
content was calculated using Equation (1) below.

Weight of drug (g)
Weight of filament (g)

Drug — content (% w/w) = x 100 1)

In Vitro Drug Dissolution Studies

In vitro dissolution studies were conducted in pH 6.8 phosphate buffer (small intestine) at
37 £ 0.5 °C and a rotational speed of 100 rpm under non-sink conditions to observe any supersaturation
effect from the solid dispersion products generated. At predetermined intervals, samples were
withdrawn and filtered through a 0.45 um filter and the filtrate was analysed spectrophotometrically
at 330 nm for 5-ASA and 490 nm for FS.

2.2.7. Statistical Analysis

Unpaired two-tailed t-test was performed using SigmaPlot V14.0 (Systat Software Inc. Berkshire,
UK) with 95% significance level. p < 0.05 was regarded as significant.

3. Results

3.1. Solvent Choice Optimization

Solvents of increasing polarity: DMSO < EtOH < MeOH were investigated for their drug-loading
efficiency into PVA filaments. Model drugs FS and 5-ASA are both polar; dissolving in solvents of
higher polarity allows for generation of a larger concentration gradient for drug diffusion into the
polymer (PVA) filament, therefore giving higher drug-loading in the presence of solvents of a higher
polarity [32,33].

Table 2 shows mean drug content of the drug-impregnated filaments. DMSO completely
solubilized PVA; therefore, the results below are based only on EtOH and MeOH. Coefficient of
variation (%CV) ranged from 0.2% to 13.5%, highlighting the issue of non-uniform drug loading with
soaking method, requiring further soaking apparatus choice selection.
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Table 2. Mean drug-content (% w/w) of drug-loaded filaments prepared via drug impregnation method.

Solvents Drug-Loaded Filaments Drug Loading (% w/w)
FS-EtOH 1.19 £ 0.161
Ethanol
5-ASA-EtOH 0.10 + 0.001
FS-MeOH 4.89 + 0.449
Methanol 5-ASA-MeOH 0.17 + 0.007

FS: 6.16 + 0.197

FDC-MeOH 5-ASA: 2.97 + 0.362

Comparing single-drug-loaded filaments, MeOH was found to significantly increase drug loading
compared to EtOH, irrespective of drugs (p < 0.05), fitting the hypothesis. The ratio of FS drug loading
between MeOH and EtOH was approximately 4:1, whereas the ratio was smaller but statistically
significant for 5-ASA (approximately 1.5:1 between MeOH and EtOH). Despite using the same drug
concentration, 5-ASA content in FDC-MeOH filament was significantly higher (17 fold) than 5-ASA
content in 5-ASA-MeOH filament (p < 0.01). MeOH was chosen to prepare FDC filament for the rest of
the study due to its improved drug loading.

3.2. Filament Characterization

3.2.1. Filament Hardness

It is expected that filament mechanical properties, hardness in particular, will change after drug
impregnation, especially as most of the solvents used have the potential to degrade PVA [23]. Changes
to filament properties can influence printability [34]. The crushing strength is frequently used in
the pharmaceutical industry to describe the resistance of tablets to the application of a compression
load [35]. In this study, we used the crushing strength to provide an indication of the changes in
filament strength after soaking in EtOH and MeOH. Interestingly, the PVA filament crushing strength
(kg) of 46.13 £ 0.89 kg decreased when the PVA filament was soaked (without the presence of the
APIs) in EtOH and MeOH to 10.25 + 1.04 kg and 10.78 + 0.48kg, respectively. For single-drug-loaded
filament, both FS-EtOH and 5-ASA-EtOH filaments had crushing strengths of 14.93 + 1.74 kg and
14.65 + 0.81 kg, respectively, however, these values significantly increased (p < 0.01) for MeOH-loaded
drug filaments, FS-MeOH (25.34 + 1.52 kg), and 5-ASA-MeOH (22.78 + 1.21 kg). The crushing strength
of FDC-MeOH filament was 16.77 + 1.12 kg, similar to API-EtOH filaments (p > 0.05).

3.2.2. Solid State Characterization of Filaments

X-Ray Powder Diffraction (XRPD) studies were conducted to determine any potential
physico-chemical changes to the API such as crystalline-amorphous transformation. XRPD
diffractograms of raw materials of 5-ASA (Figure 2A) and FS (Figure 2B) both showed characteristic
Bragg’s peaks, as confirmed by Groom et al. and Banic-Tomisic et al. [36,37]. XRPD studies on
PVA filament, (Figure 2C) PVA-MeOH (Figure 2D), and FDC-MeOH filament (Figure 2E) showed
characteristic amorphous halo with no evidence of crystalline API peaks.
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Figure 2. X-ray powder diffractograms of (A) 5-ASA, (B) FS, (C) blank polyvinyl alcohol (PVA) filament,
(D) PVA-MeOH filament, and (E) FDC-MeOH filament data. Samples were scanned from 10-50° 26
(stepwise: 0.02°, at 2°/min). Please note that different y-axis scales were used.

3.3. Characterization of 3D-Printed Dosage Forms

Morphology Studies

Layer-by-layer building of object via molten polymer fusion onto previously solidified extrudate
layer during printing was expected to give extrudate-stacking appearance [38]. SEM images of a
representative 3D printed dosage form is shown in Figure 3. Figure 3 clearly shows multiple voids on
the dosage form surface, moreover, the dosage form obtained shows extrudate-stacking as expected
and previously identified with FDM-printed dosage forms [25]. Representative images of printed
products are provided in Figure 4.
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Figure 3. Surface morphology of PVA tablet (top view) at (A) X70 and (B) X150 magnification.

(A) (B)

Figure 4. Representative image (A) printed PVA product and (B) three-dimensional (3D)-printed
fixed-dose combination (FDC) drug product with dimensions 10.45 x 10.54 X 3.79 mm.

3.4. In Vitro Dissolution

Saturated solubility of FS and 5-ASA was determined in in vitro dissolution medium at increasing
PVA concentration. FS and 5-ASA saturated solubility in pH 6.8 phosphate buffer was 385.82 and
2.98 mg/mL, respectively. In the presence of increased PVA concentration (0.6% w/v and 0.4% w/v), FS
and 5-ASA saturated solubility was 465.75 and 1.60 mg/mL, respectively.

FS and 5-ASA raw materials achieved complete dissolution within 5 min (data not shown);
therefore, Figure 5 shows dissolution profiles of the 3D-printed FDC-MeOH product. Amorphous
solid dispersion (ASD) formulations are known to experience rapid dissolution before recrystallizing at
a rate corresponding to PVA concentration, acting as a crystallization inhibitor [39—41]. The 3D-printed
FDC-MeOH product dissolution showed characteristic ASD spring-and-parachute dissolution profile
of both FS and 5-ASA. Peak concentration was achieved at f = 30 min for 5-ASA (8.36 + 0.06 pg/mL),
corresponding to a dissolution rate of 16.71 ug/mL/h and ¢t = 45 min for FS (19.24 + 0.24 ug/mL).
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Figure 5. In vitro dissolution profile of 3D-printed FDC-MeOH dosage form in phosphate buffer pH
6.8. Error bars representing standard deviations.

4. Discussion

The main aim of this study was to investigate the effect of different solvent in loading drugs
on printable PVA filament. The impregnation method used has already been used in studies by
Goyanes et al. where drug contents for 5-ASA- and FS-loaded PVA filaments were 0.063 + 0.001% w/w
and 0.29 + 0.01% w/w, respectively [29,30]. In our study, we were able to achieve approximately
three-fold and one-fold higher FS and 5-ASA drug-loading, respectively, compared to the studies
of Goyanes et al. In particular, it was noted that MeOH-loaded drug filaments had significant
improvement in drug-loading of polar FS and 5-ASA compared to EtOH, highlighting the importance
of matching solvent drug polarity when using the drug impregnation method. Apart from solvent
polarity, drug dielectric constant, solubility, as well as temperature and hygroscopicity can affect drug
loading [42]. The presence of FS may have altered MeOH dielectric constant, facilitating H* ion
dissociation from 5-ASA, and increasing 5-ASA solubility in MeOH; this proposed synergistic effect
requires further investigation [43—46].

Our findings on changes in filament hardness before and after drug impregnation showed that
drug and solvent molecules can interpose between polymer chains, weakening polymer—polymer
interaction and increasing chains movements, resulting in reducing PVA filament hardness by more
than 50% after drug-loading and solvent-soaking [47—-49]. Because plasticizing effect has previously
been found to increase with plasticizer concentration, FDC-MeOH filament, having significantly
higher drug loading compared to single-drug filaments, resulted in lower hardness compared to other
MeOH-loaded filaments.

The drug dissolution profile of the FDM-printed monolithic FDC tablet (FS and 5-ASA) was
evaluated. The advantage of this drug product as a solid dispersion is based on the water-soluble
matrix that provides activation energy to drive crystallization [28,50-53]. As drug release from
PVA is also regulated by polymer dissolution, all printed tablets in the current study also exhibited
spring-and-parachute profile with crystallization inhibited depending on PVA concentration.

The reason for rapid supersaturation resulting in higher maximum concentration could be that the
system had insufficient time to induce crystallization when transformation from stable to metastable
supersaturation state was quick [54,55]. In the current study, 5-ASA released from the the 3D-printed
drug product had initial rapid de-supersaturation; however, the rate declined alongside with the
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reduction of 5-ASA in the system. This could be because polymer has a greater precipitation inhibitory
effect at lower supersaturation [56-58].

5. Conclusions

The use of FDM 3DP technology in the pharmaceutical industry is hindered by several formulation
challenges, which the current study aimed to address. This study investigated the solvent influence on
optimal drug filament impregnation with an identification that MeOH possessed superior properties
compared to EtOH for FS and 5-ASA. Using this method and solvent choice, reasonable drug loading of
both FS and 5-ASA onto a single PVA filament was achieved. A 3D-printed solid dispersion FDC drug
product was successfully designed and characterized with favourable release profiles and behaviours.
Further studies using clinically relevant drugs would be advantageous for the advancement of the
work in this area.
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