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Abstract: Although glucocorticoids are highly effective in treating various types of inflammation such
as skin disease, rheumatic disease, and allergic disease, their application have been seriously limited
for their high incidence of side effects, particularly in long term treatment. To improve efficacy and
reduce side effects, we encapsulated betamethasone phosphate (BSP) into biocompatible red blood
cells (RBCs) and explored its long acting-effect. BSP was loaded into rat autologous erythrocytes by
hypotonic preswelling method, and the loading amount was about 2.5 mg/mL cells. In vitro, BSP
loaded RBCs (BSP-RBCs) presented similar morphology, osmotic fragility to native RBCs (NRBCs).
After the loading process, the loaded cells can maintain around 70% of Na+/K+-ATPase activity of
natural cells. In vivo, a series of tests including survival, pharmacokinetics, and anti-inflammatory
effect were carried out to examine the long-acting effect of BSP-RBCs. The results shown that
the loaded cells could circulate in plasma for over nine days, the release of BSP can last for over
seven days and the anti-inflammatory effect can still be observed on day 5 after injection. Totally,
BSP-loaded autologous erythrocytes seem to be a promising sustained releasing delivery system with
long anti-inflammatory effect.
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1. Introduction

Glucocorticoids are one kind of the most effective drugs for treating various inflammation such
as skin disease, rheumatic disease, and allergic disease. However, their system applications should
be used only when necessary and in as low a dose as possible for their high incidence of adverse
effects, particularly in long term treatment. After being administered intravenously, glucocorticoids
can be quickly cleared from body, thus to maintain effective drug concentration, several injections are
recommended in one day. Many studies have reported that frequent and high dosing of glucocorticoids
will cause hormone-dependence and serious side effects, such as immunological suppression and
diabetes [1–4]. To avoid rapid fluctuations in blood, it is necessary to develop a novel delivery system
for the sustained releasing of glucocorticoids.

Betamethasone is a kind of classic glucocorticoids which plays an important role in controlling
many inflammations. To prolong the release of betamethasone phosphate (BSP), the administration of
drug encapsulated in biodegradable polymeric particles has been investigated. Ishihara et al. [5] firstly
developed betamethasone disodium 21-phosphate (BP) encapsulated in nanoparticles of poly(D,L-lactic
acid (PLA)) homopolymers, which had strong anti-inflammatory activity. Other nanoparticles for
BSP loading also include poly(D,L-lactic/glycolic acid) (PLGA) nanoparticle, and polyethylene glycol
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(PEG) modified PLGA-PLA nanoparticle (PEG-PLGA-PLA), but the rapid clearance from circulation
by mononuclear phagocyte system was also reported. Although the surface modification with PEG
can reduce antibody opsonization and prevent interactions with the mononuclear phagocyte system,
allergic reactions to these preparations still occurred [6,7]. Thus, a more biocompatible vector for BSP
loading is strongly needed.

Red blood cells (RBCs) are the most abundant type of blood cells and they can circulate in humans
for about three months and in mice for about 40 days [8–14]. And in comparison with any other carriers,
they hold the advantage of higher biocompatibility and longer life-span in circulation, especially when
autologous erythrocytes are used [15–21]. He et al. [22] have reported to load asparaginase into
erythrocytes for treatment of acute lymphoblastic leukemia and accomplish its long acting effect. It is
clear that if the physical and biological properties of erythrocytes can be preserved, the encapsulated
drug can own the similar circulating time to normal erythrocytes. In this study, BSP loaded RBCs
(BSP-RBCs) were prepared by using hypotonic preswelling method (Figure 1), and to examine the long
acting effects of loaded cells, survival of the preparation in circulation, drug release in plasma and
anti-inflammatory effect after injection were investigated.
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2. Materials and Methods

2.1. Materials

Betamethsone phosphate and prednisolone were purchased from Innochem Company (Beijing,
China). Sodium chloride, sodium pyruvate, glucose, glutaraldehyde, isoamyl acetate, and xylene were
purchased from Shanghai Titan Technology Co., Ltd (Shanghai, China). HPLC grade methanol was
purchased from Merck & Co., Inc. (Darmstadt, German). NHC-LC-Biotin reagent was purchased
from APExBIO Technology LLC (Houston, TX, USA). FITC streptavidin was obtained from Nanjing
Xinfan Biological Technology Co., Ltd (Nanjing, China). Purified water was obtained from a
MilliQ System (Millipore, Paris, France). All other chemicals used were of analytical grade. BCA
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Protein Quantification Kit was purchased from BOSTER Biological Technology (Wuhan, China).
Na+/K+-ATPase Kit, Annexin V-FITC kit were both purchased from NanJing JianCheng Bioengineering
Institute (Nanjing, China).

2.2. Animals

SD (Sprague Dawley) rats (weighing about 200 g), KM (Kunming) mice (eight-week-old females
weighing 20 g) purchased from Shanghai Jiesijie Experimental Animal Co., Ltd (Shanghai, China)
were used in this project. All procedures performed in studies involving animals were in accordance
with the Guidelines for Care and Use of Laboratory Animals of Shanghai Jiao Tong University and
approved by Institutional Animal Care and Use Committee in 19 March 2018 (Number: A2018021).

2.3. Preparation of BSP-RBCs

Male rats, weighing 200 g, were used throughout this experiment. Briefly, the autologous whole
blood was collected into a heparinized syringe from the orbital plexus vein of rats and centrifuged
at 4 ◦C, 600× g for 5 min, the plasma and buffy coat were discarded, then washed twice at 4 ◦C
with 9 mg/mL sodium chloride (NaCl). A similar preswelling method described by Ge et al. [23]
was used for encapsulation of BSP into erythrocytes. For this purpose, 0.1 mL washed packed cells
were transferred gently into a microcentrifuge tube, and then resuspended in 10-times the amount
of hypotonic drug solution (4.5 mg/mL NaCl, 4 mg/mL BSP) at room temperature for 20 min to
swell the RBCs and load the drug. Then 0.1 mL hypertonic solution (45 mg/mL NaCl, 5 mg/mL
sodium pyruvate, 10 mg/mL glucose) was added with gentle agitation, and the mixture was held at
37 ◦C for 30 min to reseal erythrocytes. The drug loaded RBCs obtained by this manner were finally
washed with isotonic PBS three times to remove the unentrapped BSP and the released cell continents.
The supernatants after resealing step and three washing steps were mixed together for drug loading
amount detection.

2.4. Quantification of Drug

A reversed-phase HPLC method was used for drug assay. In brief, a C18 column (Ultimate
XB-C18, 250 × 4.6 mm, 5 µm), a mixture of methanol and 0.05 mol/L phosphate buffer (1:1) were
used as a stationary and mobile phase, respectively. The detection was performed by an ultraviolet
detector in 254 nm. The collected supernatant (supernatant 1) during the drug loading procedure
was used to determine the amount of unentrapped BSP. Before determining, five times the amount of
methanol was added into supernatant 1 and vortex for 1 min to precipitate the released hemoglobin,
then the supernatant 2 after centrifuging the mixture at 3000 g for 20 min was filtered and injected
to the chromatograph. Drug loading amount (mg/mL cells) = (Total Amount − Unentrapped
Amount)/0.1 mL cells. Total amount is the drug amount added in the hypotonic solution for
0.1 mL erythrocytes.

2.5. Scanning Electron Microscopy (SEM)

Samples from two types of erythrocytes (native RBCs (NBCs), BSP-RBCs) were prepared by fixing
in glutaraldehyde (2.5%) for 30 min, incubating in the mixture of 0.4% potassium permanganate and
0.6% potassium dichromate for 30 min, and dehydrating with a concentration gradient of ethanol from
30 to 100%, each concentration for 5 min. Finally, replaced by isoamyl acetate for 30 min. The prepared
samples were then analyzed using a scanning electron microscope after being coated with gold particles
by a Sputter Coater in 18 mA for 30 s.
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2.6. Osmotic Fragility

To evaluate the resistance of RBC membrane against the osmotic pressure changes of their
surrounding media. Osmotic fragility was examined by incubating 0.1 mL cells into 1 mL stepwise
decreasing sodium chloride solutions (0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.45, 0.4, 0.3, 0.2, 0.1, 0% NaCl).
After 20 min of incubation at room temperature, the suspensions with hemoglobin were collected
by centrifugation at 600× g for 5 min, and then the absorbance at 540 nm of the supernatants were
measured by ultraviolet spectrophotometer. The released hemoglobin was expressed as percentage of
absorbance of each sample to that of a completely lysed sample prepared by incubating the cells of each
type with 0% NaCl solution. For comparative purposes, an osmotic fragility index (OFI) was defined as
the NaCl concentration producing 50% hemoglobin release, and 0.9% NaCl equals to osmotic pressure
of 308 mOsmL−1 [24].

2.7. Activity of Na+/K+-ATPase

To investigate the possible damages of loading procedure on RBC bioactivity, the activities of
Na+/K+-ATPase of NRBCs and BSP-RBCs were determined by Na+/K+-ATPase Kit. Each type of
RBC pellets was lysed in ten times of distilled water. 20 µL RBC lysate was collected and diluted
with 50 times of distilled water until the lysate was colorless or slightly pink. Then the activity
of Na+/K+-ATPase was measured according to the protocol of Na+/K+-ATPase Kit and protein
concentration was determined by using the BCA Protein Quantification Kit.

2.8. Phosphatidylserine(PS) Exposure

Phosphatidylserine exposure on outer membrane is the signal of early apoptosis in cells and these
cells will be cleared quickly from circulation by endothelium reticular system [25]. To examine whether
loading process has caused apoptosis to erythrocytes, the PS reversion rate was detected by flow
cytometer [26]. Each type of RBC pellets (10 µL) were firstly resuspended in 490 µL isotonic PBS. Then
10 µL RBC pellets suspension was diluted by 100 µL 1× binding buffer and incubated with 5 µL FITC
labeled annexin V for 10–15 min at room temperature in dark to label exposed PS. After incubation,
400 µL 1× binding buffer was added to stop the labeling reaction. The samples were finally analyzed
with a flow cytometer (BD LSR Fortessa, Becton Dickinson, Franklin Lakes, NJ, USA) and with its
accompanying software (CELLQUEST, Becton Dickinson, Franklin Lakes, NJ, USA). PS reversion rate
is the ratio of FITC labeled erythrocytes.

2.9. Survival in Circulation

In order to study the in vivo circulation time of drug-loaded cells, we prepared the
drug-encapsulated autologous erythrocytes, labeled them with biotin reagents and returned them to
the rats [27]. Then we took the blood from the rats at different time points and studied the survival
rate of erythrocytes by flow cytometry. Briefly, we obtained 0.7 mL of whole blood from the orbital
plexus vein and collect the RBCs and plasma. Then the BSP-RBCs were prepared as described above.
The RBCs and biotin reagents (15 µg/mL) were mixed at ratio of 1 to 100 and incubated at room
temperature for 30 min. Cells were washed three times with PBS + 100 mM glycine to quench and
remove excess biotin reagents and byproducts. Then the biotin-RBCs were suspended in autologous
plasma to the volume of 0.7 mL and returned to rats by tail vein injection. 0.05 mL blood each time
from rats at different time points (5 min, 1 h, 3 h, 5 h, 8 h, 24 h, 3 days, 5 days, 7 days, 9 days)
was collected to get the washed erythrocytes. The washed erythrocytes and FITC streptavidin were
mixed at a ratio of 1 to 100, and incubated the mixture at room temperature for 30 min. Cells were
washed three times with PBS to remove excess fluorescent reagents. Finally, the cells were diluted for
about 2000 times to measure the average fluorescence intensity of each sample by a flow cytometer.
The average fluorescence intensity of 5 min points was considered as 100 percent of cell survival rate.



Pharmaceutics 2018, 10, 286 5 of 12

2.10. Pharmacokinetics (PK)

The PK of betamethasone in BSP-RBCs was determined by UPLC-MS. Firstly, the blood was
taken from rats and the drug-loaded erythrocytes were prepared and returned back to rats. Then
0.1 mL blood was collected from each rat for the measurement of betamethasone concentrations at
5, 15, and 30 min and 1, 2, 4, 6, 8, 12, and 24 h after the start of infusion. Additional samples were
obtained on days 2, 3, 4, 5, 6, and 7. Plasma concentration of betamethasone were determined using a
validated UPLC-MS. In both groups, each individual rat was given 0.7 mL preparations with 350 µg
BSP (n = 6 each). Standard PK parameters for BSP were calculated with Pksolver, a Microsoft Excel
add-in application [28,29].

2.11. In Vivo Anti-Inflammatory Effect

The anti-inflammatory effect of BSP-RBCs was evaluated by using mice ear edema model.
The mice (20 g) were injected intravenously firstly with BSP-RBCs (500 µg/mL, 0.1 mL). Then, at
30 min after drug injection, xylene was painted on the right ear of mice (30 µL/ear) to cause ear
inflammation. After 30 min, six mice were selected and sacrificed in each group and their ears were
punched (8 mm) and weighted. The same model and measurements were repeated on days 1, 3, 5,
and 7 after drug injection. The differences between the weights of two ears represents the degree of
inflammation, and the smaller difference means better anti-inflammatory effect.

2.12. Statistical and Data Analyses

Data expression was shown as the mean ± SD. Significant differences between NRBCs and
BSP-RBCs were analyzed by the Tukey–Kramer multiple comparison test, using GraphPad Prism
Software, v.6.01 (GraphPad Software Inc., San Diego, CA, USA). Results with p < 0.05 were considered
statistically significant.

3. Results and Discussion

3.1. Quantification of Drug

The loading amount of the prepared BSP-RBCs was about 2.5 mg/mL cells, which was promising
for the treatment of inflammatory [30]. 1 mL cells were collected from 2–3 mL whole blood by
centrifuging at 600× g for 5 min.

3.2. Scanning Electron Microscopy

The morphology of the erythrocytes plays a crucial role in their life-span in circulation [31].
We investigated the possible morphological changes of erythrocytes upon loading process by using
SEM. As illustrated in Figure 2, the BSP loaded erythrocytes resulted in the formation of cup-form
similar to the normal erythrocytes. These findings show that the loading process may has no deleterious
effects on erythrocyte shape.
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Figure 2. Scanning electron microscopy of NRBCs and BSP-RBCs. NRBCs have a normal biconcave
shape, BSP-RBCs have the similar biconcave shape. Magnification is 20,000.

3.3. Osmotic Fragility

The osmotic fragility test was used to detect structural changes in RBC membranes subjected
to osmotic stress. The fragile cells maybe destroyed and eliminated quickly from circulation by
macrophages [32,33]. As the hemolysis rate curve displayed in Figure 3, BSP-RBCs were easier to
hemolysis under pressure of 103 to 205 mOsm/L, the ability of BSP-RBCs to resist osmotic pressure
decreased. It suggested that drug loading made cells more fragile, which was in agreement with
those of GI Harisa et al. who have found that osmotic fragility of loaded cells is higher than unloaded
cells [34]. And this may be due to multiple changes in cell morphology during drug loading process
and subsequent several washing steps. Although there was small decrease of osmotic fragility after
loading process, the OFIs of BSP-RBCs (148 mOsm/L) and NRBCs (173 mOsm/L) were very close,
the gap between them was much less than what have been reported by Hamidi et al. [35].

Pharmaceutics 2018, 10, x FOR PEER REVIEW  5 of 12 

 

 
Figure 2. Scanning electron microscopy of NRBCs and BSP-RBCs. NRBCs have a normal 
biconcave shape, BSP-RBCs have the similar biconcave shape. Magnification is 20,000. 

3.3. Osmotic Fragility 

The osmotic fragility test was used to detect structural changes in RBC membranes 
subjected to osmotic stress. The fragile cells maybe destroyed and eliminated quickly from 
circulation by macrophages [32,33]. As the hemolysis rate curve displayed in Figure 3, BSP-
RBCs were easier to hemolysis under pressure of 103 to 205 mOsm/L, the ability of BSP-RBCs 
to resist osmotic pressure decreased. It suggested that drug loading made cells more fragile, 
which was in agreement with those of GI Harisa et al. who have found that osmotic fragility of 
loaded cells is higher than unloaded cells [34]. And this may be due to multiple changes in cell 
morphology during drug loading process and subsequent several washing steps. Although 
there was small decrease of osmotic fragility after loading process, the OFIs of BSP-RBCs (148 
mOsm/L) and NRBCs (173 mOsm/L) were very close, the gap between them was much less 
than what have been reported by Hamidi et al. [35]. 

 
Figure 3. Osmotic fragility curves of NRBCs and BSP-RBCs. Data are represented as mean ± 
SD, three samples were used in each group. 

3.4. Activity of Na+/K+-ATPase  

Erythrocyte membrane enzyme is an important membrane-bound enzyme, which plays 
an important role in keeping RBCs morphology, structure and function. Among them, Na+/K+-
ATPase mainly involves in the transmembrane transport of Na+ and K+ to maintain proper iron 
concentration, and it is related to cells deformability and blood viscosity [36,37]. From Figure 
4, Na+/K+-ATPase activity of BSP-RBCs was around 21.1 ± 2.8 μmolpi·gHb−1·h−1, which kept 
about 70% of NRBCs (31.6 ± 3.2 μmolpi·gHb−1·h−1). The decrease may be caused by multiple 
centrifugation, PBS washing, heparin anticoagulation, blood–vapor interface damage, and cells 
pre-swelling during the drug-loading process. The decreasing ATPase activity may affect its 
circulation time in vivo.  

Figure 3. Osmotic fragility curves of NRBCs and BSP-RBCs. Data are represented as mean ± SD, three
samples were used in each group.

3.4. Activity of Na+/K+-ATPase

Erythrocyte membrane enzyme is an important membrane-bound enzyme, which plays an
important role in keeping RBCs morphology, structure and function. Among them, Na+/K+-ATPase
mainly involves in the transmembrane transport of Na+ and K+ to maintain proper iron concentration,
and it is related to cells deformability and blood viscosity [36,37]. From Figure 4, Na+/K+-ATPase
activity of BSP-RBCs was around 21.1 ± 2.8 µmolpi·gHb−1·h−1, which kept about 70% of NRBCs
(31.6 ± 3.2 µmolpi·gHb−1·h−1). The decrease may be caused by multiple centrifugation, PBS washing,
heparin anticoagulation, blood–vapor interface damage, and cells pre-swelling during the drug-loading
process. The decreasing ATPase activity may affect its circulation time in vivo.
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3.5. Phosphatidylserineexposure

After the encapsulation procedure, the presence of PS in the outer lipid layer of erythrocytes
membrane was studied by annexin V to assess the membrane damage. From Figure 5A, we could
see that BSP-RBCs had the similar distribution to NRBCs on FSC-SSC scatter plot, which indicated
the similar morphology and confirms the results obtained from SEM. Flow cytometric analysis of
BSP-RBCs carried out just after the loading procedure showed PS externalization values of about
26.0 ± 3.4% (Figure 5B), which displayed significant difference compared to NRBCs (0.4 ± 0.1). Once
PS is exposed, the RBCs were selectively recognized by PS receptors present on the phagocytic cell
membrane and actively ingested. Staedtke et al. reported that PS ratios >35% resulted in >90% uptake
efficacy, and a correlation between uptake and PS exposure could be observed with ratios <35% [38].
Thus the 26.0 ± 3.4% exposure rate of BSP-RBCs may affect its circulation time which needs to be
investigated in vivo.
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3.6. Survival of BSP-RBC

The half-life shows the elimination rate of RBCs [39]. To study the life-span of RBCs, autologous
NRBCs and BSP-RBCs were firstly labeled with biotin and then injected back to the rats. Five minutes
(time zero) after injection, took the blood and incubated the RBCs with FITC, the fluorescence was
measured and seen as 100% fluorescence. As shown in Figure 6A, the survival curve of NRBCs and
BSP-RBCs were both characterized by an initial rapid decrease in the first 24 h, and followed by a
slow but prolonged phase of biotin-RBCs elimination from plasma. This phenomenon indicated that
the more damaged cells would be removed quickly from circulation, whereas the less damaged cells
could be seen circulating in blood for a longer time period. Furthermore, we could also see that the
detected circulation time of NRBCs was much shorter than its theoretical life span (about 40 days),
the significant difference may be caused by RBCs collection and reintroduction or biotinylation.

The stretched time scale for the first 24 h in Figure 6B permitted to observe more clearly how
the BSP-RBCs were removed from circulation faster than NRBCs. These findings agreed well with
the vitro results shown in Figures 4 and 5 that more damaged cells existing in BSP-RBC preparations.
As can be also seen in Figure 6B, only 26.3 ± 4.27% of loaded cells were cleared from circulation
after 24 h, which showed better survival ability than what was reported by Carmen et al. [39]. In the
later days, BSP-RBCs showed similar clearance rate to NRBCs, about 15% of injected cells one day.
In addition, the survival rate of BSP-RBCs was still about 27.8 ± 1.5% on day 9 which suggested the
long- circulation potential of RBC.
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Figure 6. In vivo survival of NRBC and BSP-RBC. (A) Survival in 9 days; (B) Survival in the first 24 h.
Data are represented as mean ± SD, three samples were used in each group.

3.7. Pharmacokinetics

The PK properties of BSP released from the RBCs were determined in rats who received free
BSP solution and autologous BSP-RBCs preparation (n = 6). The mean encapsulated BSP dose was
0.35 mg in two groups. A log means plasma concentration vs time profile for both groups was shown
in Figure 7 and a detailed summary of the PK parameters for betamethasone for two preparations was
shown in Table 1. It was noted that the release of free BSP was rapid after the single vein injection
and it almost could not be detected after 24 h, while the release of BSP in BSP-RBCs group could
still be detected up to seven days. The elimination half-life of BSP in BSP-RBCs preparations was
about 3.31 days, which indicated a sustained release effect, when compared with free BSP preparation,
0.15 day. The decline of betamethasone in erythrocytes was approximately similar to the survival
patterns of cells.
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Table 1. Summary PK parameters for betamethasone. (mean ± SD, n = 6).

Preparations T1/2 (d) Cmax (ng/mL) AUC0–t (ng/mL*d) AUC0–∞ (ng/mL*d)

BSP 0.15 ± 0.03 245.77 ± 23.09 18.13 ± 4.67 18.17 ± 4.67
BSP-RBC 3.31 ± 0.82 101.40 ± 17.83 23.81 ± 6.13 26.21 ± 6.75

3.8. In Vivo Determination of Anti-Inflammatory Effect

The measurement of anti-inflammatory effect was carried out on 30 min and days 1, 3, 5, and
7 after the administration of 0.1 mL autologous BSP-RBCs (50 µg BSP). At different time points, 30 µL
Xylene was dropped onto the surface of the mice right ear for 30 min to cause ear swelling. As shown in
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Figure 8, at 30 min and on days 1, 3, and 5, the swelling rate of BSP-RBCs group was significantly lower
than that of saline group, indicating that there was enough plasma BSP for powerful anti-inflammatory
effect. However, the swelling rate of BSP-RBCs group was almost similar to the saline group on day
7 while the BSP group only showed significant difference at 30 min. Thus, betamethasone loaded
in erythrocytes appeared to show sustained-release effect and the anti-inflammatory action could
last for more than five days. This prolonged effect agreed reasonably well with the survival and
pharmacokinetics shown in Figures 6 and 7. Despite the presence of drugs in plasma on day 7, it could
not meet the effective dose.
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4. Conclusions

In this study, betamethasone phosphate was successfully loaded into autologous erythrocytes
by hypotonic preswelling method, the loading amount was about 2.5 mg/mL cells. The vitro
characterizations proved the similarity of BSP-RBCs to NRBCs in morphology and osmotic fragility.
Although the decreased activity of ATPase and more exposure of PS proved the damages to
erythrocytes caused by loading procedure, the experiments in vivo indicated the long acting ability of
BSP-RBCs. In summary, the autologous erythrocytes are promising drug carriers for sustained releasing
and thus improving the therapeutic outcome and decreasing the adverse effect of glucocorticoids,
such as betamethasone. In addition, editing patients’ own cells to kill tumor cells like Chimeric
Antigen Receptor T-Cell Immunotherapy (CAR-T) can avoid allogeneic rejection, the use of autologous
red blood cells for drug delivery can also improve medication safety and provide some advice for
personalized medicine.
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