

Supplementary Materials: Importance of Binding Affinity for the Activity of a Metallodendritic Chemical Nuclease

Yi-Hsuan Tang, Sodio C. N. Hsu, Po-Yu Chen, Si-ting Liou, Hui-Ting Chen, Carol Hsin-Yi Wu and Chai-Lin Kao

General Information

Chemicals were purchased from Sigma-Aldrich, Acros, and Merck. Co. PAMAM dendrimers were purchased from Dendritech Co. Flash chromatography was performed on a 230–400 mesh silica (Silica Gel 60) from Merck. Co. NMR spectra were obtained on a Varian 400 MHz spectrometer. MALDI-Mass spectra were recorded using an Autoflex III MALDI-TOF system (Bruker Daltonics). UV-Vis spectra were collected using a JASCO V500 spectrophotometer. Florescence spectra were recorded using a Cary Eclipse fluorescence spectrophotometer. Gel electrophoresis experiments were conducted using a Major Science MP-500P programmable electrophoresis power supply and a UVP Biospectrum.

Synthesis of compounds 2 and 4; complexes 3a and 5:

(G:2)- dendri-PAMAM- Py28 (2a).

According to previous literatureⁱ, product **2a-2e** were prepared.¹H-NMR (400 MHz, D₂O) δ: 8.64 (d, *J* = 5.2 Hz, 28 H), 8.43 (t, *J* = 16 Hz, 28 H), 7.98 (d, *J* = 8.0 Hz, 28 H), 7.88 (t, *J* = 13.2 Hz, 28 H), 4.21(s, 49 H), 3.52~3.29 (m, 143 H), 2.79~2.70(m, 81 H). Mass (MALDI, m/z) cacld.: M: 5804; (M+2H⁺) /2: 2903 Found: 5806; 2903

(G:3)-PAMAM-dendri-Py₅₇ (2b).

¹H-NMR (400 MHz, D₂O) δ : 8.59 (d, *J* = 6 Hz, 57 H), 8.40 (t, *J* = 15.6 Hz, 58 H), 7.92 (d, *J* = 8.0 Hz, 57 H), 7.80 (t, *J* = 13.6 Hz, 58 H), 4.15 (s, 108 H), 3.48~3.23 (m, 309 H), 2.73~2.64 (m, 170 H). Mass (MALDI, m/z) cacld.: M: 12187; (M+ 3Na⁺+3K⁺)/6: 2061; (M+3H⁺)/3: 4063. Found: 2061; 4063

(G:4)-PAMAM-*dendri*-Py₁₁₄ (2c).

¹H-NMR (400 MHz, D₂O) δ : 8.68 (d, *J* = 6 Hz, 89 H), 8.46 (b, 100 H), 8.00 (d, *J* = 8 Hz, 102 H), 7.88 (b, 102 H), 4.26 (s, 173 H), 3.59~3.27 (m, 663.0 H), 2.84~2.75 (m, 335 H). Mass (MALDI, m/z) cacld.: M: 24225 ; (M+ Na⁺ + 12 H⁺)/13: 1866. Found: 1866

(G:5)-PAMAM-*dendri*-Py₂₁₅ (2d).

¹H-NMR (400 MHz, D₂O) δ: 8.69 (d, J = 5.6 Hz, 187 H), 8.46 (b, 202 H), 8.00 (d, J = 8.0 Hz, 204 H), 7.89 (b, 202 H), 4.26 (s, 335 H), 3.57~3.27 (m, 1325 H), 2.84~2.75 (m, 700 H). Mass (MALDI, m/z) cacld.: M: 48391; (M+ 4 Na⁺ + 27H⁺)/31: 1565; (M+ 28 H⁺)/28: 1729; (M+ 23 H⁺)/23: 2105. Found: 1565; 1729; 2105

(G:6)-PAMAM-*dendri*-Py₄₂₁ (2e).

¹H-NMR (400 MHz, D₂O) δ : 8.60 (d, *J* = 5.6 Hz, 421 H), 8.41 (t, *J* = 8 Hz, 421 H), 7.93 (d, *J* = 8 Hz, 421H), 7.83 (t, *J* = 6.4 Hz, 421H), 4.18 (s, 842 H), 3.48~3.25 (m, 2648 H), 2.75~2.66 (m, 1420 H). Mass (MALDI, m/z) cacld.: M: 1439.5 (M + Na⁺ + 66H⁺)/67, 3027.2 (M + 14Na⁺ + 5K⁺ + 13H⁺)/32, 1347.4 (M + 12Na⁺ + 9K⁺ + 51H⁺)/72; Found: 1439.5; 3027.2; 1347.5.

Preparation of Complexes 3a:

To the solution of compound **2a** in methanol was added the solution of CuSO₄·5H₂O in methanol dropwise to give precipitate. After centrifuge, the solvent was removed to give desired product as blue green solid (**3a**).

Synthesis of *N*,*N*-bis(2-pyridylmethyl)-3-aminopropanol (4):

Figure S1. Structure of compound 4.

To a mixture of 3-amino-1-propanol (0.5 g, 6.7 mmol) and pyridine- 2-carboxaldehyde (1.5 g, 14 mmol) in dry dichloromethane (20 mL) was added sodium triacetoxyborohydride (2.96 g, 14 mmol) under N₂. After being stirred for 48 h under a N₂, dichloromethane was removed. The resulting mixture was dissolved in chloroform and washed with aqueous solution. The product was purified by chromatography over silica gel (eluting with a 20/1 mixture of chloroform-methanol) to give a pale yellow oil (0.94g, 3.7 mmol, yield 55%, Rf= 0.3)¹H NMR (400 MHz, CDCl₃) δ : 8.56–8.54 (m, 2H), 7.66–7.61 (m, 2H), 7.42–7.41 (d, *J* = 4.0 Hz, 2H), 7.18–7.14 (m, 2H), 3.84 (s, 4H), 3.73 (t, *J* = 10.4 Hz, 2H), 2.78 (t, *J* = 11.6 Hz, 2H), 1.83-1.78 (m, 2H). Mass (EI-MS m/z) cacld: M: 257.1528. Found: 257.1530

Preparation of hexaCu complexes 5a~e:

Copper sulfate solution (1 mM; 6 μ l, tris buffer) was mixed with compound (5a to 5e) (1 mM; 1 μ l, tris buffer) solution to form complexes 5a to 5e.

Figure S2. Nuclease activity of HexaCu complexes **5.** DNA cleavage activity of **5**. Lane 1, compound **5a** (33 nM) + DTT (0.66 mM); lane 2, compound **5b** (33 nM) + DTT (0.66 mM); lane 3, compound **5c** (33 nM) + DTT (0.66 mM); lane 4, compound **5d** (33 nM) + DTT (0.66 mM); lane 5, compound **5e** (33 nM) + DTT (0.66 mM); lane 6, bleomycin; lane 7, Tris buffer (24 mM).

Table S1. Relative fluorescence intensity of from II.

compounds	3a	3b	3c	3d	3e
relative activity	1.00	1.39	1.64	2.15	2.02

Figure S3. Fluorescence spectra of HPF in the presence or absence of 5e.

ⁱ Kao, C.-L.; Tang,Y-h; Lin, Y.C ; Chiu, L.-T.; Chen, H.-T.; Hsu, S.C.N.; Hsieh,K.-C.; Lu, C.-Y.; Chen, Y.-L. *Nanomedicine*, *NBM*. **2011**, *7*, 273–276.