

Supplementary Materials: Drug-Loaded Biomimetic Ceramics for Tissue Engineering

Patricia Diaz-Rodriguez, Mirian Sánchez and Mariana Landin

Biomaterial	Loading technique	Drug	Release profile	Reference
HAp powder	Adsorption	Ibuprofen	Fickian diffusion	[80]
TCP/bioactive glasses	Adsorption	BMP-2	Initial burst followed by a	[82]
			prolonged release	
Gelatin/HAp cryogel	Adsorption by microinjection	VEGF	Initial burst followed by a	[83]
			prolonged release	
BoneSave granules (BCP)	Adsorption	Zoledronic acid	Initial burst followed by a	[84]
bollesave granules (DCI)			prolonged release	
Biomorphic silicon	Adsorption VE	VEGE	Initial burst followed by a	[86]
carbide(BioSiC)			prolonged release	
HAp and α-TCP	Adsorption	BMP-2, bFGF	-	[87]
TCP/HAp granules.	Adsorption	BMP-2	Release for up to 14 days	[88]
HAp/Collagen			Initial burst followed by a	1001
nanocomposite fibers	Adsorption	BMP-2	prolonged release	[89]
Collegon HAn	A 1	Pamidronate, BMP- 2	BMP-2 initial burst followed by a	[90]
Collagen–HAp	Adsorption		prolonged release	
Biomorphic silicon	Adaptation	Vancomucin	Initial burst followed by a	[91,92]
carbide(BioSiC)	Adsorption	Vancomycin	prolonged release	
Macaparaus HAn microspheres	Adsorption	Doxorubicin	Two phase release controlled by	[94]
Mesoporous HAp microspheres		hydrochloride	рН	
HAp nanoparticles	Adsorption	IgG	-	[96]
HAp nanoparticles	Adsorption	BMP-2	Two phase release profile	[98]
Nanocrystalline calcium	Adsorption	Erythrosin	Two phase release profile	[99]
phosphate apatite				
ВСР	Adsorption	fibronectin/	Two phase release profile	[102]
DCI		cadherin		
Gelatin-carboxymethyl	Physical entrapment	Dextran (model	Zero order release	[51]
cellulose/CaP		drug)		
Alginate+nano-HAp/	Physical entrapment	BMP_2	Zero order release	[103]
collagen	i nysicai chiraphich	Divit -2 Ze		[100]
Gelatin-HAp	Physical optropment	sical entrapment Tetracycline	Zero order release	[104]
nanocomposites	i nysicai citti apinent			
Calcium phosphate coatings of	Physical entrapment	BSA (model protein)	Two phase release profile dependent on BSA content	[105]
Ti				
Calcium phosphate coatings of	Physical entrapment	BSA (model protein)	Release profile dependent on BSA	[106]
Ti	i nysicai citti apinent	borr (model protein)	incorporation technique	
Apatitic bone cement	Physical entrapment	Strontium	Zero order release	[29]
Calcium phosphate porous	Physical entrapment	Strontium	-	[93]
microspheres	Adsorption	Vancomycin	Higuchi release profile	[20]
Gelatin/collagen and bioactive	Physical entrapment Copper	Copper	-	[62]
glass fibers		COPPEI		
Mg and CO3 doped apatite	Physical entrapment	Strontium, Magnesium	Zero order release	[107]

Table S1. Summary of the developed drug loaded biomimetic bioceramics.

Bioglass microspheres	Physical entrapment	Strontium, Zinc, Silicon	Burst release profile	[108]
Complex-shaped HAp scaffolds	Physical entrapment	Lysozyme, BSA	Burst release profile	[110]
Chitosan/HAp scaffolds	Covalent bonding	BMP2-derived peptide P24	Zero order release	[111]
electrospun poly (L-lactide)/HAp	Covalent bonding	Arg-Gly-Asp (RGD)	-	[113]