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Abstract: Developments of genome amplification techniques have rapidly expanded the family of
human polyomaviruses (PyV). Following infection early in life, PyV persist in their hosts and are
generally of no clinical consequence. High-level replication of PyV can occur in patients under
immunosuppressive or immunomodulatory therapy and causes severe clinical entities, such as
progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy or Merkel cell
carcinoma. The characterization of known and newly-discovered human PyV, their relationship to
human health, and the mechanisms underlying pathogenesis remain to be elucidated. Here, we
summarize the most widely-used in vitro and in vivo models to study the PyV-host interaction,
pathogenesis and anti-viral drug screening. We discuss the strengths and limitations of the different
models and the lessons learned.
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1. The Growing Family of Human PyV

Mouse polyomavirus (PyV), discovered in the 1950s, was the founder of the PyV family.
It was termed polyoma (meaning “many tumors”)-virus because of its ability to produce tumors
in mice [1]. In 1971, the first two human PyV were discovered independently in specimens
from immunocompromised patients and were named after the patients’ initials: BK and JC. BK
polyomavirus (BKPyV) was isolated from the urine of a kidney transplant recipient [2], and JC
polyomavirus (JCPyV) was identified in the brain tissue of a patient with a history of Hodgkin’s
lymphoma and progressive multifocal leukoencephalopathy [3]. However, over 35 years passed before
advances in high-throughput sequencing technologies were to suddenly increase the discovery of new
human PyV (Table 1). In 2007, Karolinska Institute (KI) PyV [4] and Washington University (WU)
PyV [5] were discovered by means of the random polymerase chain reaction (PCR) amplification and
high-throughput deoxyribonucleic acid (DNA) sequencing strategy involving respiratory samples
from patients with acute respiratory tract infections. In 2008, Merkel cell PyV (MCPyV) was discovered
by analyzing complementary DNA (cDNA) sequences prepared from Merkel cell carcinoma specimens
using pyrosequencing technology followed by the subtraction of human reads so as to identify novel
viral sequences [6].
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Table 1. Discovery of human polyomaviruses and associated diseases.

Human Polyomavirus Abbreviation Year of Discovery NCBI RefSeq or
GenBank Accession Source of Isolation Seroprevalence (%) * Associated Disease Ref.

BK polyomavirus BKPyV 1971 NC_001538 Urine 80–90 (a) Nephropathy, hemorrhagic cystitis [2]

JC polyomavirus JCPyV 1971 NC_001699 Brain 40–55 (b) Progressive multifocal
leukoencephalopathy [3]

Karolinska Institute polyomavirus KIPyV 2007 NC_009238 Respiratory tract 55–90 Not known [4]

Washington University polyomavirus WUPyV 2007 NC_009539 Respiratory tract 70–90 Not known [5]

Merkel cell polyomavirus MCPyV 2008 NC_010277 Skin tumor 60–80 Merkel cell carcinoma [6]

Human polyomavirus 6 HPyV6 2010 NC_014406 Normal skin 70–75 Not known [7]

Human polyomavirus 7 HPyV7 2010 NC_014407 Normal skin 35–62 Pruritic rash [7]

Trichodysplasia spinulosa-associated
polyomavirus TSPyV 2010 NC_014361 Skin lesion 70–84 Trichodysplasia spinulosa [8]

Human polyomavirus 9 HPyV9 2011 NC_015150 Blood and urine 18–50 Not known [9]

Malawi polyomavirus MWPyV 2012 NC_018102 Stool 42–75 Not known [10]

Human polyomavirus 10 HPyV10 2012 JX262162 Condyloma 99 Not known [11]

Mexico polyomavirus MXPyV 2012 JX259273 Stool Not known Not known [12]

St Louis polyomavirus STLPyV 2012 NC_020106 Stool 70 Not known [13]

Human polyomavirus 12 HPyV12 2013 NC_020890 Liver 23 Not known [14]

New Jersey polyomavirus NJPyV 2013 NC_024118 Muscle biopsy Not known Not known [15]

* References: [14,16–21] (a) Following analysis based on the entire genome or sequence of the major viral capsid protein VP1, BKPyV strains have been classified into four different
genotypes (I–IV), corresponding to four serologically-different subtypes. Genotype I is the most prevalent worldwide, while Genotype IV is found solely in East Asia and Europe. In
contrast, Genotypes II and III are rarely detected in the human population [22]. (b) Only one serotype has to date been reported for JCPyV, despite the existence of seven genotypes,
numbered 1–8, with Type 5 reclassified as a member of Type 3, and numerous subtypes [23]. European populations typically harbor Types 1 and 4, although Type 2 subtypes have
also been described [24,25]. African populations are often associated with Types 3 and 6, with the former also found in Middle-Eastern populations [26], while numerous subtypes
from Types 2 (2A, 2B, 2D and 2E) and 7–8 (7C, 8A and 8B) are found in Asia and Oceania [27,28]. Coevolution of JCPyV with human populations is thought to have given rise to the
different genotypes and could account for their association with specific ethnic groups [29].
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Rolling circle amplification (RCA) techniques identified human polyomavirus 6 (HPyV6) and
HPyV7 from skin samples [7], and trichodysplasia spinulosa-associated PyV (TSPyV, also called
HPyV8) in skin lesions from patient with trichodysplasia spinulosa [8]. In 2011, a generic PyV PCR
assay using primers that have been designed to target conserved regions of the gene encoding the
major capsid protein of PyV led to the discovery of HPyV9 in a kidney transplant patient [9]. Only
one year later, Malawi PyV (MWPyV) was identified from stool specimens of a one-year-old healthy
Malawi child using RCA and pyrosequencing [10]. In the same year, the complete sequenced genome
of HPyV10 was detected in condyloma specimens from a patient with a rare genetic disorder known
as warts, hypogammaglobulinemia, infections and myelokathexis syndrome (WHIM) [11]. In addition
to these cases, the isolation of a PyV from stool samples of a Mexican child presenting with diarrhea
has also been described (Mexico PyV; MXPyV) [12]. An analysis of the nucleotide sequences of
MWPyV, HPyV10 and MXPyV isolates revealed 95%–99% homology, suggesting that these PyV are
closely-related variants. In 2013, Saint Louis PyV (STLPyV) was identified in the stool sample of
a healthy child [13], with nucleotide sequence analysis demonstrating that STLPyV is most closely
related to MWPyV [13]. Generic PyV PCR targeting the major viral capsid protein also identified a
novel PyV in human liver tissue, called HPyV12 [14]. Phylogenetic analyses of HPyV12 did not reveal
a close relationship with known human PyV, indicating that HPyV12 belongs to a different PyV species.
The last novel PyV was identified in a muscle biopsy of a pancreatic transplant recipient suffering
from retinal blindness and vasculitic myopathy, using high-throughput sequencing, which was named
New Jersey PyV (NJPyV). This variant appears to exhibit a tropism for vascular endothelial cells [15].

2. The PyV Life Cycle

Human PyV are small non-enveloped viruses. The genome of PyV consists of an ~5 kb-long
circular double-stranded DNA and is encapsidated in an icosahedral shell composed of 72 pentamers
of the capsid protein VP1. VP1 determines antigenicity and receptor specificity and has thus a
significant impact on the attachment, tissue tropism and pathogenicity of PyV. In addition to the major
capsid protein VP1, two minor capsid proteins, VP2 and VP3, occupying the interior of the capsid,
have been described [16] (Figure 1). Interestingly, MCPyV lacks the VP3 minor capsid protein, and
phylogenetic analyses indicate that MCPyV is a member of a divergent clade of polyomaviruses that
lack the conserved VP3 N-terminal motif [30]. The genome of all PyV contains an ~500-bp non-coding
sequence referred to as the non-coding control region (NCCR), which harbors the origin of DNA
replication, as well as transcription promoters and regulatory elements. The NCCR region separates
the PyV genome into the early region encoding the tumor antigens (TAgs), which are synthesized
before viral DNA replication, and the late region encoding the viral capsid proteins VP1, VP2 and VP3
(Figure 1). TAgs are expressed from a variably-spliced viral transcript resulting in different forms of
TAgs (large (LTAg), middle (MTAg) and small (sTAg) forms). Unlike the other human PyV, BKPyV and
JCPyV encode an accessory protein in the late region, referred to as the agnoprotein [16]. In addition,
viral encoded miRNAs, which have the ability to negatively regulate the expression of viral gene
expression, have been found to be encoded by BKPyV, JCPyV and MCPyV [31–34].

PyV entry is initiated by the major capsid protein VP1, which attaches to cellular receptors to
promote internalization. Sialylated glycans have been identified as functional receptors for several
human PyV. Sialic acids are abundantly expressed on N- or O-linked glycoproteins and gangliosides.
BKPyV uses the common α2,8-disalic acid motif on b-series gangliosides to infect cells [35,36].
Although JCPyV binds to multiple sialic acid-containing gangliosides, the linear α2,6-linked lacto-series
tetrasaccharide c (LSTc) has been established as a functional receptor for JCPyV [37,38]. In addition
to LSTc, other studies have also evidenced the importance of other cellular components for JCPyV
entry, such as the serotonin receptor 5HT2A [39,40]. Interestingly, TSPyV can interact with terminal
sialic acids in α2,3-, α2,6- and α2,8-linkages, and a sialylated glycolipid has been proposed to initiate
viral entry [41]. Glycan microarray analysis revealed that HPyV9 VP1 also interacts with sialic acids
with an unexpected preferential binding to α-5-N-glycolylneuraminic acid (Neu5Ac), which humans
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can acquire only from diet sources that are rich in Neu5Ac, such as red meat and milk products [42].
Unlike other PyV, MCPyV uses sulfated carbohydrates termed glycosaminoglycans as attachment
receptors and sialylated glycans as secondary, post-attachment co-receptors during viral entry [43,44].
To date, the cell surface receptors for KIPyV, WUPyV, HPyV6 and HPyV7 are unknown. Single-cell
binding studies indicated that sialylated glycans are likely not required for viral attachment of HPyV6
and HPyV7 [45]. Structural analysis of the major capsid protein VP1 revealed that KIPyV and WUPyV
VP1 possess unique structural features that suggest engagement of non-sialylated receptor types [46].
Different entry pathways have been described for PyV depending on both cell type and virus. JCPyV
virus enters cells via clathrin-mediated endocytosis, while for BKPyV, caveolae-dependent endocytosis
and the caveolin- and clathrin-independent entry pathway have been observed [47,48]. However,
further studies are warranted to gain a deeper insight into the cellular receptors and entry pathways
of known and newly-discovered PyV. Following entry, PyV have to traffic from the cytoplasm to
the nucleus, where the uncoated genome is accessible to the replication machinery of the host cell.
TAgs are required for viral replication, cellular transformation or tumorigenicity. Virion assembly
occurs in the nucleus; however, very little is known about the egress of viral particles. PyV establish a
life-long persistence that is probably achieved by a very low level of viral replication. Interestingly,
PyV genomes have been shown to be associated with histone proteins [49,50], suggesting that PyV
genomes are susceptible to epigenetic regulation.
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Figure 1. Human PyV particles are composed of 72 pentamers of the capsid protein VP1, with one
of the minor capsid proteins VP2 or VP3 in the center of each pentamer. The human PyV genome is
divided into three regions: a non-coding region, containing the early and late promoters, transcription
sites and the origin of replication; an early region encoding small T antigens (sT), large T antigens (LT)
and alternatively-spliced LT antigens (LT’); and a late region encoding the viral structural proteins VP1,
VP2 and VP3. Among human polyomaviruses, only BKPyV and JCPyV encode an agnoprotein (agno)
upstream of VP1. Merkel cell PyV (MCPyV) does not encode the minor capsid protein VP3.

3. PyV-Associated Pathologies

PyV are ubiquitous, clinically-silent human pathogens indicating that PyV and their hosts establish
a symbiotic relationship, although it remains unclear to what extent these two partners benefit.
A respiratory route of transmission of PyV has been hypothesized [51]. However, PyV have also been
detected in different water environments, including swimming pool waters [52,53], implying that
PyV are disseminated through fecal or urine contamination of water. Primary infection is usually
asymptomatic and occurs in childhood or during adolescence. A recently-conducted seroepidemiology
study of 10 human polyomaviruses in the U.S. population demonstrated that all participants were
seropositive for at least one PyV, with a mean of 7.3 PyV and with seroprevalences ranging from 17.6%
(for HPyV9) to 99.1% (for HPyV10) [20]. PyV establish a silent, persistent infection in various organs
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and tissues, such as the urogenital tract, kidneys, the bone marrow, the skin and the brain. Diseases
associated with PyV have been so far exclusively described in immunocompromised individuals or
patients with immunological abnormalities. Current evidence indicates that PyV-specific T cells and
also neutralizing antibodies play a crucial role in the control of PyV replication and recovery from
PyV-associated diseases. Specific direct antiviral molecules against PyV are lacking. Thus, patient
survival is mainly dependent on the reconstitution of PyV-specific T-cell response. For more detailed
reviews on these topics, the reader is referred to other studies [54–57]. At present, five members of the
human PyV family have been associated with specific pathologies (Table 1):

BKPyV is the causative agent of BKPyV-associated nephropathy in kidney transplant recipients
and hemorrhagic cystitis in bone marrow transplant patients. Primary sites for BKPyV replication are
the renal and uro-epithelium, resulting in lytic destruction of these cells. Replication of BKPyV has
been observed under all combinations of immunosuppression [55].

JCPyV causes progressive multifocal leukoencephalopathy (PML), a rapidly-progressive and
fatal demyelinating disease. JCPyV replicates in oligodendrocytes and to a lesser extent in astrocytes,
leading to demyelinated lesions accompanied by progressive accumulation of neurological deficits
and ultimately death. JCPyV causes PML in immunocompromised patients, such as patients with
HIV/AIDS, hematological malignancies and in patients receiving immunomodulatory medication,
such as integrin very late antigen-4 (VLA-4) monoclonal antibody (natalizumab, Tysabri®), leukocyte
function associated antigen 1 (LFA-1) monoclonal antibody (efalizumab, Raptiva®) and CD20
monoclonal antibody (rituximab, MabThera®) for the treatment of multiple sclerosis, Crohn’s disease,
lymphoma, severe forms of plaque-type psoriasis and rheumatic diseases [58]. In addition to PML,
JCPyV can cause other neurological disorders, such as JCPyV granule cell neuronopathy, JCPyV
encephalopathy and meningitis [59].

TSPyV causes the rare skin disease trichodysplasia spinulosa (TS) affecting solid-organ transplant
patients undergoing immunosuppressive therapy, especially kidney (and kidney-pancreas) and heart
transplant recipients, as well as lymphocytic leukemia patients. The disease is characterized by the
development of follicular papules and keratin spines (spicules), predominantly in the face, often
accompanied by alopecia of the eyebrows and eyelashes. Histologically, TS is characterized by an
abnormal maturation and marked distention of the hair follicles. The inner root sheath cells are highly
proliferative and contain excessive amounts of trichohyalin and intraepithelial viral inclusions [60,61].

MCPyV was discovered as the causative agent of Merkel cell carcinoma (MCC), an aggressive
neuroendocrine skin cancer with high rates of recurrence, metastatic spread and mortality. Primary
risk factors for MCC development include immunosuppression, ultraviolet (UV) light exposure and
advanced age [62]. Among the 13 human PyV, MCPyV is the only one that has been clearly associated
with cancer in humans. MCPyV DNA is found clonally integrated in the tumor genome of MCC with
persistent expression of LTAg and sTAg. LTAg isolated from tumors typically contains a truncated
form of LTAg that is functionally incapable of supporting viral replication. Although MCPyV is often
present on healthy human skin, efforts to determine the natural host cell type that supports MCPyV
infection have only very recently succeeded. Liu and colleagues demonstrated that dermal fibroblasts
in human skin support the full MCPyV life cycle [63].

Most recently, HPyV7 was associated with pruritic rash and viremia in lung transplant recipients
on immunosuppressive therapy [64]. Rennspiess and colleagues reported the detection of HPyV7 DNA
and LTAg expression in human thymic epithelial tumors [65]. Although further studies are necessary
to investigate these associations, it is not unlikely that HPyV7, as well as other recently-discovered
PyV might be associated with novel pathogenicity in immunocompromised individuals.

4. Experimental Model Systems to Study PyV Infection

In vitro and in vivo models are instrumental for the understanding of the viral life cycle,
the pathogenicity and the identification of compounds with antiviral activity. Recombinant proteins,
virus-like particles, virus pseudoparticles and cell culture-derived infectious viruses are most widely
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used to recapitulate the viral life cycle, to evaluate the prevalence of virus-specific antibodies and to
identify inhibitors that target all aspects of the viral life cycle. In contrast, animal models are important
tools for investigating the pathological mechanisms underlying virus-associated diseases and for
preclinical testing of antiviral drugs or vaccines.

4.1. VP1 Pentamers, PyV-Like Particles and PyV Pseudoparticles

Pentamers of the PyV capsid protein VP1, obtained from bacterial expression vectors encoding
for VP1, represent the smallest in vitro model. For example, VP1 pentameric subunits have been used
successfully to recapitulate early events in JCPyV and TSPyV infection, including receptor specificity,
intracellular trafficking routes of PyV, as well as structural studies of VP1-receptor complexes [37,41,66].
Since the insights gained with VP1 pentamers were in line with the findings obtained with infectious
PyV, VP1 pentameric subunits represent an important tool for recently-discovered PyV that are difficult
to propagate in cell culture.

PyV-like particles (PyVLP) and PyV pseudoparticles (PsV) consist of stable self-assembled
capsid proteins without viral DNA. Yeast and baculovirus expression systems have been used to
efficiently produce PyVLP [67]. In these systems, the expression of the major capsid protein VP1
results in self-assembled VP1-derived PyVLP [68–71]. Microplate enzyme immunoassay coated with
PyVLP allowed studies on PyV seroprevalence rates [72–75]. At present, JCPyVLP are used in a
second-generation enzyme-linked immunosorbent assay (ELISA) to detect anti-JCPyV antibodies in
human serum [76]. This assay is in clinical use as a risk stratification tool for PML in patients with
natalizumab treatment [76,77]. Similarly, a MCPyVLP-based immunoassay has been developed to
detect anti-VP1 MCPyV antibodies and to evaluate their prognostic value in patients with MCC [78].

PsV are produced by transfecting human cell lines with expression vectors that encode PyV capsid
proteins. Production of BKPsV, JCPsV, MCPsV and TSPsV has been reported using the embryonic
kidney-derived cell line 293TT [41,44,79]. Co-transfection with vectors that encode a reporter protein,
such as green fluorescent protein (GFP) or Gaussia luciferase, enables rapid quantification of PsV
entry into target cells. PsV have turned out to be a valuable tool for the analysis of the early steps of
the PyV life cycle, such as viral attachment and entry. Using MCPsV, Schowalter and colleagues [44]
demonstrated that MCPyV uses glycosaminoglycans as initial attachment receptors followed by an
interaction with sialylated host cell factors. In an effort to gain a deeper insight into the cellular
tropism of PyV, 60 human tumor cell lines were transduced with MCPsV and BKPsV, respectively.
MCPsV and BKPsV efficiently transduced many of the same cell types, but also many distinct cell
types; however, no clear preference for a tissue type emerged [80]. Though PsV are instrumental
in deciphering virus interactions with cell surface receptors, they cannot be used to identify the
cellular factors required for virus replication and assembly in the host cells. Recently, JCPsV have
been used to study the possible inhibitory effects of chemical compounds mimicking cell surfaces
molecules involved in JCPyV binding, such as sialic acids or lacto-series tetrasaccharide [81,82].
Interestingly, several molecules with inhibitory activity have been identified and may pave the way for
the development of novel anti-JCPyV therapeutic strategies. On the other hand, BKPsV representing
different genotypes have been generated to study the activity of neutralizing antibodies from sera
of healthy human subjects, kidney transplant recipients and commercially available human immune
globulin preparations designed for intravenous immunoglobulin (IVIG) therapy [83–85]. Results of
these high-throughput serological neutralization studies demonstrated that BKPyV genotypes are
distinct serotypes, suggesting that the absence of neutralizing antibodies against a different BKPyV
genotype may favor BKPyV replication in the transplant recipient [83,84]. Analysis of neutralizing
antibodies present in immunoglobulin preparations showed that they were able to neutralize all BKPyV
genotypes [85]. Prospective cohort studies are now warranted to evaluate the potential protective role
of BKPyV neutralizing antibodies in BKPyV-associated diseases. Finally, PsV-based neutralization
assays have been used to assess the induction of the antibody responses of potential PyV vaccine
candidates. Recently, a PML patient has been vaccinated with JCPyVLP, and the induced humoral
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immune response was assessed by JCPsV-based neutralization assays. After the vaccination, high
neutralizing antibody titers against wildtype and mutant JCPyV were observed, and the increase of
the neutralizing antibody response was associated with an arrest of PML lesion progression [86].

4.2. Cell Culture-Derived Infectious PyV

Attempts to efficiently propagate PyV in cell culture have so far succeeded for BKPyV, JCPyV
and MCPyV. For BKPyV and JCPyV, different genetic types have been described, the so-called
archetype and rearranged variant. Transient shedding of BKPyV or JCPyV in the urine of healthy
individuals demonstrates the presence of the archetype, in which the NCCR is a highly conserved
DNA sequence block. It is thought that the archetype is contracted in childhood and then establishes
persistent infection in the host. High-level replication of BKPyV and JCPyV has been observed in
immunocompromised individuals and is associated with the emergence of the rearranged variant.
Rearranged variants of BKPyV and JCPyV are characterized by duplications and deletions of DNA
sequence blocks in the NCCR, which enhances viral replication and assembly, leading to enhanced
cytopathology. Archetype and rearranged variants of BKPyV and JCPyV can be efficiently propagated
in the 293TT human embryonic kidney cell line [87]. Following transfection of episomal PyV DNA
into 293TT cells, viral replication, expression of capsid proteins and production of infectious progeny
have been demonstrated. Why do 293TT cells support efficient propagation of BKPyV and JCPyV?
293TT cells carry an integrated copy of the simian PyV SV40 genome and a plasmid encoding the
cDNA of the simian PyV SV40 LTAg [88]. Constitutive expression of simian PyV SV40 LTAg in these
cells drives efficient BKPyV and JCPyV DNA replication from their origins of replication. Interestingly,
293TT cells failed to support replication of other PyV, such as MCPyV, KIPyV and WUPyV. The absence
of significant replication of these viruses in 293TT cells can be probably explained by the fact that the
simian PyV SV40 LTAg coding sequence has a higher similarity to the LTAg of BKPyV and JCPyV than
to the LTAg of MCPyV, KIPyV and WUPyV [87]. Indeed, efficient propagation of MCPyV has been
reported in 293TT cells co-transfected with plasmids carrying LTAg and sTAg from MCPyV, named
293-4T cells [44]. The observation that MCPyV-specific TAg expression is a limiting factor in MCPyV
propagation may help to develop PyV-permissive cell-culture systems for other, yet unculturable PyV.

Although 293TT cells provide a convenient cell culture system for large-scale propagation of
PyV, these transformed cells do not represent a suitable model for the study of the viral life cycle
in the natural host cell type. For example, in patients with BKPyV-associated diseases, bladder
and renal tubular epithelial cells are the major sites of BKPyV replication. Thus, human renal
proximal tubule epithelial cells (RPTEC) are currently used as the state-of-the-art model to study
BKPyV infection in vitro [89]. However, RPTEC enter into replicative senescence, which restricts their
proliferative potential and the experimental design. Recently, Justice and colleagues [90] assessed
host nuclear proteomic changes in BKPyV-infected RPTEC and demonstrated that the host cell DNA
damage response signaling and DNA repair pathways were among the most affected host proteins.
This study confirmed the results of previous studies with RPTEC indicating that BKPyV usurps
proteins implicated in cell-cycle control, DNA replication and repair for efficient viral gene expression
and replication [91,92]. This is not surprising because PyV must overcome their limited genome
coding capacity and, therefore, rely heavily on the host cellular machinery to replicate their genome.
Interestingly, rearranged BKPyV has been shown to replicate in a wide range of different cell types,
such as human ovarian, brain and melanoma cancer cell lines, monkey kidney cell lines, i.e., Vero and
CV-1 [80,93], human salivary gland cells [93,94] and human fetal lung fibroblast (MRC-5) cells (Barth
H. and Soulier E. unpublished observation). A link between BKPyV and the respiratory tract is of
particular interest since respiratory transmission routes have been proposed for PyV [51].

In vivo, JCPyV has a major tropism for glial cells and infects productively mainly oligodendrocytes
and, to a lesser extent, astrocytes. Various differentiation protocols have been developed to obtain
oligodendrocytes and their progenitors from human embryonic stem cells (hESC) [95]. hESC-derived
oligodendrocytes are susceptible to cell-culture derived JCPyV [96]. However, the differentiation of
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oligodendrocytes from hESC remains a challenge, and therefore, the human fetal glial cell line SVG,
which constitutively expresses simian PyV SV 40 LTAg, has been mostly used to study JCPyV infection.
The SVG cell line was established in 1985 [97] and has been provided by the American Type Culture
Collection (ATCC) since 1987. In 2014, Henriksen and colleagues [98] reported that a subpopulation of
SVG p12 cells provided by ATCC is productively infected with BKPyV and that BKPyV was present
in SVG p12 cells at least since 2006. Since BKPyV and JCPyV are closely related and share up to 70%
nucleotide sequence identity, the results obtained in these cells should be taken with caution because
the presence of BKPyV may have influenced the results on JCPyV infection. The SVG-A cell line,
another subclone of the original SVG human glial cell line, did not contain BKPyV and can be used as
an alternative SVG cell line [98]. JCPyV archetype and rearranged variants replicate also efficiently in
COS-7 cells (CV-1 cells transformed by an origin-defective mutant of simian PyV SV40 which encodes
wildtype T antigen).

Cell culture-derived infectious BKPyV and JCPyV and their physiologically-relevant primary
cell culture models are most widely used to study the interplay between PyV and the host cell.
Application of these models in routine drug screening processes is limited due to the lack of
fluorescent-labelled recombinant PyV. Current antiviral screens with cell culture-derived infectious
PyV consist of quantification of PyV genomes in cells by real-time quantitative PCR (qPCR) or the
detection of PyV capsid proteins by immunofluorescence staining, which are time consuming and
labor intensive. Using the immunofluorescence approach, Brickelmaier and colleagues [99] screened
2000 approved drugs for their anti-JCPyV activity in SVG-A cells and identified 14 potential drug
candidates. However, the production of recombinant PyV strains carrying a reporter gene that remains
replication-competent and produces viral progeny might facilitate anti-viral drug screening. Recently,
Dang and colleagues [100] developed a JCPyV construct containing the iLOV gene, a 336-bp improved
light, oxygen or voltage-sensing domain of the plant phototropin gene. Insertion of the iLOV gene
into the JCPyV genome allowed full viral replication and production of viral particles in 293FT human
embryonic kidney cells. The utility of JCPyV-iLOV has now to be validated in physiologically-relevant
primary cell culture models.

4.3. Animal Models

The development of animal models to study PyV infection is hampered by the narrow host
range and cell specificity of these viruses. For example, inoculation of JCPyV into mice or hamsters
resulted in tumor formation, but did not recapitulate the demyelinating disease caused by JCPyV in
humans [101]. Currently-available small animal models for PyV infection include transgenic models,
xenografts, humanized mice and infectious mouse PyV models.

4.3.1. Transgenic Mouse Model

Several transgenic mice harboring the early region of PyV have been used to study the role of
TAgs in the pathogenesis of PyV-associated diseases. Transgenic mice expressing JCPyV TAgs in
all cells exhibited a shaking disorder and dysmyelination in the central nervous system, but not the
peripheral nervous system [102]. Furthermore, expression of TAgs in oligodendrocytes arrested the
maturation of oligodendrocytes and the production of myelin [103,104]. However, other phenotypes
of JCPyV TAg transgenic mice have also been reported, such as adrenal neuroblastomas and malignant
peripheral nerve sheath tumors [105,106], suggesting that the genetic background of the mice and the
choice of the promoter that drives the expression of the transgene influence the disease phenotype.
Similarly, transgenic mice containing the early region of BKPyV developed primary hepatocellular
carcinomas and renal tumors [105], but did not recapitulate key characteristics of BKPyV-associated
nephropathy. Spurgeon and colleagues [107] therefore used an inducible transgenic mouse model
and a keratin 14 promoter, which allows for skin-specific expression of truncated LTAg and wild-type
sTAg. Expression of MCPyV TAgs in stratified squamous epithelial cells and Merkel cells of the skin
epidermis led to the development of benign epithelial tumors, but not MCC. Inducible expression
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of MCPyV sTAg under the control of a keratin 5 promoter led to squamous cell carcinoma-like
lesions [108], indicating that sTAg has the capability for epithelial transformation independent of LTAg.
However, lesions resembling MCC either morphologically or biochemically by staining with MCC
markers were not detected. Similarly, Shuda and colleagues [109] demonstrated in their transgenic
mouse model that sTAg expression induces cell proliferation, but was insufficient to recapitulate MCC.
Although these robust transgenic mouse models allow insights into the oncogenic potential of TAgs
and their potential cellular interaction partners, they have failed to phenotypically recapitulate the
human PyV-associated diseases.

4.3.2. Xenograft Mouse Model

Conventional xenograft mouse models consist of the transplantation of cultured human cells
in immunocompromised host mice [110]. Transplanted MCPyV-positive MCC cell lines into
immunodeficient mice formed tumors, which stained positive for LTAg and cytokeratin-20 (CK20),
a marker commonly used in the diagnosis of MCC [111]. Although human xenograft models have
limited applications in the study of the mechanisms of PyV pathogenesis, they can be used as predictive
preclinical models for new anticancer agents. For example, YM155, a small-molecule inhibitor of
survivin, has been tested in MCPyV-positive MCC xenografts. YM155 was non-toxic and led to growth
arrest of MCC tumors in these mice [111,112].

4.3.3. Humanized Mouse Models

Mice bearing human tissues, including functional human immune systems, are valuable tools to
study the pathogenesis of human-specific infectious pathogens. Tan and colleagues [113] engrafted
immunodeficient mice with human lymphocytes and thymus to study JCPyV infection. However, mice
intraperitoneally inoculated with brain-derived rearranged JCPyV isolate Mad4 or the urine-derived
archetype strain did not show signs or symptoms of PML. JCPyV DNA was occasionally detected in
blood and urine, and only in a subgroup of mice, anti-JCPyV humoral and cellular immune responses
were induced at low levels [113]. The lack of a robust JCPyV replication and pathogenesis in these
mice is likely due to the absence of human brain tissue, the cellular target for JCPyV replication.
Kondo and colleagues [114] therefore generated a mouse model with humanized glia cells by
implanting primary human glial progenitor cells into neonatal immunodeficient and myelin-deficient
(Rafg2-/- Mbp shi/shi) mice. The transfer of human glial progenitor cells resulted in a differentiation
and colonization of the mouse brain with human glial cells, i.e., oligodendrocytes and astrocytes.
Intracerebral inoculation of JCPyV isolate Mad-1 led to virus replication of human astrocytes and
glial progenitors, along with focal demyelination and gliosis. The oligodendrocytes were only rarely
infected, yet exhibited apoptotic death, suggesting that JCPyV kills them by programming them
to undergo apoptosis instead of inducing a lytic infection. This is in contrast to PML in humans,
where oligodendrocytes are primarily infected and produce progeny virus. Interestingly, the disease
pathogenesis was associated with the emergence of virus mutants harboring mutations in the VP1
region, similar to those observed and isolated from PML patients [115,116]. This animal model
represents a substantial step forward in modelling JCPyV disease; however, it cannot be used to
undertand how JCPyV is transported from the periphery to the central nervous system because JCPyV
has been injected into the chimeric mouse brain. Further advances in the development of a humanized
model harboring dual engraftments, such as primary human glial progenitor cells and hematopoietic
stem cells, may answer this question.

4.3.4. Mouse PyV Infection Model

Similar to human PyV, mouse PyV establish a silent persistent infection in natural populations of
mice. Genetic differences exist between mouse and human PyV, for example the mouse PyV genome
encodes a third TAg named MTAg, which is the principal oncogene of mouse PyV [117]. At present,
none of the human PyV has been shown to express MTAg, except TSPyV, as demonstrated recently by
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van der Meijden and colleagues [118]. Furthermore, unlike JCPyV and BKPyV, mouse PyV lack the
agnoprotein. The observation that PyV-specific CD4+ and CD8+ T cells are induced in mouse PyV
infection [119,120] suggested that mouse PyV infection might be a model to study human PyV infection
and pathogenesis. In fact, several early studies addressing mouse PyV infection in T cell-deficient mice
demonstrated virus-induced demyelination upon productive viral replication in the central nervous
system (CNS). However, the use of these mouse models was stopped due to the results of the outcome
of mouse PyV infection in nude mice. Nude mice infected intracranially with mouse PyV developed
vertebral tumors, which compressed the peripheral nerves and produced paralysis in the absence of
demyelination (reviewed in [121]).

Another approach involves mouse PyV infection in mice bearing allogeneic kidneys to mimic
BKPyV-associated nephropathy of kidney transplants recipients. In this mouse PyV-renal transplant
model, infection with the mouse PyV wildtype strain A2 resulted in a productive replication in
the allogeneic kidney graft, severe graft injury and accelerated kidney graft failure [122]. However,
results from this mouse model are difficult to extrapolate to kidney transplant recipients since the
recipient mice were not immunosuppressed because allogeneic kidneys are not acutely rejected
by immunocompetent mice. To address this issue, Albrecht and colleagues performed kidney
transplantations in splenectomized and nephrectomized alymphoplasia (aly/aly) mice, which are
unable to mount an adaptive immune response [123]. Although persistent high viral loads were
observed in aly/aly mice following acute mouse PyV infection, high viral loads were not associated
with increased allograft injury or loss of renal grafts suggesting that PyV-associated nephropathy
in mice is dependent on an intact adaptive immune response. These findings are in contrast to
BKPyV-associated nephropathy, where viral cytopathic changes in tubular or glomerular epithelial
cells are central histopathological features. Further studies are necessary to evaluate the utility of
mouse PyV-transplant models for the study of BKPyV-associated nephropathy in humans.

4.3.5. Simian PyV SV40 Monkey Model

The simian PyV SV40 infects species of Asian macaque monkeys, especially the rhesus macaque
(Macaca mulatta). PyV SV40 is closely related to BKPyV and JCPyV, with which it shares approximately
70% sequence homology. As with human PyV, SV40 establishes asymptomatic persistent infections
in rhesus macaques. SV40 infection in immunodeficiency virus (SIV)-immunosuppressed rhesus
monkey can cause demyelinating brain lesions, analogous to PML in immunocompromised patients,
and meningoencephalitis with productive SV40 infection of neurons, which parallels JCPyV neuronal
infection in immunosuppressed humans [124–127]. Thus, rhesus macaques can serve as an important
animal model to study JCPyV primary infection and neuropathogenesis.

5. Conclusions and Future Perspectives

Available experimental models have so far focused mainly on BKPyV and JCPyV, which allowed
important insights into PyV-host cell interaction and recapitulated some pathological features of
PyV-associated diseases. However, it seems that we are just looking at the tip of the iceberg. For
example, PyV genomes are packaged with histone proteins in infected cells [49,50], suggesting an
epigenetic control of PyV gene expression. Knowledge of the epigenetic regulation of PyV genomes
may help to understand how PyV persistence is established and maintained. Currently, only MCPyV
seems to be associated with cancer, although BKPyV LTAg expression has been reported in early
prostate cancer precursor lesions and renourinary carcinomas [128,129]. Potential etiologic roles
for other PyV in cancer has to be investigated in appropriate model systems. The increasing use
of immunosuppressive or immunomodulatory therapy will undoubtedly increase PyV-associated
diseases, and efficient antiviral treatments are severely lacking. To facilitate screening of anti-viral
drugs, available cell culture models have to be improved, including infectious recombinant reporter
viruses to easily visualize virus-infected cells. Great efforts are needed to develop humanized mice
models for other PyV, such as mice engrafted with functional human kidney tissue and immune
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system, which may allow studies on BKPyV infection and BKPyV-associated nephropathy. Finally, the
iceberg under the water seems relatively large when aiming to address the question of the evolution of
human PyV and their role as members of the human virome.
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