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Abstract: Due to the fundamental progress in elucidating the molecular mechanisms of 

human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic 

genes and cellular targets are available for gene therapy. Meanwhile, the most important 

challenge is to develop gene delivery vectors with high efficiency through target cell 

selectivity, in particular under in situ conditions. The most widely used vector system to 

transduce cells is based on adenovirus (Ad). Recent endeavors in the development of 

selective Ad vectors that target cells or tissues of interest and spare the alteration of all 

others have focused on the modification of the virus broad natural tropism. A popular way 

of Ad targeting is achieved by directing the vector towards distinct cellular receptors. 

Redirecting can be accomplished by linking custom-made peptides with specific affinity to 

cellular surface proteins via genetic integration, chemical coupling or bridging with  

dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via 

their native receptors. Such altered vectors offer new opportunities to delineate functional 

genomics in a natural environment and may enable efficient systemic therapeutic 

approaches. This review provides a summary of current state-of-the-art techniques to 

specifically target adenovirus-based gene delivery vectors.  

Keywords: adaptor protein; adenovirus; chemical modification; gene therapy;  

peptide ligand; targeting strategy; vector  
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1. Introduction 

Adenoviruses (Ads) are common pathogens in humans and other vertebrate hosts. Adenoviridae are 

typically divided into four genera [1] and subdivided into different species or subgroups denoted  

A to G [2]. After the first human adenovirus was isolated in 1953 by Rowe [3], to date, a total of  

57 different serotypes have been identified and were subclassified on the basis of parameters regarding 

classical standard methods, such as the rat hemagglutination assay and, later, genomic analyses [4]. 

Adenovirus particles consist of a non-enveloped icosahedral capsid that carries a single continuous 

molecule of double-stranded DNA as the viral genome. For most serotypes, Ad entry into host cells is 

initiated by an interaction with the knob, the outmost bulging tip of the virion‟s fibers. These trimeric 

rigid structural elements protrude from each of the capsid‟s twelve vertices, the penton bases, where 

they are non-covalently anchored. The fiber knobs mediate binding to the cell surface‟s receptor 

moieties, such as the coxsackie adenovirus receptor (CAR), the major high-affinity receptor for many 

adenoviruses (Figure 1), which is a 46-kDa transmembrane protein in the immunoglobulin superfamily 

[5–7]. The subsequent internalization of the viral particle depends on a secondary interaction of an  

Arginine-Glycine-Aspartate (RGD) protein structure on the Ad‟s penton bases with αVβ3 or αVβ5 

integrins on the cell surface [8]. Due to the abundance of CAR in many tissues, adenoviruses display a 

broad tropism and infect a wide spectrum of cells [9–11]. This characteristic drew an early focus on 

this virus family as masterpieces for gene therapeutic approaches. Unlike other viral vector systems, 

Ad virions have a high packaging capacity and easily replicate to high titers. Moreover, Ad-derived 

vectors maintain high stability in vivo and transduce both dividing and non-dividing cells [12]. They 

predominantly persist as episomal DNA molecules with an extremely low frequency of integration into 

the host genome [13], and thereby, insertional mutagenesis does not occur. These properties make  

Ad-based vectors particularly attractive for gene therapy applications, where temporary gene 

expression is desired or preferred over permanent genetic modifications. The most commonly utilized 

Ad vectors for gene therapy are derived from adenovirus type 5 (Ad5) in the subgroup C of human 

adenoviruses, due to their apathogenicity and non-oncogenic properties [9,14]. 

Tissue tropism of adenoviral vectors is greatly influenced by the viral serotype and receptor 

presence and density, depending on a cell type‟s provenance [8,9,15–17]. The best studied and most 

widely used Ad5-derived vectors exclusively bind to CAR. However, in the case of Ads derived from 

Serotype 41, a member of Subgroup F, only one of its two distinct types of fiber can recognize  

CAR [2,18]. Some serotypes enter host cells via other receptors, such as CD46, desmoglein 2, CD80, 

or CD86 or the sialic acid moiety (reviewed by Sharma [19]). Altogether, Ad5 vectors are efficient 

vehicles for delivering foreign genes into target cells in vitro [20], and due to their favorable attributes, 

they are utilized in more than one-quarter of all human gene therapy trials and have a proven safe 

clinical profile [21]. 

However, the utilization of adenoviral vectors as targeted gene delivery systems is hampered by 

their tropism for a broad range of cells and tissues [22]. Once a system is required that exclusively 

alters a single cellular compartment or a particular kind of tissue that spares all other cells and tissues 

from transduction, receptor alteration of vector particles becomes essential. Another major obstacle 

after systemic adenoviral vector administration is that 80% of circulating particles are sequestered in 

the liver after an interaction with coagulation factors [23,24], and thereby, most particles may not 
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reach the tissue to be addressed. Doronin and co-workers demonstrate that after the virus is recognized 

by the coagulation system, the immune system is activated, and in turn, an acute inflammatory 

response is initiated [25–30]. In addition, regarding Ad transport in the bloodstream, Duffy and 

colleagues [31] identified a number of small molecules capable of efficiently blocking the intracellular 

virus transport independently of factor X-associated inactivation. Considering all these drawbacks, a 

selective gene transfer by wild-type adenoviral vectors imposes an increased risk of toxicity, due to Ad 

vector dissemination to non-targeted cells, even if the vectors are administered close to or directly into 

the tissue of interest. Other undesired side effects of systemic virus administration are virus-associated 

immunogenic toxicity, thrombocytopenia, intense periportal polymorphonuclear lymphocyte infiltration 

and elevated liver enzyme secretion [22,32,33]. 

Figure 1. Methods to alter adenovirus tropism. (A) Wild-type adenovirus enters target 

cells after binding the coxsackie-adenovirus receptor (CAR), an entity present on a wide 

number of cell types. Ablation of CAR binding and re-directing adenovirus-derived vectors 

towards the cells of choice by means of specific peptides can be achieved by:  

(B) genetically integrating the peptide into the fiber knob; (C) chemically coating the 

vector particle with bi-specific polyethylene glycol (PEG); or (D) through bridging by 

means of a bifunctional adapter molecule. 

 

The reverse obstacle is the question of how to reach cell types refractory to adenoviral infection, 

due to their lack of or insufficient CAR expression. Such cells include, for example, many cancer cells, 

as well as hematopoietic and neural stem cells [34]. To achieve gene transfer into those cell types and 

to ensure efficient integrin receptor-mediated virus uptake, extremely high vector doses are required. 

High vector doses in turn increase inadvertent side effects, like viral sequestering in Kupffer cells in 

the liver [35], and once vectors surpass the latter‟s binding capacity, hepatocytes will absorb the 

remaining vector particles.  

The restrictions outlined above can be overcome by strategies to modify the vector‟s cellular 

tropism, as reviewed by Beatty and Curiel [36]. Redirecting vectors towards cells of interest can also 
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enhance the therapeutic potential with increased safety by reduction of immune responses, since 

simultaneous re- and de-targeting allows lower vector doses to be administered systemically [37–40].  

In this review, we present and discuss three different methods to alter the natural Ad vector tropism by: 

(i) genetic integration of peptide sequences into the fiber; (ii) chemical peptide conjugation via 

polyethylene glycol (PEG); and (iii) bridging the vector and cell with bispecific adapter molecules. 

The advantages and benefits, as well as restrictions and limitations of these technological approaches 

are described and debated below. The initial considerations towards targeting, however, relate to the 

identification of suitable moieties on the plasma membrane of the cells or the tissue to be addressed 

that fulfil the following characteristics: singularity, abundance and affinity.  

2. Screening for Cell-Specific Ligands 

The ultimate gene “taxi” for systemic gene therapy purposes should exclusively recognize the cells 

to be treated and leave all others unaffected. Directed gene delivery can be achieved by addressing 

selective moieties on the cells of interest. Peptides possess appropriate properties to serve as targeting 

agents and are valid alternatives to antibody-based targeting approaches, since unique cellular 

receptors are often unknown.  

The simplest way to design a specific binding peptide for a receptor is to start with the structural 

data of the binding parts [41]. The solution is almost the problem if the structural data are not 

available. To solve this, the phage display is a frequently used technique to determine specific binding 

peptides [42]. We and others have used the phage display technology to screen for and to identify 

tissue- or cell-specific ligands in culture systems and animal models. As early as 1990, researchers 

constructed an epitope library that yielded a mixture of filamentous phage clones, each displaying one 

peptide sequence on the virion surface [43]. After the interaction of the phage and the specific binding 

partner, the expansion of the phage comprehends several rounds of infection followed by selection. 

The display of polypeptide repertoires on the surface of phages, together with the efficient enrichment 

and amplification of the desired binding specificities was then shown to be a valuable route towards 

isolation of unique peptides that can act as vehicles for targeting applications [44–50]. The phage 

display technique identifies peptides in a range from eight to 12 amino acids [42]. The technique was 

successfully employed to acquire peptides that specifically recognize human embryonic progenitor 

cells [51] and bind normal and diseased tissue, like vascular endothelium [52–56], lymphatic vessels [57], 

kidney tubules [58] and several others [50,59–64]. Furthermore, the lack of gene transfer systems that 

are potent in selectively targeting cancer tissues prompted the search for tumor-specific peptide 

molecules for yet unknown tumor-associated receptors [65–68]. Many novel peptides homing to 

angiogenic vessels showed cross-affinity with several tumor types [56]. In this regard, we conducted 

biopanning on human medullary thyroid carcinoma (MTC) cells in vitro and transplanted tumor 

xenografts in vivo. MTC, which is caused by dominant activating mutations in the RET proto-oncogene 

encoding a transmembrane tyrosine kinase receptor, is characterized by aggressive growth and early 

metastasis and, therefore, provides a perfect model for targeting disseminated cancer cells [69]. The 

selected phages bound with highest specificity to and were internalized by these tumor cells in culture 

and after systemic injection into nude mice [70]. The same 7-mer cyclic phage peptide library was 

injected into the tail vein of RET oncogene transgenic mice carrying bilateral orthotopic tumors in 
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their thyroid glands [71]. The ligand, which also binds efficiently to human MTC cells was covalently 

linked to the Ad capsid that carried a RET inhibitor as therapeutic gene. Systemic delivery of this 

peptide-tagged Ad vector led to the substantial growth reduction of orthotopic and disseminated 

xenograft tumors, while the interaction with other organs, such as the liver, was largely abolished [39]. 

This precedent opens a road towards using peptide-mediated adenoviral gene transfer to achieve an 

efficient and selective antitumoral response, even at the stage of metastatic disease. Beyond that, other 

researchers took the first step in developing a molecular map of the human vasculature by screening a 

peptide library in patients [72–74]. Rangel and co-workers [75] developed a novel technology that 

enables receptor-independent phage particle entry into mammalian cells. Phage particles provide a 

unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their 

corresponding receptors and for fingerprinting functional protein domains in living cells [76]. 

An alternative approach that aims at new molecules with high affinity, adequate specificity and 

suitable pharmacokinetic properties for in vivo applications is represented by single-stranded nucleic 

acid ligands, termed aptamers. Aptamers are isolated by Systematic Evolution of Ligands by 

Exponential Enrichment (SELEX) technology. Applying this technology against whole-living cells  

in vitro or in vivo allows direct selection of aptamers even against rare antigens without prior 

purification of membrane-bound targets, access to membrane proteins in their native conformation and 

identification of targets related to a specific phenotype. Their thermal stability, low cost, unlimited 

applications and high binding affinity to disease-associated proteins or non-protein targets [32,77–79] 

make them attractive, even in clinical trials for the treatment of distinct medical conditions, as 

reviewed very recently [80–82]. The potential of aptamers as a valid tumor targeting gene delivery 

system with high transduction efficiency was summarized by [83,84]. In this perspective, an 

innovative step towards targeted therapies would certainly be a combination of technologies, the  

cell-specific aptamers and adenoviral vectors.  

3. Methods to Alter the Natural Ad Vector Tropism 

3.1. Genetic Fiber Engineering  

To increase the selectivity of adenovirus for target tissues, novel approaches in Ad vector design 

exploit the concept of tissue-specific expression of therapeutic transgenes or virus replication. The 

development of genetically targeted vectors has focused on the fiber, since it is the major determinant 

of adenovirus tropism. It is a homotrimeric protein characterized by a domain organization with an  

N-terminal tail domain anchoring the fiber in the Ad capsid, a C-terminal globular domain, termed the 

knob, that mediates binding to CAR and a central shaft domain extending the knob away from the 

virion. Mutations of the fiber knob per se significantly reduce the transduction efficiency of  

CAR-positive cells by Ad vectors [85–87]. Different strategies of adenovirus fiber modification have 

been employed, like genetic replacement of the fiber or ligand incorporation into the fiber knob. In this 

regard, the development of a fiber phage display system [65,88] or a fiber-shuttle library for the 

adenoviral knobs [89] provide tools to alter Ad vector binding specificity.  

Several studies narrowed down the insertion positions for targeting peptides within the fiber knob to 

two locations where the vector system as such tolerates the genetic alterations without structural 
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impairment. The sites of choice for targeting ligand incorporation are the fiber knob‟s HI loop, which 

connects the ß-strands H and I, and the C-terminus of the protein [86,90–96]. These findings indicated 

that ligands whose sizes exceed 25 to 30 amino acid residues cannot be configured into the carboxy-

terminus of the fiber, as they destabilize the fiber structure [85] and, thus, limit the range of potential 

ligand candidates to short peptides. The structural properties of the HI loop of the Ad fiber, however, 

favor the insertion of larger ligands and expand the size of potential targeting moieties. When testing 

the resilience of fiber modification, Belousova and co-workers incrementally increased the size of the 

peptides integrated in the HI loop and generated Ad vectors with fiber inserts ranging from 13 to 83 

amino acid residues [97]. The authors concluded that the incorporation of heterologous sequences in 

the examined size ranges was essentially tolerated without a negative impact or compromising the 

production yield or infectivity of the vectors. HI-loop incorporation of rather short 7- and 9-mer 

peptides was performed to transduce CAR-deficient primary tumor cells, such as ovarian cancer cells, 

vascular endothelia, vascular smooth muscle cells and brain microcapillary endothelia in culture 

[5,37,40,50,90,98,99]. The last step of Ad entry into target cells depends on the interaction between 

RGD motif at the penton base protein and the host cell integrins [100]. Ad vectors containing this 

RGD peptide in the HI loop of the fiber showed higher yields of gene transfer than vectors containing 

the identical peptide attached at the fiber„s C-terminus, due to the easy access to the receptor 

[39,101,102]. Many groups transduced effectively different types of tumor cells by inserting this RGD 

motif into the HI loop of the Ad fiber in vitro [103] and in vivo [104,105]. Rojas et al. [106] improved 

systemic antitumor therapy with oncolytic adenoviruses by replacing the fiber shaft heparin sulfate 

glycosaminoglycan-binding domain with RGD in order to achieve simultaneously liver de- and tumor 

re-targeting.  

Each fiber knob monomer forms an eight-stranded antiparallel ß-sandwich structure. The ß-strands 

are connected with turns and loops. To further reduce the transduction efficiency of Ad vectors to 

CAR-positive cells, mutations of the AB, DE or FG loop of the fiber knob have been reported 

[55,107,108]. Important is, however, that in addition to the genetic fiber modification, this secondary 

minor interaction of the RGD motif at the penton base with the αv-integrin receptor must be depleted, as 

well [109], to completely ablate the Ad vector from the native binding moieties. Whereas the dual mutation 

markedly reduces the retention of the vector in the liver [87,92], single mutations in the fiber knob or 

penton base did not alter the biodistribution of adenoviral vectors injected into mice [108,110–113]. In 

order to use Ads in cancer gene therapy, gene transduction to cancer cells is limited by the weak 

expression of the CAR receptor on these cells, reviewed by [101]. Magnusson and co-workers [114] 

efficiently transduced human ovarian and breast cancer cell lines with a vector that carried the human 

epidermal growth factor receptor 2 into the HI loop of a CAR ablated fiber knob. Later, the group 

generated a vector with dual specificity by incorporating the HER2/neu- (ZH) and Taq polymerase-

binding (ZT) sequence at different positions within the HI-loop. Receptor-binding studies revealed that 

ZT in the first position and ZH in the second position bound to both receptors, whereas the reverse 

order of both motifs was devoid of binding to HER2/neu [115]. Subsequently, these researchers 

designed a vector to transduce efficiently human epidermal growth factor receptor 2-presenting cell 

lines, by altering the RGD motif to EGD (Glu-Gly-Asp) and substituting the KKTK motif, residues 

91–94, in the third shaft repeat, to RKSK (Arg-Lys-Ser-Lys). This new vector in the end gained the 

ability to efficiently infect prostate cancer cells in vitro [114]. 
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Genetic modification also covers the replacement of the entire fiber or just the knob domain with 

that derived from other adenovirus serotypes [116]. Belousova et al. [117] targeted an Ad vector with 

bacteriophage T4 fibritin to the CD40 receptor. The tropism was modified by incorporating into the 

virion capsid a recombinant protein comprising structural domains of the Ad Serotype 5 fiber,  

phage T4 fibritin and the human CD40 ligand. The authors achieved specific gene delivery in 

monocyte-derived dendritic cells (DC) in vivo. In a pilot vaccination study, Thacker and colleagues [32] 

targeted successfully DC cells in an in vivo canine model by integrating the CD40 ligand into the fiber 

knob. The same group reported later that Ad vectors bound to the CD40 ligand failed to infect  

integrin-deficient canine lymphoma cells. This study demonstrates that the lack of virus internalization 

signals can impair targeting approaches [118].  

Yu and co-workers [119] reported on modifying the Ad5 hexon protein by inserting the protein 

transduction domain from the HIV-1 Tat protein. The resulting viral vector showed significantly 

higher transduction efficiency on many tumor cells compared to the parental vector. In the next step, 

this group increased the infection efficiency of human primary cell types further after swapping  

wild-type Ad5 fiber against a Serotype 35 fiber specific for the CD46 receptor, which is upregulated in 

a number of tumors. This surface modified Ad vector was developed to transduce otherwise  

difficult-to-transduce cells in basic, pre-clinical and clinical research [120,121]. Another strategy to 

reroute adenoviral vectors from normal towards cancer tissue is the utilization of recombinant 

adenovirus. Sova et al. [122] constructed a capsid-modified adenovirus that specifically replicates in 

tumor cells and expresses the TNF-related apoptosis-inducing ligand (TRAIL). Their Ad capsid 

contains the Serotype 35-derived short-shafted fibers, which recognize the CD46 receptor, a surface 

marker often upregulated in malignant tumors. In combination with TRAIL, expression of this 

oncolytic vector induces apoptosis in tumor cell lines derived from human colorectal, lung, prostate 

and liver cancer. Both the cell culture and xenograft tumor models tested in these experiments showed 

efficient intratumoral spread of the virus. Another group designed Ad vectors presenting the short 

fibers of Ad41 as a ligand insertion tool, achieving higher infection efficiency when compared to 

viruses presenting the same ligand incorporated into another part of the fiber [123]. Even an enhanced 

transduction efficiency of recombinant adenovirus Type 5 vectors with Serotype 35 fibers (f35) was 

observed by Matsui and co-workers [124]. Using a feasible in vitro ligation, the group incorporated 

two copies of the RGD peptide in two different loops of the f35 knob and observed high infection 

efficiencies in CD46-positive cells. 

Overall and despite these positive results, genetic modifications to the native Ad5 fiber knob have 

proven to be a laborious technical cast with effectiveness that is hard to calculate. The repertoire of 

incorporable ligands to yield functional retargeted vectors for gene therapy is restricted to a small 

number of peptides that do not impair correct folding and assembly of the fiber trimer [125].  

A general limitation of this approach is the necessity to tediously re-engineer a given Ad vector for 

every further target cell.  

3.2. Chemical Peptide Conjugation via PEGylation 

An option to covalently link targeting peptides to otherwise unaltered Ad vector particles is by 

means of bispecific non-toxic spacer molecules. Here, polyethylene glycol (PEG) is a hydrophilic 
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linear polymer widely used in galenic formulations, as reviewed by [126]. Optimized transduction by 

targeted Ad vectors can be accomplished by linking cell-specific peptides, antibodies or antigens to the 

particle‟s surface by a chemical process called PEGylation [127]. PEG forms a covalent bridge 

between the proteins of the virion‟s surface and the targeting molecule of choice, resulting in a vector 

coated all over with the desired ligand. This approach of redirecting viral vectors does not require 

genetic modification, including the efforts to ablate the native tropism. Additional benefits of 

PEGylated vectors are reduced immunogenicity [128–131], fewer hepatotoxic side effects [132], less 

cytokine secretion and the prolongation of the vector plasma half-life [133].  

In the meantime, such PEG-driven Ad vector modifications have been adapted in a good number  

of targeting approaches [133–139]. The success of such approaches might depend on the ligand length. 

Romanczuk and colleagues [135] were the first to link biologically selected peptides to Ads surface via 

PEGylation. For instance, coupling of a short RGD motif to the tip of PEG has shown both high  

in vitro transduction efficiency [140–143] and an improvement of systemic gene delivery [132,144].  

In an ovarian cancer targeting approach, full-length fibroblast growth factor 2 (FGF2) was linked to an 

Ad vector by PEGylation. This vector mediated increased transgene expression in tumor tissue and 

reduced localization of adenovirus to non-target cells when compared to unmodified Ad [140]. To 

silence the proinflammatory activation status of endothelial cells, Kuldo and co-workers [145] 

demonstrated the potential of an E-selectin targeted Ad vector to deliver a therapeutic transgene into 

microvascular endothelial cells in inflammation and downregulate the endothelial adhesion molecule.  

As demonstrated by Kim et al. [146], PEGylated Ad that recognizes Her2/neu receptor-positive cancer 

cells showed longer circulation times than the unmodified control and decreased the level of neutralizing 

antibodies. These observations could raise positive expectations for future therapeutic applications of 

PEGylated vectors against late-stage cancer diseases. Exploring the suitability of PEGylated Ad 

vectors to address metastatic tumors, a dual cancer-specific strategy was described using this technology 

for transductional targeting with transgene expression under control of the telomere reverse transcriptase 

promoter (TERT) for transcriptional targeting [147]. With regard to the conclusion that the molecular 

weight of PEG and the PEG modification ratio significantly affects the characteristics of conjugates [148], 

Eto and colleagues [136] optimized adenovirus PEGylation in a way that after systemic administration 

of PEGylated adenoviral vector expressing tumor necrosis factor-alpha an antibody reduction against 

Ad, and an increased therapeutic response against metastatic cancer was observed. Yao and  

co-workers demonstrated in a quite elegant experiment that the CGKRK (Cys-Gly-Lys-Arg-Lys) 

peptide conjugated to Ad with PEG was highly selective and yielded good gene expression in tumor 

and tumor vasculatures after systemic administration. At once, their results indicate an important 

aspect to consider when working with Ad cross-linked with PEG. The appropriate ratio between PEG 

and targeting ligand concentration is crucial to achieve specific tissue transduction [149,150]. As 

described above, the latest success in the treatment of disseminated tumors was made by injecting a 

low dose (10e
8
 plaque forming units (pfu)/animal) of Ad vector encoding RET oncogene inhibitor 

coated with MTC-specific 7-mer peptide via PEG into the tail vein, which led to the regression of 

multiple orthotopic and xenograft tumors in mouse models [39]. The same Ad-PEGylation approach 

using a short artificial peptide selected by phage display, which in this case, specifically binds neural 

precursor cells isolated from the hippocampus of adult mice, was highly effective after injecting the 

vector into the brain [40]. Such tools could eventually serve to exclusively manipulate neural stem 
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cells either by direct injection in the brain or systemic vector application with the potential as a 

delivery system for therapeutic genes to treat various central nervous system disorders.  

Another chemical Ad modification using diblock copolypeptides as an alternative for PEG was first 

described by Jiang and co-workers [151]. Copolypeptides are well-defined polypeptide sequences [152] 

providing efficient non-covalent Ad vector modification altering the native Ad tropism with further 

potential application in targeting cancer metastasis. 

3.3. Bifunctional Non-Covalently Linked Adapter Molecules 

Another way for re-directing and widening Ad vector tropism is the application of bispecific 

antibody fragments or other bifunctional adapter molecules composed of an anti-fiber antibody portion 

and a binding component specific for a cell-specific receptor or secondary antibody conjugated with a 

peptide moiety against specific cell surface antigens. Since CAR does not play any role in virus 

internalization, the Ad fiber knob‟s CAR binding domain accessibility is dispensable and, therefore, 

the candidate of choice to link heterologous binding sites, for instance a bispecific adapter molecule.  

A fully studded Ad vector particle with a bridging molecule prevents any interaction with CAR and, 

thus, ablates Ads native tropism [153–155].  

In the initial demonstration of CAR-independent targeting, a conjugate consisting of folate and a 

fragment derived from an anti-fiber antibody was used as a recombinant protein construct to bind the 

Ad fiber, as well as the target, the folate receptor, which is overexpressed on the surface of a variety of 

malignant cells [156]. In a similar strategy, a conjugated FGF was used to target ovarian carcinoma 

cells [157]. The approach reached a clinical trial, where FGF2-conjugated Ad vector expressing human 

herpes simplex virus thymidine kinase was applied in patients [158]. Reynolds et al. [159] succeeded 

in targeting pulmonary endothelial cells in vivo by intravenous injection of Ad vectors complexed with 

a bispecific antibody against the Ad fiber knob and the angiotensin-converting enzyme.  

In light of the development of new therapeutic strategies for diseases in which angiogenesis plays 

an important role and considering that physiological barriers for high molecular weight components 

prevent the transduction of the majority of tumor cells, vascular targeting became a worthwhile 

approach in cancer gene therapy [160]. Targeting of adenovirus to endothelial cells by a bispecific 

fusion protein directed against the human endoglin CD105 receptor for antivascular cancer gene 

therapy was published by Nettelbeck and coworkers [161]. In 2004, the same group designed a  

single-chain adapter molecule that binds the fiber protein and the high molecular weight  

melanoma-associated antigen. This antigen is widely and specifically expressed on the surface of 

melanoma cells, and its expression is associated with tumor development and progression [93]. Other 

bispecific constructs directing Ad fibers to cells were developed for the epidermal growth factor 

receptor [162,163], endothelial receptors [38] and the lymphocyte antigen 6 complex [164]. A rather 

elegant approach uses a soluble truncated form of CAR as the virus attachment site fused to human 

epidermal growth factor (EGF) to direct a vector against cancer cells that express the EGF  

receptor [165–167]. In addition, a number of authors described the adapter-based strategy to target 

CAR-less dendritic cells as a therapeutic vaccination against cancer or infectious diseases [88,168–172]. 

Another approach developed by Watkins and colleagues [173] used a construct that encodes a 

fusion protein derived from a neutralizing anti-adenovirus fiber single-chain antibody, designated S11, 
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fused to a specific peptide ligand directed against cellular receptors, termed the bispecific adapter 

molecule. Coating virus with this adapter molecule ablates CAR binding and directs the viral particle 

to the desired cellular receptor. S11 can be produced in eukaryotic, as well as prokaryotic cells. By 

means of its 6-His-tag, purification and concentration of the fusion protein can be easily performed by  

nickel-affinity chromatography. This procedure ensures the high yield of pure protein without the loss 

of activity. Based on the S11 strategy, we intended to specifically transduce in vitro and in vivo 

activated hepatic stellate cells (HSCs), whose number is increased in fibrotic livers [41]. Therefore, we 

picked a peptide derived from nerve growth factor (NGFp) with specific affinity for the p75 

neurotrophin receptor (p75NTR) present on activated HSCs. Coating the GFP-expressing Ad vector 

with NGFp was done either via chemical conjugation using bifunctional PEG or, alternatively, by 

molecular bridging with an S11-based fusion protein specific for viral fiber knob and p75NTR  

(S11-NGFp). After systemic administration of the targeted viral particles, we observed that  

Ad.GFP-S11-NGFp transduced activated HSCs better than Ad.GFP-PEG-NGFp. The latter‟s low 

transduction potential could be explained by an improper ratio between PEG and targeting ligand 

concentration that prevented successful and specific tissue transduction or due to the ablation of the 

viral internalization signals by the chemical procedure. These experiments contributed to the 

development of a targeted gene transfer system to specifically deliver antifibrotic compounds into 

activated HSCs by systemically applied adenoviral vectors modified by the NGFp ligand. In our study, 

we demonstrate that adenoviral-mediated targeting of HSCs via p75NTR, concurrently avoiding its 

binding to hepatocytes, provides a potentially feasible and effective strategy for therapeutic gene 

delivery to activated HSCs in the liver in vivo. Haisma et al. [38] observed a selective targeting of Ad5 

to the endothelial receptors in vitro and obtained viral transgene expression only in tumors infected 

with adenobody retargeted adenovirus from mice bearing subcutaneous colon carcinoma. 

An interesting alternative to the single-chain antibody targeting approach are Ad vectors coated 

with an adapter molecule based on designed ankyrin repeat proteins (DARPins). DARPins differ from 

antibodies in size, structure, binding pattern and stability. These properties paired with high-yield, easy 

production in E. coli make them promising candidates for targeting purposes. Dreier and co-workers 

designed an adapter molecule consisting of two DARPin modules fused to each other. One binding site 

anchors the molecule to the Ad fiber knob, and the other enables the particle to attach to tumor cell 

markers, like the human epidermal growth factor receptor, the epithelial cell adhesion molecule or the 

epidermal growth factor receptor. In their work, the authors demonstrate that DARPins are  

high-affinity adapter molecules that allow efficient gene transfer and are a promising tool to rapidly 

target Ad vectors against any desired receptor [174,175].  

The recombinant fusion protein approach offers a number of technical advantages over chemical 

conjugation, including simplified production in prokaryotic or, preferably, in eukaryotic expression 

systems, as well as vector purification. In addition, this approach may allow the application of different 

fusion proteins suitable for retargeting Ad to other receptors, simply by the substitution of the peptide 

ligand. This procedure offers, according to our experience, the method of choice to retarget  

Ad vectors. Figure 1 provides a schematic representation of all three strategies used to alter virus 

tropism.  
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4. Conclusions 

In conclusion, adenoviral vectors have been proven to serve as efficient tools for gene delivery 

when temporary gene expression is beneficial. The major challenge towards applying the technology 

remains the development of a target system for specific gene delivery that reaches a high level of 

efficiency. While genetic fiber manipulation requires tediously re-engineering a given Ad vector and 

PEGylation causes poor transduction efficiencies due to improper PEG to ligand ratios, as well as 

RGD ablation, bifunctional adapter molecules seem to be the most promising targeting approach. An 

expeditious and simple production followed by a broad portfolio of different fusion proteins suitable to 

retarget Ad by substitution peptide ligands offers a standardized method to retarget vectors for both 

in vitro and/or in vivo applications. Moreover, the engineering of bifunctional adaptors may be 

customized much more easily than fiber modifications and chemical treatments of vector preparations. 

Increased knowledge of adenovirus biology and powerful techniques to identify new cellular or tissue 

targets provide the opportunity to develop innovative strategies, which will lead to the selective 

accumulation and activity of a therapeutic gene or a potent inhibitor of pathogenic genes in the tissue 

of interest, which may, in future, allow success in the treatment of patients with systemic disease.  

Acknowledgments 

The authors thank Marc Steder for preparing the illustration. We apologize to all those colleagues 

whose important work is not cited because of space constraints. The results of this review article were 

partially supported by grants from Deutsche Forschungsgemeinschaft (DFG), Bundesministerium für 

Bildung und Forschung (BMBF), Exzellenzförderprogramm (EFP) Mecklenburg-Vorpommern, and 

FORUN (Forschungsförderung der Medizinischen Fakultät der Rostocker Universität) grant program.  

Conflicts of Interest 

The authors declare no conflict of interest.  

References and Notes 

1. Morral, N.; O‟Neal, W.K.; Rice, K.; Leland, M.M.; Piedra, P.A.; Aguilar-Cordova, E.;  

Carey, K.D.; Beaudet, A.L.; Langston, C. Lethal toxicity, severe endothelial injury, and a 

threshold effect with high doses of an adenoviral vector in baboons. Hum. Gene Ther. 2002, 13, 

143–154. 

2. Russell, W.C. Update on adenovirus and its vectors. J. Gen. Virol. 2000, 81, 2573–2604. 

3. Rowe, W.P.; Huebner, R.J.; Gilmore, L.K.; Parrott, R.H.; Ward, T.G. Isolation of a 

cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue 

culture. Proc. Soc. Exp. Biol. Med. 1953, 84, 570–573. 

4. Seto, D.; Chodosh, J.; Brister, J.R.; Jones, M.S.; Members of the Adenovirus Research 

Community. Using the whole-genome sequence to characterize and name human adenoviruses. 

J. Virol. 2011, 85, 5701–5702. 



Viruses 2014, 6 1551 

 

5. Xia, H.; Anderson, B.; Mao, Q.; Davidson, B.L. Recombinant human adenovirus: Targeting to 

the human transferrin receptor improves gene transfer to brain microcapillary endothelium.  

J. Virol. 2000, 74, 11359–11366. 

6. Bergelson, J.M.; Modlin, J.F.; Wieland-Alter, W.; Cunningham, J.A.; Crowell, R.L.;  

Finberg, R.W. Clinical coxsackievirus B isolates differ from laboratory strains in their interaction 

with two cell surface receptors. J. Infect. Dis. 1997, 175, 697–700. 

7. Roelvink, P.W.; Lizonova, A.; Lee, J.G.; Li, Y.; Bergelson, J.M.; Finberg, R.W.; Brough, D.E.; 

Kovesdi, I.; Wickham, T.J. The coxsackievirus-adenovirus receptor protein can function as a 

cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J. Virol. 

1998, 72, 7909–7915. 

8. Wickham, T.J.; Mathias, P.; Cheresh, D.A.; Nemerow, G.R. Integrins alpha v beta 3 and alpha v 

beta 5 promote adenovirus internalization but not virus attachment. Cell 1993, 73, 309–319. 

9. Arnberg, N. Adenovirus receptors: Implications for tropism, treatment and targeting.  

Rev. Med. Virol. 2009, 19, 165–178. 

10. Chailertvanitkul, V.A.; Pouton, C.W. Adenovirus: A blueprint for non-viral gene delivery.  

Curr. Opin. Biotechnol. 2010, 21, 627–632. 

11. Wickham, T.J. Targeting adenovirus. Gene Ther. 2000, 7, 110–114. 

12. Douglas, J.T. Adenovirus-mediated gene delivery to skeletal muscle. Methods Mol. Biol. 2004, 

246, 29–35. 

13. Rauschhuber, C.; Noske, N.; Ehrhardt, A. New insights into stability of recombinant adenovirus 

vector genomes in mammalian cells. Eur. J. Cell Biol. 2012, 91, 2–9. 

14. Armendariz-Borunda, J.; Bastidas-Ramirez, B.E.; Sandoval-Rodriguez, A.; Gonzalez-Cuevas, J.; 

Gomez-Meda, B.; Garcia-Banuelos, J. Production of first generation adenoviral vectors for 

preclinical protocols: amplification, purification and functional titration. J. Biosci. Bioeng. 2011, 

112, 415–421. 

15. Hashimoto, Y.; Kohri, K.; Akita, H.; Mitani, K.; Ikeda, K.; Nakanishi, M. Efficient transfer of 

genes into senescent cells by adenovirus vectors via highly expressed alpha v beta 5 integrin. 

Biochem. Biophys. Res. Commun. 1997, 240, 88–92. 

16. Havenga, M.J.; Lemckert, A.A.; Ophorst, O.J.; van Meijer, M.; Germeraad, W.T.; Grimbergen, J.; 

van Den Doel, M.A.; Vogels, R.; van Deutekom, J.; Janson, A.A.; et al. Exploiting the natural 

diversity in adenovirus tropism for therapy and prevention of disease. J. Virol. 2002, 76,  

4612–4620. 

17. Takayama, K.; Ueno, H.; Pei, X.H.; Nakanishi, Y.; Yatsunami, J.; Hara, N. The levels of integrin 

alpha v beta 5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung 

cancer cells. Gene Ther. 1998, 5, 361–368. 

18. Zhang, Y.; Bergelson, J.M. Adenovirus receptors. J. Virol. 2005, 79, 12125–12131. 

19. Sharma, A.; Li, X.; Bangari, D.S.; Mittal, S.K. Adenovirus receptors and their implications in 

gene delivery. Virus Res. 2009, 143, 184–194. 

20. Haj-Ahmad, Y.; Graham, F.L. Characterization of an adenovirus type 5 mutant carrying 

embedded inverted terminal repeats. Virology 1986, 153, 22–34. 



Viruses 2014, 6 1552 

 

21. Hedley, S.J.; Auf der Maur, A.; Hohn, S.; Escher, D.; Barberis, A.; Glasgow, J.N.; Douglas, J.T.; 

Korokhov, N.; Curiel, D.T. An adenovirus vector with a chimeric fiber incorporating stabilized 

single chain antibody achieves targeted gene delivery. Gene Ther. 2006, 13, 88–94. 

22. Coughlan, L.; Alba, R.; Parker, A.L.; Bradshaw, A.C.; McNeish, I.A.; Nicklin, S.A.; Baker, A.H. 

Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 

2010, 2, 2290–2355. 

23. Shayakhmetov, D.M.; Gaggar, A.; Ni, S.; Li, Z.-Y.; Lieber, A. Adenovirus binding to blood 

factors results in liver cell infection and hepatotoxicity. J. Virol. 2005, 79, 7478–7491. 

24. Stone, D.; Liu, Y.; Shayakhmetov, D.; Li, Z.-Y.; Ni, S.; Lieber, A. Adenovirus-platelet 

interaction in blood causes virus sequestration to the reticuloendothelial system of the liver.  

J. Virol. 2007, 81, 8466–8471. 

25. Doronin, K.; Flatt, J.W.; di Paolo, N.C.; Khare, R.; Kalyuzhniy, O.; Acchione, M.; Sumida, J.P.; 

Ohto, U.; Shimizu, T.; Akashi-Takamura, S.; et al. Coagulation factor X activates innate 

immunity to human species C adenovirus. Science 2012, 338, 795–798. 

26. Huard, J.; Lochmuller, H.; Acsadi, G.; Jani, A.; Massie, B.; Karpati, G. The route of 

administration is a major determinant of the transduction efficiency of rat tissues by adenoviral 

recombinants. Gene Ther. 1995, 2, 107–115. 

27. Khare, R.; Chen, C.Y.; Weaver, E.A.; Barry, M.A. Advances and future challenges in adenoviral 

vector pharmacology and targeting. Curr. Gene Ther. 2011, 11, 241–258. 

28. Reynolds, P.N.; Nicklin, S.A.; Kaliberova, L.; Boatman, B.G.; Grizzle, W.E.; Balyasnikova, I.V.; 

Baker, A.H.; Danilov, S.M.; Curiel, D.T. Combined transductional and transcriptional targeting 

improves the specificity of transgene expression in vivo. Nat. Biotechnol. 2001, 19, 838–842. 

29. Shayakhmetov, D.M.; Li, Z.Y.; Ni, S.; Lieber, A. Analysis of adenovirus sequestration in the 

liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors.  

J. Virol. 2004, 78, 5368–5381. 

30. Xu, Z.; Qiu, Q.; Tian, J.; Smith, J.S.; Conenello, G.M.; Morita, T.; Byrnes, A.P. Coagulation 

factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat. Med. 

2013, 19, 452–457. 

31. Duffy, M.R.; Parker, A.L.; Kalkman, E.R.; White, K.; Kovalskyy, D.; Kelly, S.M.; Baker, A.H. 

Identification of novel small molecule inhibitors of adenovirus gene transfer using a high 

throughput screening approach. J. Contr. Release 2013, 170, 132–140. 

32. Thacker, E.E.; Nakayama, M.; Smith, B.F.; Bird, R.C.; Muminova, Z.; Strong, T.V.; Timares, L.; 

Korokhov, N.; O‟Neill, A.M.; de Gruijl, T.D.; et al. A genetically engineered adenovirus vector 

targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific 

immune responses in vivo. Vaccine 2009, 27, 7116–7124. 

33. Coughlan, L.; Vallath, S.; Gros, A.; Gimenez-Alejandre, M.; van Rooijen, N.; Thomas, G.J.; 

Baker, A.H.; Cascallo, M.; Alemany, R.; Hart, I.R. Combined fiber modifications both to target 

alpha(v)beta(6) and detarget the coxsackievirus-adenovirus receptor improve virus toxicity 

profiles in vivo but fail to improve antitumoral efficacy relative to adenovirus serotype 5.  

Hum. Gene Ther. 2012, 23, 960–979. 

34. McConnell, M.J.; Imperiale, M.J. Biology of adenovirus and its use as a vector for gene therapy. 

Hum. Gene Ther. 2004, 15, 1022–1033. 



Viruses 2014, 6 1553 

 

35. Haisma, H.J.; Boesjes, M.; Beerens, A.M.; van der Strate, B.W.; Curiel, D.T.; Pluddemann, A.; 

Gordon, S.; Bellu, A.R. Scavenger receptor A: A new route for adenovirus 5. Mol. Pharm. 2009, 

6, 366–374. 

36. Beatty, M.S.; Curiel, D.T. Chapter two–Adenovirus strategies for tissue-specific targeting.  

Adv. Cancer Res. 2012, 115, 39–67. 

37. Dorer, D.E.; Nettelbeck, D.M. Targeting cancer by transcriptional control in cancer gene therapy 

and viral oncolysis. Adv. Drug Deliv. Rev. 2009, 61, 554–571. 

38. Haisma, H.J.; Kamps, G.K.; Bouma, A.; Geel, T.M.; Rots, M.G.; Kariath, A.; Bellu, A.R. 

Selective targeting of adenovirus to alphavbeta3 integrins, VEGFR2 and Tie2 endothelial 

receptors by angio-adenobodies. Int. J. Pharm. 2010, 391, 155–161. 

39. Schmidt, A.; Eipel, C.; Furst, K.; Sommer, N.; Pahnke, J.; Putzer, B.M. Evaluation of systemic 

targeting of RET oncogene-based MTC with tumor-selective peptide-tagged Ad vectors in 

clinical mouse models. Gene Ther. 2011, 18, 418–423. 

40. Schmidt, A.; Haas, S.J.; Hildebrandt, S.; Scheibe, J.; Eckhoff, B.; Racek, T.; Kempermann, G.; 

Wree, A.; Putzer, B.M. Selective targeting of adenoviral vectors to neural precursor cells in the 

hippocampus of adult mice: new prospects for in situ gene therapy. Stem Cells 2007, 25,  

2910–2918. 

41. Reetz, J.; Genz, B.; Meier, C.; Kowtharapu, B.S.; Timm, F.; Vollmar, B.; Herchenroder, O.; 

Abshagen, K.; Putzer, B.M. Development of adenoviral delivery systems to target hepatic stellate 

cells in vivo. PLoS One 2013, 8, e67091. 

42. Vives, E.; Schmidt, J.; Pelegrin, A. Cell-penetrating and cell-targeting peptides in drug delivery. 

Biochim. Biophys. Acta 2008, 1786, 126–138. 

43. Scott, J.K.; Smith, G.P. Searching for peptide ligands with an epitope library. Science 1990, 249, 

386–390. 

44. Arap, W.; Pasqualini, R. The human vascular mapping project. Selection and utilization of 

molecules for tumor endothelial targeting. Haemostasis 2001, 31, 30–31. 

45. Arap, W.; Pasqualini, R.; Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor 

vasculature in a mouse model. Science 1998, 279, 377–380. 

46. Chen, C.Y.; May, S.M.; Barry, M.A. Targeting adenoviruses with factor x-single-chain antibody 

fusion proteins. Hum. Gene Ther. 2010, 21, 739–749. 

47. Dias-Neto, E.; Nunes, D.N.; Giordano, R.J.; Sun, J.; Botz, G.H.; Yang, K.; Setubal, J.C.; 

Pasqualini, R.; Arap, W. Next-generation phage display: integrating and comparing available 

molecular tools to enable cost-effective high-throughput analysis. PLoS One 2009, 4, e8338. 

48. Essler, M.; Ruoslahti, E. Molecular specialization of breast vasculature: A breast-homing  

phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad.  

Sci. USA 2002, 99, 2252–2257. 

49. Kugler, J.; Zantow, J.; Meyer, T.; Hust, M. Oligopeptide m13 phage display in pathogen 

research. Viruses 2013, 5, 2531–2545. 

50. Nicklin, S.A.; White, S.J.; Watkins, S.J.; Hawkins, R.E.; Baker, A.H. Selective targeting of gene 

transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation 

2000, 102, 231–237. 



Viruses 2014, 6 1554 

 

51. Bignone, P.A.; Krupa, R.A.; Sternberg, H.; Funk, W.D.; Snyder, E.Y.; West, M.D.; Larocca, D. 

Identification of human embryonic progenitor cell targeting peptides using phage display.  

PLoS One 2013, 8, e58200. 

52. Pasqualini, R.; Koivunen, E.; Kain, R.; Lahdenranta, J.; Sakamoto, M.; Stryhn, A.;  

Ashmun, R.A.; Shapiro, L.H.; Arap, W.; Ruoslahti, E. Aminopeptidase N is a receptor for  

tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000, 60, 722–727. 

53. Pasqualini, R.; Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 

1996, 380, 364–366. 

54. White, S.J.; Nicklin, S.A.; Sawamura, T.; Baker, A.H. Identification of peptides that target the 

endothelial cell-specific LOX-1 receptor. Hypertension 2001, 37, 449–455. 

55. Bewley, M.C.; Springer, K.; Zhang, Y.B.; Freimuth, P.; Flanagan, J.M. Structural analysis of the 

mechanism of adenovirus binding to its human cellular receptor, CAR. Science 1999, 286,  

1579–1583. 

56. Liu, Z.; Wu, K. Peptides homing to tumor vasculature: Imaging and therapeutics for cancer. 

Recent Pat. Anticancer Drug Discov. 2008, 3, 202–208. 

57. Laakkonen, P.; Porkka, K.; Hoffman, J.A.; Ruoslahti, E. A tumor-homing peptide with a 

targeting specificity related to lymphatic vessels. Nat. Med. 2002, 8, 751–755. 

58. Odermatt, A.; Audige, A.; Frick, C.; Vogt, B.; Frey, B.M.; Frey, F.J.; Mazzucchelli, L. 

Identification of receptor ligands by screening phage-display peptide libraries ex vivo on 

microdissected kidney tubules. J. Am. Soc. Nephrol. 2001, 12, 308–316. 

59. Barry, M.A.; Dower, W.J.; Johnston, S.A. Toward cell-targeting gene therapy vectors: Selection 

of cell-binding peptides from random peptide-presenting phage libraries. Nat. Med. 1996, 2, 

299–305. 

60. Mazzucchelli, L.; Burritt, J.B.; Jesaitis, A.J.; Nusrat, A.; Liang, T.W.; Gewirtz, A.T.;  

Schnell, F.J.; Parkos, C.A. Cell-specific peptide binding by human neutrophils. Blood 1999, 93, 

1738–1748. 

61. Ravera, M.W.; Carcamo, J.; Brissette, R.; Alam-Moghe, A.; Dedova, O.; Cheng, W.;  

Hsiao, K.C.; Klebanov, D.; Shen, H.; Tang, P.; et al. Identification of an allosteric binding site 

on the transcription factor p53 using a phage-displayed peptide library. Oncogene 1998, 16, 

1993–1999. 

62. Ivanenkov, V.V.; Felici, F.; Menon, A.G. Targeted delivery of multivalent phage display vectors 

into mammalian cells. Biochim. Biophys. Acta 1999, 1448, 463–472. 

63. Sclavons, C.; Burtea, C.; Boutry, S.; Laurent, S.; vander Elst, L.; Muller, R.N. Phage display 

screening for tumor necrosis factor- alpha -binding peptides: Detection of inflammation in a 

mouse model of hepatitis. Int. J. Pept. 2013, 2013, 348409. 

64. Cheung, C.S.; Lui, J.C.; Baron, J. Identification of chondrocyte-binding peptides by phage 

display. J. Orthop. Res. 2013, 31, 1053–1058. 

65. Nishimoto, T.; Yamamoto, Y.; Yoshida, K.; Goto, N.; Ohnami, S.; Aoki, K. Development of 

peritoneal tumor-targeting vector by in vivo screening with a random peptide-displaying 

adenovirus library. PLoS One 2012, 7, e45550. 

66. Ozturk, N.; Erin, N.; Tuzuner, S. Changes in tissue substance P levels in patients with carpal 

tunnel syndrome. Neurosurgery 2010, 67, 1655–1660; discussion 1660–1661. 



Viruses 2014, 6 1555 

 

67. Adewuya, A.O.; Owoeye, O.A.; Erinfolami, A.R. Psychopathology and subjective burden 

amongst primary caregivers of people with mental illness in South-Western Nigeria. Soc. Psychiatry 

Psychiatr. Epidemiol. 2011, 46, 1251–1256. 

68. Nnodu, O.; Erinosho, L.; Jamda, M.; Olaniyi, O.; Adelaiye, R.; Lawson, L.; Odedina, F.; 

Shuaibu, F.; Odumuh, T.; Isu, N.; et al. Knowledge and attitudes towards cervical cancer and 

human papillomavirus: A Nigerian pilot study. Afr. J. Reprod. Health 2010, 14, 95–108. 

69. Erinjeri, J.P.; Clark, T.W. Cryoablation: Mechanism of action and devices. J. Vasc. Interv. 

Radiol: JVIR 2010, 21, S187–S191. 

70. Bockmann, M.; Drosten, M.; Putzer, B.M. Discovery of targeting peptides for selective therapy 

of medullary thyroid carcinoma. J. Gene Med. 2005, 7, 179–188. 

71. Bockmann, M.; Hilken, G.; Schmidt, A.; Cranston, A.N.; Tannapfel, A.; Drosten, M.; Frilling, A.; 

Ponder, B.A.; Putzer, B.M. Novel SRESPHP peptide mediates specific binding to primary 

medullary thyroid carcinoma after systemic injection. Hum. Gene Ther. 2005, 16, 1267–1275. 

72. Arap, W.; Kolonin, M.G.; Trepel, M.; Lahdenranta, J.; Cardo-Vila, M.; Giordano, R.J.; Mintz, P.J.; 

Ardelt, P.U.; Yao, V.J.; Vidal, C.I.; et al. Steps toward mapping the human vasculature by phage 

display. Nat. Med. 2002, 8, 121–127. 

73. Chang, D.K.; Chiu, C.Y.; Kuo, S.Y.; Lin, W.C.; Lo, A.; Wang, Y.P.; Li, P.C.; Wu, H.C. 

Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors. J. Biol. Chem. 

2009, 284, 12905–12916. 

74. Seung-Min, L.; Gil-Suk, Y.; Eun-Sang, Y.; Tae-Gyun, K.; In-San, K.; Byung-Heon, L. 

Application of phage display to discovery of tumor-specific homing peptides: Developing 

strategies for therapy and molecular imaging of cancer. Methods Mol. Biol. 2009, 512, 355–363. 

75. Rangel, R.; Dobroff, A.S.; Guzman-Rojas, L.; Salmeron, C.C.; Gelovani, J.G.; Sidman, R.L.; 

Pasqualini, R.; Arap, W. Targeting mammalian organelles with internalizing phage (iPhage) 

libraries. Nat. Protoc. 2013, 8, 1916–1939. 

76. Rangel, R.; Guzman-Rojas, L.; le Roux, L.G.; Staquicini, F.I.; Hosoya, H.; Barbu, E.M.;  

Ozawa, M.G.; Nie, J.; Jr, K.D.; Langley, R.R.; et al. Combinatorial targeting and discovery of 

ligand-receptors in organelles of mammalian cells. Nat. Commun. 2012, 3, 788. 

77. Jedlicka, P.; Hrdy, I.; Kuldova, J.; Wimmer, Z. The systemic effects of juvenoids on the red 

firebug Pyrrhocoris apterus and on the pea aphid Acyrthosiphon pisum with data on life table 

response. Pest Manag. Sci. 2007, 63, 1026–1035. 

78. Wimmer, Z.; Jurcek, O.; Jedlicka, P.; Hanus, R.; Kuldova, J.; Hrdy, I.; Bennettova, B.;  

Saman, D. Insect pest management agents: Hormonogen esters (juvenogens). J. Agric. Food Chem. 

2007, 55, 7387–7393. 

79. Song, K.M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors (Basel) 2012, 

12, 612–631. 

80. Sundaram, P.; Kurniawan, H.; Byrne, M.E.; Wower, J. Therapeutic RNA aptamers in clinical 

trials. Eur. J. Pharm. Sci. 2013, 48, 259–271. 

81. Zimbres, F.M.; Tarnok, A.; Ulrich, H.; Wrenger, C. Aptamers: Novel molecules as diagnostic 

markers in bacterial and viral infections? Biomed. Res. Int. 2013, 2013, 731516. 

82. Tan, W.; Donovan, M.J.; Jiang, J. Aptamers from cell-based selection for bioanalytical 

applications. Chem. Rev. 2013, 113, 2842–2862. 



Viruses 2014, 6 1556 

 

83. Hu, M.; Zhang, K. The application of aptamers in cancer research: An up-to-date review.  

Fut. Oncol. 2013, 9, 369–376. 

84. Zhu, G.; Ye, M.; Donovan, M.J.; Song, E.; Zhao, Z.; Tan, W. Nucleic acid aptamers: An 

emerging frontier in cancer therapy. Chem. Commun. (Camb.) 2012, 48, 10472–10480. 

85. Wickham, T.J.; Tzeng, E.; Shears, L.L., 2nd; Roelvink, P.W.; Li, Y.; Lee, G.M.; Brough, D.E.; 

Lizonova, A.; Kovesdi, I. Increased in vitro and in vivo gene transfer by adenovirus vectors 

containing chimeric fiber proteins. J. Virol. 1997, 71, 8221–8229. 

86. Krasnykh, V.; Dmitriev, I.; Mikheeva, G.; Miller, C.R.; Belousova, N.; Curiel, D.T. 

Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI 

loop of the fiber knob. J. Virol. 1998, 72, 1844–1852. 

87. Einfeld, D.A.; Schroeder, R.; Roelvink, P.W.; Lizonova, A.; King, C.R.; Kovesdi, I.;  

Wickham, T.J. Reducing the native tropism of adenovirus vectors requires removal of both CAR 

and integrin interactions. J. Virol. 2001, 75, 11284–11291. 

88. Pereboev, A.V.; Nagle, J.M.; Shakhmatov, M.A.; Triozzi, P.L.; Matthews, Q.L.; Kawakami, Y.; 

Curiel, D.T.; Blackwell, J.L. Enhanced gene transfer to mouse dendritic cells using adenoviral 

vectors coated with a novel adapter molecule. Mol. Ther. 2004, 9, 712–720. 

89. Krenek, K.; Kuldova, M.; Hulikova, K.; Stibor, I.; Lhotak, P.; Dudic, M.; Budka, J.;  

Pelantova, H.; Bezouska, K.; Fiserova, A.; et al. N-acetyl-D-glucosamine substituted calix[4]arenes 

as stimulators of NK cell-mediated antitumor immune response. Carbohydr. Res. 2007, 342, 

1781–1792. 

90. Dmitriev, I.; Krasnykh, V.; Miller, C.R.; Wang, M.; Kashentseva, E.; Mikheeva, G.;  

Belousova, N.; Curiel, D.T. An adenovirus vector with genetically modified fibers demonstrates 

expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell 

entry mechanism. J. Virol. 1998, 72, 9706–9713. 

91. Davison, A.J.; Benko, M.; Harrach, B. Genetic content and evolution of adenoviruses.  

J. Gen. Virol. 2003, 84, 2895–2908. 

92. Koizumi, N.; Mizuguchi, H.; Sakurai, F.; Yamaguchi, T.; Watanabe, Y.; Hayakawa, T. 

Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination 

with both CAR- and alphav integrin-binding ablation. J. Virol. 2003, 77, 13062–13072. 

93. Nettelbeck, D.M.; Rivera, A.A.; Kupsch, J.; Dieckmann, D.; Douglas, J.T.; Kontermann, R.E.; 

Alemany, R.; Curiel, D.T. Retargeting of adenoviral infection to melanoma: combining genetic 

ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that 

binds to fiber knob and HMWMAA. Int. J. Cancer 2004, 108, 136–145. 

94. Glasgow, J.N.; Kremer, E.J.; Hemminki, A.; Siegal, G.P.; Douglas, J.T.; Curiel, D.T.  

An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel 

tropism. Virology 2004, 324, 103–116. 

95. Coughlan, L.; Vallath, S.; Saha, A.; Flak, M.; McNeish, I.A.; Vassaux, G.; Marshall, J.F.;  

Hart, I.R.; Thomas, G.J. In vivo retargeting of adenovirus type 5 to alphavbeta6 integrin results in 

reduced hepatotoxicity and improved tumor uptake following systemic delivery. J. Virol. 2009, 

83, 6416–6428. 



Viruses 2014, 6 1557 

 

96. Wang, D.; Liu, S.; Mao, Q.; Zhao, J.; Xia, H. A novel vector for a rapid generation of  

fiber-mutant adenovirus based on one step ligation and quick screening of positive clones.  

J. Biotechnol. 2011, 152, 72–76. 

97. Belousova, N.; Krendelchtchikova, V.; Curiel, D.T.; Krasnykh, V. Modulation of adenovirus 

vector tropism via incorporation of polypeptide ligands into the fiber protein. J. Virol. 2002, 76, 

8621–8631. 

98. Nicklin, S.A.; Dishart, K.L.; Buening, H.; Reynolds, P.N.; Hallek, M.; Nemerow, G.R.;  

von Seggern, D.J.; Baker, A.H. Transductional and transcriptional targeting of cancer cells using 

genetically engineered viral vectors. Cancer Lett. 2003, 201, 165–173. 

99. Work, L.M.; Nicklin, S.A.; Brain, N.J.; Dishart, K.L.; Von Seggern, D.J.; Hallek, M.;  

Buning, H.; Baker, A.H. Development of efficient viral vectors selective for vascular smooth 

muscle cells. Mol. Ther. 2004, 9, 198–208. 

100. Cao, C.; Dong, X.; Wu, X.; Wen, B.; Ji, G.; Cheng, L.; Liu, H. Conserved fiber-penton base 

interaction revealed by nearly atomic resolution cryo-electron microscopy of the structure of 

adenovirus provides insight into receptor interaction. J. Virol. 2012, 86, 12322–12329. 

101. Tanaka, T.; Kuroki, M.; Hamada, H.; Kato, K.; Kinugasa, T.; Shibaguchi, H.; Zhao, J.  

Cancer-targeting gene therapy using tropism-modified adenovirus. Anticancer Res. 2007, 27, 

3679–3684. 

102. Kurachi, S.; Koizumi, N.; Sakurai, F.; Kawabata, K.; Sakurai, H.; Nakagawa, S.; Hayakawa, T.; 

Mizuguchi, H. Characterization of capsid-modified adenovirus vectors containing heterologous 

peptides in the fiber knob, protein IX, or hexon. Gene Ther. 2007, 14, 266–274. 

103. Terao, S.; Acharya, B.; Suzuki, T.; Aoi, T.; Naoe, M.; Hamada, K.; Mizuguchi, H.; Gotoh, A. 

Improved gene transfer into renal carcinoma cells using adenovirus vector containing RGD 

motif. Anticancer Res. 2009, 29, 2997–3001. 

104. Katayama, K.; Furuki, R.; Yokoyama, H.; Kaneko, M.; Tachibana, M.; Yoshida, I.; Nagase, H.; 

Tanaka, K.; Sakurai, F.; Mizuguchi, H.; et al. Enhanced in vivo gene transfer into the placenta 

using RGD fiber-mutant adenovirus vector. Biomaterials 2011, 32, 4185–4193. 

105. Bayo-Puxan, N.; Gimenez-Alejandre, M.; Lavilla-Alonso, S.; Gros, A.; Cascallo, M.;  

Hemminki, A.; Alemany, R. Replacement of adenovirus type 5 fiber shaft heparan sulfate 

proteoglycan-binding domain with RGD for improved tumor infectivity and targeting.  

Hum. Gene Ther. 2009, 20, 1214–1221. 

106. Rojas, J.J.; Gimenez-Alejandre, M.; Gil-Hoyos, R.; Cascallo, M.; Alemany, R. Improved 

systemic antitumor therapy with oncolytic adenoviruses by replacing the fiber shaft HSG-binding 

domain with RGD. Gene Ther. 2012, 19, 453–457. 

107. Roelvink, P.W.; Mi Lee, G.; Einfeld, D.A.; Kovesdi, I.; Wickham, T.J. Identification of a 

conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 

1999, 286, 1568–1571. 

108. Leissner, P.; Legrand, V.; Schlesinger, Y.; Hadji, D.A.; van Raaij, M.; Cusack, S.; Pavirani, A.; 

Mehtali, M. Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo 

tropism. Gene Ther. 2001, 8, 49–57. 



Viruses 2014, 6 1558 

 

109. Mizuguchi, H.; Koizumi, N.; Hosono, T.; Ishii-Watabe, A.; Uchida, E.; Utoguchi, N.;  

Watanabe, Y.; Hayakawa, T. CAR- or alphav integrin-binding ablated adenovirus vectors, but 

not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer 

properties in mice. Gene Ther. 2002, 9, 769–776. 

110. Alemany, R.; Curiel, D.T. CAR-binding ablation does not change biodistribution and toxicity of 

adenoviral vectors. Gene Ther. 2001, 8, 1347–1353. 

111. Nakamura, T.; Sato, K.; Hamada, H. Reduction of natural adenovirus tropism to the liver by both 

ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short 

fiber. J. Virol. 2003, 77, 2512–2521. 

112. Smith, T.A.; Idamakanti, N.; Rollence, M.L.; Marshall-Neff, J.; Kim, J.; Mulgrew, K.; Nemerow, 

G.R.; Kaleko, M.; Stevenson, S.C. Adenovirus serotype 5 fiber shaft influences in vivo gene 

transfer in mice. Hum. Gene Ther. 2003, 14, 777–787. 

113. Smith, T.A.; Idamakanti, N.; Marshall-Neff, J.; Rollence, M.L.; Wright, P.; Kaloss, M.; King, L.; 

Mech, C.; Dinges, L.; Iverson, W.O.; et al. Receptor interactions involved in adenoviral-mediated 

gene delivery after systemic administration in non-human primates. Hum. Gene Ther. 2003, 14, 

1595–1604. 

114. Magnusson, M.K.; Kraaij, R.; Leadley, R.M.; de Ridder, C.M.; van Weerden, W.M.;  

van Schie, K.A.; van der Kroeg, M.; Hoeben, R.C.; Maitland, N.J.; Lindholm, L.  

A transductionally retargeted adenoviral vector for virotherapy of Her2/neu-expressing prostate 

cancer. Hum. Gene Ther. 2012, 23, 70–82. 

115. Myhre, S.; Henning, P.; Friedman, M.; Stahl, S.; Lindholm, L.; Magnusson, M.K. Re-targeted 

adenovirus vectors with dual specificity; binding specificities conferred by two different 

Affibody molecules in the fiber. Gene Ther. 2009, 16, 252–261. 

116. Wu, H.; Seki, T.; Dmitriev, I.; Uil, T.; Kashentseva, E.; Han, T.; Curiel, D.T. Double 

modification of adenovirus fiber with RGD and polylysine motifs improves  

coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Hum. Gene Ther. 2002, 

13, 1647–1653. 

117. Belousova, N.; Korokhov, N.; Krendelshchikova, V.; Simonenko, V.; Mikheeva, G.; Triozzi, P.L.; 

Aldrich, W.A.; Banerjee, P.T.; Gillies, S.D.; Curiel, D.T.; et al. Genetically targeted adenovirus 

vector directed to CD40-expressing cells. J. Virol. 2003, 77, 11367–11377. 

118. O'Neill, A.M.; Smith, A.N.; Spangler, E.A.; Whitley, E.M.; Schleis, S.E.; Bird, R.C.;  

Curiel, D.T.; Thacker, E.E.; Smith, B.F. Resistance of canine lymphoma cells to adenoviral 

infection due to reduced cell surface RGD binding integrins. Cancer Biol. Ther. 2011, 11,  

651–658. 

119. Yu, D.; Jin, C.; Leja, J.; Majdalani, N.; Nilsson, B.; Eriksson, F.; Essand, M. Adenovirus with 

hexon Tat-protein transduction domain modification exhibits increased therapeutic effect in 

experimental neuroblastoma and neuroendocrine tumors. J. Virol. 2011, 85, 13114–13123. 

120. Yu, D.; Jin, C.; Ramachandran, M.; Xu, J.; Nilsson, B.; Korsgren, O.; le Blanc, K.; Uhrbom, L.; 

Forsberg-Nilsson, K.; Westermark, B.; et al. Adenovirus serotype 5 vectors with Tat-PTD 

modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary 

cell cultures. PLoS One 2013, 8, e54952. 



Viruses 2014, 6 1559 

 

121. Brouwer, E.; Havenga, M.J.; Ophorst, O.; de Leeuw, B.; Gijsbers, L.; Gillissen, G.; Hoeben, R.C.; 

ter Horst, M.; Nanda, D.; Dirven, C.; et al. Human adenovirus type 35 vector for gene therapy of 

brain cancer: improved transduction and bypass of pre-existing anti-vector immunity in cancer 

patients. Cancer Gene Ther. 2007, 14, 211–219. 

122. Sova, P.; Ren, X.W.; Ni, S.; Bernt, K.M.; Mi, J.; Kiviat, N.; Lieber, A. A tumor-targeted and 

conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver 

metastases. Mol. Ther. 2004, 9, 496–509. 

123. Hesse, A.; Kosmides, D.; Kontermann, R.E.; Nettelbeck, D.M. Tropism modification of 

adenovirus vectors by peptide ligand insertion into various positions of the adenovirus serotype 

41 short-fiber knob domain. J. Virol. 2007, 81, 2688–2699. 

124. Matsui, H.; Sakurai, F.; Katayama, K.; Kurachi, S.; Tashiro, K.; Sugio, K.; Kawabata, K.; 

Mizuguchi, H. Enhanced transduction efficiency of fiber-substituted adenovirus vectors by the 

incorporation of RGD peptides in two distinct regions of the adenovirus serotype 35 fiber knob. 

Virus Res. 2011, 155, 48–54. 

125. Magnusson, M.K.; Hong, S.S.; Henning, P.; Boulanger, P.; Lindholm, L. Genetic retargeting of 

adenovirus vectors: Functionality of targeting ligands and their influence on virus viability.  

J. Gene Med. 2002, 4, 356–370. 

126. Mizuguchi, H.; Hayakawa, T. Targeted adenovirus vectors. Hum. Gene Ther. 2004, 15,  

1034–1044. 

127. Kreppel, F.; Kochanek, S. Modification of adenovirus gene transfer vectors with synthetic 

polymers: A scientific review and technical guide. Mol. Ther. 2008, 16, 16–29. 

128. Elkon, K.B.; Liu, C.C.; Gall, J.G.; Trevejo, J.; Marino, M.W.; Abrahamsen, K.A.; Song, X.; 

Zhou, J.L.; Old, L.J.; Crystal, R.G.; et al. Tumor necrosis factor alpha plays a central role in 

immune-mediated clearance of adenoviral vectors. Proc. Natl. Acad. Sci. USA 1997, 94,  

9814–9819. 

129. Zaiss, A.K.; Liu, Q.; Bowen, G.P.; Wong, N.C.; Bartlett, J.S.; Muruve, D.A. Differential 

activation of innate immune responses by adenovirus and adeno-associated virus vectors.  

J. Virol. 2002, 76, 4580–4590. 

130. Croyle, M.A.; Callahan, S.M.; Auricchio, A.; Schumer, G.; Linse, K.D.; Wilson, J.M.;  

Brunner, L.J.; Kobinger, G.P. PEGylation of a vesicular stomatitis virus G pseudotyped 

lentivirus vector prevents inactivation in serum. J. Virol. 2004, 78, 912–921. 

131. Mok, H.; Palmer, D.J.; Ng, P.; Barry, M.A. Evaluation of polyethylene glycol modification of 

first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. 

Mol. Ther. 2005, 11, 66–79. 

132. Gao, J.Q.; Eto, Y.; Yoshioka, Y.; Sekiguchi, F.; Kurachi, S.; Morishige, T.; Yao, X.;  

Watanabe, H.; Asavatanabodee, R.; Sakurai, F.; et al. Effective tumor targeted gene transfer 

using PEGylated adenovirus vector via systemic administration. J. Contr. Release 2007, 122, 

102–110. 

133. Alemany, R.; Suzuki, K.; Curiel, D.T. Blood clearance rates of adenovirus type 5 in mice.  

J. Gen. Virol. 2000, 81, 2605–2609. 



Viruses 2014, 6 1560 

 

134. O'Riordan, C.R.; Lachapelle, A.; Delgado, C.; Parkes, V.; Wadsworth, S.C.; Smith, A.E.; 

Francis, G.E. PEGylation of adenovirus with retention of infectivity and protection from 

neutralizing antibody in vitro and in vivo. Hum. Gene Ther. 1999, 10, 1349–1358. 

135. Romanczuk, H.; Galer, C.E.; Zabner, J.; Barsomian, G.; Wadsworth, S.C.; O'Riordan, C.R. 

Modification of an adenoviral vector with biologically selected peptides: A novel strategy for 

gene delivery to cells of choice. Hum. Gene Ther. 1999, 10, 2615–2626. 

136. Eto, Y.; Yoshioka, Y.; Ishida, T.; Yao, X.; Morishige, T.; Narimatsu, S.; Mizuguchi, H.;  

Mukai, Y.; Okada, N.; Kiwada, H.; et al. Optimized PEGylated adenovirus vector reduces the 

anti-vector humoral immune response against adenovirus and induces a therapeutic effect against 

metastatic lung cancer. Biol. Pharm. Bull. 2010, 33, 1540–1544. 

137. Lee, G.K.; Maheshri, N.; Kaspar, B.; Schaffer, D.V. PEG conjugation moderately protects 

adeno-associated viral vectors against antibody neutralization. Biotechnol. Bioeng. 2005, 92,  

24–34. 

138. Hofherr, S.E.; Shashkova, E.V.; Weaver, E.A.; Khare, R.; Barry, M.A. Modification of 

adenoviral vectors with polyethylene glycol modulates in vivo tissue tropism and gene 

expression. Mol. Ther. 2008, 16, 1276–1282. 

139. Wonganan, P.; Croyle, M.A. PEGylated adenoviruses: From mice to monkeys. Viruses 2010, 2, 

468–502. 

140. Lanciotti, J.; Song, A.; Doukas, J.; Sosnowski, B.; Pierce, G.; Gregory, R.; Wadsworth, S.; 

O'Riordan, C. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 

conjugates. Mol. Ther. 2003, 8, 99–107. 

141. Eto, Y.; Gao, J.Q.; Sekiguchi, F.; Kurachi, S.; Katayama, K.; Mizuguchi, H.; Hayakawa, T.; 

Tsutsumi, Y.; Mayumi, T.; Nakagawa, S. Neutralizing antibody evasion ability of adenovirus 

vector induced by the bioconjugation of methoxypolyethylene glycol succinimidyl propionate 

(MPEG-SPA). Biol. Pharm. Bull. 2004, 27, 936–938. 

142. Ogawara, K.; Rots, M.G.; Kok, R.J.; Moorlag, H.E.; van Loenen, A.M.; Meijer, D.K.;  

Haisma, H.J.; Molema, G. A novel strategy to modify adenovirus tropism and enhance transgene 

delivery to activated vascular endothelial cells in vitro and in vivo. Hum. Gene Ther. 2004, 15, 

433–443. 

143. Eto, Y.; Gao, J.Q.; Sekiguchi, F.; Kurachi, S.; Katayama, K.; Maeda, M.; Kawasaki, K.; 

Mizuguchi, H.; Hayakawa, T.; Tsutsumi, Y.; et al. PEGylated adenovirus vectors containing 

RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. 

J. Gene Med. 2005, 7, 604–612. 

144. Xiong, Z.; Cheng, Z.; Zhang, X.; Patel, M.; Wu, J.C.; Gambhir, S.S.; Chen, X. Imaging 

chemically modified adenovirus for targeting tumors expressing integrin alphavbeta3 in living 

mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J. Nucl. Med. 

2006, 47, 130–139. 

145. Kuldo, J.M.; Asgeirsdottir, S.A.; Zwiers, P.J.; Bellu, A.R.; Rots, M.G.; Schalk, J.A.;  

Ogawara, K.I.; Trautwein, C.; Banas, B.; Haisma, H.J.; et al. Targeted adenovirus mediated 

inhibition of NF-kappaB-dependent inflammatory gene expression in endothelial cells in vitro 

and in vivo. J. Contr. Release 2013, 166, 57–65. 



Viruses 2014, 6 1561 

 

146. Kim, P.H.; Sohn, J.H.; Choi, J.W.; Jung, Y.; Kim, S.W.; Haam, S.; Yun, C.O. Active targeting 

and safety profile of PEG-modified adenovirus conjugated with herceptin. Biomaterials 2011, 

32, 2314–2326. 

147. Yao, X.; Yoshioka, Y.; Morishige, T.; Eto, Y.; Watanabe, H.; Okada, Y.; Mizuguchi, H.;  

Mukai, Y.; Okada, N.; Nakagawa, S. Systemic administration of a PEGylated adenovirus vector 

with a cancer-specific promoter is effective in a mouse model of metastasis. Gene Ther. 2009, 

16, 1395–1404. 

148. Kaneda, Y.; Tsutsumi, Y.; Yoshioka, Y.; Kamada, H.; Yamamoto, Y.; Kodaira, H.; Tsunoda, S.; 

Okamoto, T.; Mukai, Y.; Shibata, H.; et al. The use of PVP as a polymeric carrier to improve the 

plasma half-life of drugs. Biomaterials 2004, 25, 3259–3266. 

149. Yao, X.; Yoshioka, Y.; Morishige, T.; Eto, Y.; Narimatsu, S.; Kawai, Y.; Mizuguchi, H.;  

Gao, J.Q.; Mukai, Y.; Okada, N.; et al. Tumor vascular targeted delivery of polymer-conjugated 

adenovirus vector for cancer gene therapy. Mol. Ther. 2011, 19, 1619–1625. 

150. Yao, X.L.; Yoshioka, Y.; Ruan, G.X.; Chen, Y.Z.; Mizuguchi, H.; Mukai, Y.; Okada, N.;  

Gao, J.Q.; Nakagawa, S. Optimization and internalization mechanisms of PEGylated adenovirus 

vector with targeting peptide for cancer gene therapy. Biomacromolecules 2012, 13, 2402–2409. 

151. Jiang, Z.K.; Koh, S.B.; Sato, M.; Atanasov, I.C.; Johnson, M.; Zhou, Z.H.; Deming, T.J.; Wu, L. 

Engineering polypeptide coatings to augment gene transduction and in vivo stability of 

adenoviruses. J. Contr. Release 2013, 166, 75–85. 

152. Deming, T.J. Facile synthesis of block copolypeptides of defined architecture. Nature 1997, 390, 

386–389. 

153. Curiel, D.T. Strategies to adapt adenoviral vectors for targeted delivery. Ann. N. Y. Acad. Sci. 

1999, 886, 158–171. 

154. Glasgow, J.N.; Everts, M.; Curiel, D.T. Transductional targeting of adenovirus vectors for gene 

therapy. Cancer Gene Ther. 2006, 13, 830–844. 

155. Everts, M.; Curiel, D.T. Transductional targeting of adenoviral cancer gene therapy.  

Curr. Gene Ther. 2004, 4, 337–346. 

156. Douglas, J.T.; Miller, C.R.; Kim, M.; Dmitriev, I.; Mikheeva, G.; Krasnykh, V.; Curiel, D.T. A 

system for the propagation of adenoviral vectors with genetically modified receptor specificities. 

Nat. Biotechnol. 1999, 17, 470–475. 

157. Rancourt, C.; Robertson, M.W., 3rd; Wang, M.; Goldman, C.K.; Kelly, J.F.; Alvarez, R.D.; 

Siegal, G.P.; Curiel, D.T. Endothelial cell vehicles for delivery of cytotoxic genes as a gene 

therapy approach for carcinoma of the ovary. Clin. Cancer Res. 1998, 4, 265–270. 

158. Bauerschmitz, G.J.; Barker, S.D.; Hemminki, A. Adenoviral gene therapy for cancer:  

From vectors to targeted and replication competent agents (review). Int. J. Oncol. 2002, 21, 

1161–1174. 

159. Reynolds, P.N.; Zinn, K.R.; Gavrilyuk, V.D.; Balyasnikova, I.V.; Rogers, B.E.; Buchsbaum, D.J.; 

Wang, M.H.; Miletich, D.J.; Grizzle, W.E.; Douglas, J.T.; et al. A targetable, injectable adenoviral 

vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. 2000, 2, 562–578. 

160. Griffioen, A.W.; Molema, G. Angiogenesis: Potentials for pharmacologic intervention in the 

treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol. Rev. 2000, 

52, 237–268. 



Viruses 2014, 6 1562 

 

161. Nettelbeck, D.M.; Miller, D.W.; Jerome, V.; Zuzarte, M.; Watkins, S.J.; Hawkins, R.E.;  

Muller, R.; Kontermann, R.E. Targeting of adenovirus to endothelial cells by a bispecific  

single-chain diabody directed against the adenovirus fiber knob domain and human endoglin 

(CD105). Mol. Ther. 2001, 3, 882–891. 

162. Van Beusechem, V.W.; van Rijswijk, A.L.; van Es, H.H.; Haisma, H.J.; Pinedo, H.M.;  

Gerritsen, W.R. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. 

Gene Ther. 2000, 7, 1940–1946. 

163. Haisma, H.J.; Grill, J.; Curiel, D.T.; Hoogeland, S.; van Beusechem, V.W.; Pinedo, H.M.; 

Gerritsen, W.R. Targeting of adenoviral vectors through a bispecific single-chain antibody. 

Cancer Gene Ther. 2000, 7, 901–904. 

164. van Zeeburg, H.J.; van Beusechem, V.W.; Huizenga, A.; Haisma, H.J.; Korokhov, N.; Gibbs, S.; 

Leemans, C.R.; Brakenhoff, R.H. Adenovirus retargeting to surface expressed antigens on oral 

mucosa. J. Gene Med. 2010, 12, 365–376. 

165. Hemminki, A.; Zinn, K.R.; Liu, B.; Chaudhuri, T.R.; Desmond, R.A.; Rogers, B.E.;  

Barnes, M.N.; Alvarez, R.D.; Curiel, D.T. In vivo molecular chemotherapy and noninvasive 

imaging with an infectivity-enhanced adenovirus. J. Natl. Cancer Inst. 2002, 94, 741–749. 

166. Dmitriev, I.; Kashentseva, E.; Rogers, B.E.; Krasnykh, V.; Curiel, D.T. Ectodomain of 

coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates 

adenovirus targeting to epidermal growth factor receptor-positive cells. J. Virol. 2000, 74,  

6875–6884. 

167. Kashentseva, E.A.; Seki, T.; Curiel, D.T.; Dmitriev, I.P. Adenovirus targeting to c-erbB-2 

oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. 

Cancer Res. 2002, 62, 609–616. 

168. Hangalapura, B.N.; Timares, L.; Oosterhoff, D.; Scheper, R.J.; Curiel, D.T.; de Gruijl, T.D. 

CD40-targeted adenoviral cancer vaccines: the long and winding road to the clinic. J. Gene Med. 

2012, 14, 416–427. 

169. Williams, B.J.; Bhatia, S.; Adams, L.K.; Boling, S.; Carroll, J.L.; Li, X.L.; Rogers, D.L.; 

Korokhov, N.; Kovesdi, I.; Pereboev, A.V.; et al. Dendritic cell based PSMA immunotherapy for 

prostate cancer using a CD40-targeted adenovirus vector. PLoS One 2012, 7, e46981. 

170. Echeverria, I.; Pereboev, A.; Silva, L.; Zabaleta, A.; Riezu-Boj, J.I.; Bes, M.; Cubero, M.; 

Borras-Cuesta, F.; Lasarte, J.J.; Esteban, J.I.; et al. Enhanced T cell responses against hepatitis C 

virus by ex vivo targeting of adenoviral particles to dendritic cells. Hepatology 2011, 54, 28–37. 

171. Kim, Y.S.; Kim, Y.J.; Lee, J.M.; Han, S.H.; Ko, H.J.; Park, H.J.; Pereboev, A.; Nguyen, H.H.; 

Kang, C.Y. CD40-targeted recombinant adenovirus significantly enhances the efficacy of 

antitumor vaccines based on dendritic cells and B cells. Hum. Gene Ther. 2010, 21, 1697–1706. 

172. Tillman, B.W.; Hayes, T.L.; DeGruijl, T.D.; Douglas, J.T.; Curiel, D.T. Adenoviral vectors 

targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human 

papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 2000, 60, 5456–5463. 

173. Watkins, S.J.; Mesyanzhinov, V.V.; Kurochkina, L.P.; Hawkins, R.E. The „adenobody‟  

approach to viral targeting: Specific and enhanced adenoviral gene delivery. Gene Ther. 1997, 4, 

1004–1012. 



Viruses 2014, 6 1563 

 

174. Dreier, B.; Honegger, A.; Hess, C.; Nagy-Davidescu, G.; Mittl, P.R.; Grutter, M.G.;  

Belousova, N.; Mikheeva, G.; Krasnykh, V.; Pluckthun, A. Development of a generic adenovirus 

delivery system based on structure-guided design of bispecific trimeric DARPin adapters.  

Proc. Natl. Acad. Sci. USA 2013, 110, E869–E877. 

175. Dreier, B.; Mikheeva, G.; Belousova, N.; Parizek, P.; Boczek, E.; Jelesarov, I.; Forrer, P.; 

Pluckthun, A.; Krasnykh, V. Her2-specific multivalent adapters confer designed tropism to 

adenovirus for gene targeting. J. Mol. Biol. 2011, 405, 410–426. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


