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Abstract: Human endogenous retroviruses (ERVs) represent 8% of the total human 

genome. Although the majority of these ancient proviral sequences have only retained  

non-coding long terminal repeats (LTRs), a number of “endogenized” retroviral genes 

encode functional proteins. Previous studies have underlined the implication of these  

ERV-derived proteins in the development and the function of the placenta. In this review, 

we summarize recent findings showing that two ERV genes, termed Syncytin-1 and 

Syncytin-2, which encode former envelope (Env) proteins, trigger fusion events between 

villous cytotrophoblasts and the peripheral multinucleated syncytiotrophoblast layer. Such 

fusion events maintain the stability of this latter cell structure, which plays an important 

role in fetal development by the active secretion of various soluble factors, gas exchange 

and regulation of fetomaternal immunotolerance. We also highlight new studies showing 

that these ERV proteins, in addition to their localization at the cell surface of 

cytotrophoblasts, are also incorporated on the surface of various extracellular 

microvesicles, including exosomes. Such exosome-associated proteins could be involved in 

the various functions attributed to these vesicles and could provide a form of tropism. 

Additionally, through their immunosuppressive domains, these ERV proteins could also 

contribute to fetomaternal immunotolerance in a local and more distal manner. These 

various aspects of the implication of Syncytin-1 and -2 in placental function are also 

addressed in the context of the placenta-related disorder, preeclampsia. 
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1. Introduction 

It is now well established that viral relics, named endogenous retroviruses, derived from ancestral 

infectious retroviruses, have made an important entry in vertebrates through their germ cells [1,2]. The 

similarities of their genomic structure (consisting of gag, pro, pol and env genes flanked by two  

long terminal repeats (LTRs)) with known retroviruses were thus an essential clue for their initial 

identification. Furthermore, upon infection and integration in germ cells, resulting proviral DNAs 

likely further expanded their copy number by reinfection of germ cells [1]. Through evolution, the loss of 

a functional Env protein by mutation (insertions, deletions, substitutions) and/or epigenetic modifications 

of the locus have potentially rendered these retroviral sequences unable to produce infectious virions, 

although retrotransposition might have led to the further increase in their copy number [1,3].  

Although the exact nature and function of these sequences remain largely unknown, recent studies 

on ERVs in humans (formerly termed HERVs) have provided intriguing mechanisms of action for 

some of the encoding genes. ERV sequences represent up to 8% of our genome and are largely 

composed of solo LTRs (90%), resulting from recombination events between these flanking elements. 

These ERVs are classified into different families, which have been reordered in three groups based on 

homology [4–6]. Families of ERVs are normally identified with a letter, corresponding to the specific 

amino acid anchored to the tRNA required for the initial first strand DNA synthesis in the 

retrotranscription step of retroviral replication (for example, the identification of ERVW-1 is based on 

the tryptophan (W) amino acid attached to the tRNA, which was formally needed for retrotranscription 

of its genomic RNA). Interestingly, sequence analysis of several ERV sequences also revealed that 

typical retroviral ORFs are still present in certain loci, although they have acquired several mutations 

during evolution. In fact, no ERVs, including the most recently acquired ERV-K members, have been 

shown to be replication competent [7–9]. Despite the fact that ERVs have been linked to various 

diseases, such as multiple sclerosis, cancer and diabetes [10–13], the retention of their genes during 

evolution suggests that they have provided a beneficial role to human survival. In this respect, studies 

that have highlighted a strong implication of ERV genes in the development and the function of the 

placenta represent the best example of their beneficial nature. This review will focus on some of the 

recent findings on the association between ERVs and this important organ. 

2. ERVs and Placenta Development 

A number of studies have highlighted the implication of various ERV genes in normal placenta 

development. The human placenta, an indispensable organ for intrauterine fetal growth, is composed 

of various cell types. These cells include extravillous and villous cytotrophoblasts, the latter capable of 

further differentiation into an overlaying structure, known as the syncytiotrophoblast. This cell layer is 

a multinucleated cellular barrier, which is in direct contact with maternal blood. The 

syncytiotrophoblast plays a fundamental role through the optimization of the proper exchange of 
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nutrients and hormones between the mother and the fetus and through the production of important 

soluble factors, such as human chorionic gonadotropin (hCG) and human placental lactogen  

(hPL) [14–16]. Additionally, the syncytiotrophoblast maintains fetomaternal tolerance by continuous 

interaction and monitoring of surrounding dendritic cells, macrophages, T-lymphocytes and natural 

killer cells. This constant monitoring allows a firm regulation of the immunosuppressive state that is 

absolutely required to prevent fetal rejection [17–19]. The placenta, and particularly, residing 

cytotrophoblasts, actively expresses a number of ERV envelope (Env) genes [20–24]. Based on these 

previous findings, a set of pivotal studies have demonstrated that two Env proteins, termed Syncytin-1 

and Syncytin-2, were likely inducing fusion between underlying villous cytotrophoblasts and the 

syncytiotrophoblast layer, thereby contributing to the constant renewal and stability of this highly 

dynamic structure [20,22,25–27]. Syncytin-1 and Syncytin-2 proteins are encoded by two different 

ERV loci, i.e., ERVW-1 and ERVFRD-1, which are located on chromosome 7 and 6, respectively. 

Although both proteins are expressed in the placenta, certain differences exist regarding their 

localization and expression patterns. In fact, expression of Syncytin-1 is mostly limited to villous and 

extravillous cytotrophoblasts [22,28–30]. A number of studies have thereby addressed the mechanism 

of the regulation of Syncytin-1 expression and have led to the characterization of its promoter, which is 

partly embedded in the 5’ LTR and is dependent on the transcription factor GCM1 along with others, 

such as Sp1 and GATA family members [31–35]. In addition, DNA methylation and histone H3K9 

trimethylation at the Syncytin-1 locus have been reported to be important epigenetic modifications that 

silence ERVW-1 expression [36–39]. Another report has further indicated that splicing could be an 

alternative mechanism of the regulation of Syncytin-1 expression [40]. Similarly to other retroviral 

envelope proteins, Syncytin-1 interacts with receptors to mediate fusion. Indeed, conclusive reports 

have identified two sodium-dependent neutral amino acid transporters, namely solute carrier family 1 

members 4 and 5 (SLC1A4 and SLC1A5) (otherwise known as ASCT1 and ASCT2), as  

its receptors [41–43]. 

However, a certain controversy has been underscored as to the role of Syncytin-1 in trophoblast 

fusion and its cellular distribution, which shows variation in terms of its localization in different 

trophoblast cell populations [44]. The discovery of Syncytin-2 has been an important finding, which 

has further shed light on the complexity of trophoblast fusion [20,45]. Our team has, in fact, 

demonstrated that Syncytin-2 played a more decisive role in cytotrophoblast fusion, when compared to  

Syncytin-1 [23]. Indeed, transfection experiments of siRNA in the human BeWo cell line and in 

primary cytotrophoblasts showed a more pronounced decrease in fusion events upon repression of 

Syncytin-2 expression in comparison to the conditions in which Syncytin-1 was silenced. Syncytin-2 

expression is GCM-1-dependent and is specifically expressed in villous cytotrophoblasts, although we 

have shown an increase of its expression upon differentiation of primary cytotrophoblasts in cell 

culture [23,45,46]. Syncytin-2 has been associated with a single receptor, the major facilitator 

superfamily domain containing 2a (MFSD2a), which belongs to the carbohydrate carrier family and 

has recently been associated with the transport of the essential fatty acid, docosahexaenoic  

acid [47,48]. MFSD2a is forskolin-inducible, is expressed in the syncytiotrophoblast and has been 

confirmed to be implicated in fusion [48,49]. In addition to Syncytin-1 and -2, a subsequent study by 

Blaise et al. also showed that two other ERV envelope proteins, EnvV and EnvP(b), are also expressed 

in the placenta [21]. Interestingly, the EnvP(b) protein has retained its fusogenic potential, although 
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being less specifically expressed in the placenta. However, using the trophoblast-like BeWo cell line 

model, results from our team did not support a role for this Env protein in trophoblast fusion [50]. As 

for EnvV, two loci have been identified, namely ERVV-1 and ERVV-2 [51], resulting from gene 

conversion. Recent reports suggest that one of these loci has lost its fusogenic activity in humans, but 

is fusogenic in placenta of Old World monkeys [52]. From these various results, it should also be 

underscored that in addition to the envV gene potentially associated with placentation in Old World 

monkeys, a number of env genes designated as Syncytin or Syncytin-like, have been strongly 

suggested to bear a specific role for normal placenta development in a wide variety of mammalian 

representatives, such as mouse, ruminants, sheep, dogs and cats [53–63]. This is a clear demonstration 

of convergent evolution and greatly contributes to our understanding of the importance of ERVs in 

mammalian evolution.  

Syncytin proteins are typical retroviral-like envelope proteins and have retained the general 

structure of these glycoproteins (Figure 1) [64]. Even though they originate from exogenous 

retroviruses having infected primate ancestors over several million years ago, these proteins have 

remarkably conserved their fusogenic potential. As depicted in Figure 1, both Syncytin-1 and -2 are 

synthesized as polyproteins, which are cleaved into surface (SU) and transmembrane (TM) subunits by 

the cellular furin protease [65,66]. 

 

 

Figure 1. Schematic presentation of the functional domains of Syncytin-1 and -2. Similarly 

to other retroviral glycoproteins, Syncytin-1 and Syncytin-2 are synthesized as inactive 

precursors, which are then cleaved into two functional subunits: the SU and the TM 

subunit. SU is responsible for receptor binding and TM mediates the fusion. Both proteins 

are 538 amino acids long and harbor a fusion peptide (FP), a functional immunosuppressive 

domain (ISD) and a transmembrane domain (TMD) in their TM subunit. As a membrane 

protein, the polyprotein also possesses a cleaved signal peptide (SP) at its amino end. 
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The SU component of the envelope protein is required for receptor recognition, and the receptor-

binding domain has been mapped to the NH2 end of Syncytin-1 [67]. The TM subunit anchors the 

whole envelope glycoprotein complex to the membrane through its transmembrane domain (TMD) and 

is directly responsible for membrane fusion between target cells and Syncytin-expressing cells upon 

insertion of its fusion peptide (FP) to the plasma membrane. Further studies have also revealed the 

functional resemblance of Syncytin-1 and -2 in comparison to common exogenous retroviruses, with a 

need to form trimers for proper fusion [66,68]. As an additional interesting feature of Syncytin 

proteins, again shared with a certain number of exogenous retroviruses, the presence of an 

immunosuppressive domain (ISD) has also been demonstrated in these ERV proteins [69].  

3. Syncytin-1 and Syncytin-2: Potential Mediators of Immune Tolerance 

Due to the presence of their ISD domain, early identification of both Syncytin-1 and-2 suggested 

that these proteins could be involved in the fetomaternal tolerance state prevailing during pregnancy. It 

is indeed known that exogenous retroviruses frequently induce severe immunosuppression in both 

human and animals [70]. Although the exact molecular mechanisms and interacting partners involved 

in the modulation of the immune response are not known, retroviral envelope proteins are likely 

mediators of this immune dysfunction, which depends on the presence of the immunosuppressive 

domain, as recently illustrated by Schlecht-Louf et al. with Friend murine leukemia virus (F-MLV) 

and a feline leukemia virus (FeLV) vaccine [71,72]. In vitro and in vivo studies have in fact shown that 

a synthetic retroviral 17 amino acid peptide representing the ISD is extremely immunosuppressive 

[69,73–75]. Moreover, contrary to a previous report [76], we showed that the endogenous retroviral 

envelope Syncytin-1 inhibits LPS/PHA-stimulated cytokine responses in human blood cells. This report 

suggested that Syncytin-1 is immunosuppressive and may equally be relevant to maternal 

immunotolerance [77]. More studies are needed to better appreciate the role of Syncytin-1 and -2 in the 

regulation of the immune response in the vicinity of the fetus. However, recent findings showing that 

these proteins are associated with various types of extracellular microvesicles are now helping to 

provide more adapted mechanisms of action of these proteins toward immunotolerance [77–79]. 

4. Exosomes and the Placenta 

The placenta releases extracellular microvesicles of different types, which include exosomes and 

syncytiotrophoblast microparticles [80–83]. Research on exosomes, most notably in the field of 

placenta research, has been increasing in importance over recent years and has demonstrated that these 

vesicles are involved in many different normal and pathological processes. Exosome-associated 

proteins mediate different exosomal functions, such as intercellular communication, induced cell 

signaling and miRNA-dependent modulation of gene expression. Recent findings suggest that 

incorporated ERV Env proteins are also playing an active role [77,84]. 

Exosomes are part of a growing list of cellular microvesicles, including microvesicles  

shedding from the plasma membrane and apoptotic blebs. Originally described in rat and sheep 

reticulocytes [85–88], they were first functionally associated with the disposal of unnecessary proteins. 

It is now well established that the biological function of such microvesicles is oriented towards  

cell-to-cell communication. Exosomes are released by a large range of cells, including immune  
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cells [89–91], neural cells [92,93], stem cells [94,95], placenta cells [77,84,96,97] and many cancer 

cells [98], and can be isolated from different body fluids, such as serum, urine, cerebrospinal fluid and 

amniotic fluid (reviewed in [99]). Several characteristics allow the distinction of exosomes from the 

other cellular microvesicles. Firstly, exosomes are microvesicles (40 nm–100 nm) that follow the 

endocytic pathway instead of directly budding from the plasma membrane. Secondly, they have an 

homogenous cup-shaped structure, when observed by electron microscopy, Finally, their buoyant 

density ranges between 1.13 g/mL and 1.19 g/mL on a sucrose gradient [100]. Exosomes are generated 

as intraluminal vesicles (ILVs) contained in a subtype of late endosomes called multivesicular bodies 

(MVBs). The general process leading to the formation of exosomes can be summarized in three major 

steps. Firstly, the inward budding of the membrane of late endosomes leads to the formation of ILVs 

within MVBs. Secondly, the newly generated MVBs can either fuse with lysosomes, thus leading to 

the degradation of their content, or be directed to the plasma membrane [101]. Thirdly, the MVB 

membrane fuses with the plasma membrane, thus allowing exosome secretion. Although the protein 

composition of exosomes varies according to their originating cell, proteome analyses have highlighted 

the presence of constitutive proteins that belong to late endosome/MVB compartments. Indeed, the 

tetraspanins, CD9, CD63, CD81, and the ESCRT-related proteins, Alix and TSG101, are constituents 

of nearly all exosomes and are markers used for the detection of exosomes [91,99,102]. The 

acetylcholine esterase (AChE) activity has also been associated with exosomes in several studies and is 

a useful tool to control for exosome isolation and purification [84,88,103,104].  

Exosome functions depend on their protein and RNA content and operate through direct contact 

with surface proteins of target cells or through modification of cell signaling or cellular gene 

expression upon fusion. This is particularly relevant, as exosome-associated miRNAs have the 

potential to alter the gene expression of targeted cells and thereby impact cell fate. In fact, many 

mRNA and miRNA have been isolated from different cell- or body fluid-derived exosomes, and a 

database is now available that combines all of the data currently available on the protein/RNA/lipid 

composition of exosomes (http://www.exocarta.org) [105]. More specifically, in relation to the 

placenta, a number of reports have focused on the miRNA and protein content of placenta-derived 

exosomes and have shown a very complex, yet partly placenta-selective, miRNomic profile [97]. 

Recent findings have further revealed that the placenta-specific miRNA cluster, C19MC, was a 

component of primary trophoblast-derived exosomes [106]. These latter miRNAs are likely to 

contribute to exosome function and, in fact, have recently been suggested to limit viral infection on 

recipient cells in an autophagy-dependent manner [107,108]. Exosomes originating from different 

placental cell types have also been reported to act on endothelial cell and smooth muscle cell 

migration, although the precise mechanism remains to be determined [109–111]. Despite these 

interesting findings, no clear clues as to how these exosomes are able to deliver their content to cell 

targets are currently available. Our team has recently suggested a mechanism of delivery, whereby 

ERV Env proteins incorporated at the surface of cytotrophoblast-derived exosomes bind to their 

specific receptors [84]. In fact, an association between viruses and exosomes has been previously 

described for many viral families, including ERVs [112]. In our study, we have demonstrated that 

exosomes isolated from the culture supernatant of primary villous cytotrophoblasts or from the serum 

of pregnant women harbored both Syncytin-1 and -2 (Figure 2). 

 



Viruses 2014, 6 4615 

 

 

 

Figure 2. Syncytin-1 and -2 are present at the surface of placental exosomes. Schematic 

representation of a human placental exosome harboring Syncytin proteins on its surface. 

Both incorporated Syncytin-1 and -2 are composed of SU and TM subunits. The figure also 

depicts a certain number of proteins and RNA species most commonly associated with 

placental exosomes.  

The incorporation of Syncytin-1 and -2 at the surface of placental exosomes is also in line with our 

previous findings showing the important intracellular distribution of Syncytin-1 and Syncytin-2 in 

addition to their expected plasma membrane localization in both stimulated BeWo cells and primary 

cytotrophoblasts [23]. In our report on exosomes, our results further indicated that depletion of either 

Syncytin-1 or -2 reduced the uptake of resulting exosomes by BeWo cells. These data thus suggest that 

both Syncytin-1 and -2 are involved in the uptake of placental exosomes by target cells after binding to 

their respective receptor followed by entry through the endocytic pathway. Several adhesion proteins 

and ligands, such as integrins, annexins, Claudin-1 and ICAM-1, are found at the surface of exosomes 

and most likely contribute to the binding of exosomes to the cell surface. However, the delivery of 

exosome content implies the fusion of the exosome membrane with the endocytic vesicle, and in this 

perspective, Syncytin-1 and -2 might make a crucial contribution toward this process. Thus, we are 

proposing a model by which, through incorporating Syncytin proteins, placental exosomes first contact 

specific (SCL1A4/5 and/or MFSD2a) receptors with potential co-receptor binding mediated by other 

cell surface complexes (Figure 3). Exosomes are then internalized in target cells through a  

clathrin-coated endocytic process. The exosome-associated Syncytin-1 and -2 bound to their respective 

receptors could then mediate fusion with the endosomal membrane, thereby specifically delivering 

their content to these cells. This Env protein-dependent interaction between exosomes and target cells 

could thus refer to a form of exosome tropism, which is comparable to the combination of specific 
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receptors and co-receptors that allows the infection of specific target cells by viruses. Although more 

experiments are needed to discern the exact mechanism underlying the functional role of these ERV 

Env proteins in the intracellular trafficking of internalized placental exosomes, it is clear that they 

potentially provide a selective interaction with target cells, which could include endothelial cells and 

villous/extravillous cytotrophoblasts. 

 

Figure 3. Exosome-associated Syncytin-1 and -2 allow specific entry of exosomes into 

target cells. Exosomes that harbor Syncytin-1 and -2 specifically target SCL1A4/5- and/or 

MFSD2a-expressing cells. The recognition and binding of Syncytins to their specific 

receptor, probably in association with other adhesion proteins (Steps 1 and 2), induce 

exosome endocytosis (Step 3), being potentially clathrin-mediated. Then, endosome 

maturation (from early to late endosomes) might bring a conformational change of 

Syncytins, thereby provoking fusion between exosomal and endosomal membranes (4 and 

5). The exosome content is subsequently released in the cytoplasm of target cells, leading 

to cellular alteration. 
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5. Placenta Exosomes, Syncytin and Modulation of the Immune Response 

The placental exosome can also interact with different immune cell populations and alter their 

function and activation state [82,83]. One of the early studies had demonstrated that placental 

exosomes modulated T-cell signaling and that the extent of repression, measured by CD3-and  

Jak3-reduced expression, correlated with the abundance of FasL at the surface of exosomes [113,114]. 

Other studies have also revealed that incorporated FasL and TRAIL are activated at the surface of 

placental exosomes and induce apoptosis of T-cell lines and activated peripheral blood mononuclear 

cells (PBMC) [115]. Other examples demonstrating an effect of placental exosomes on immune 

response include the reduction of the cytotoxic function of NK and CD8+ T-cells mediated by 

incorporated NKG2D ligands and the impact on monocyte recruitment, macrophage differentiation and 

cytokine production [96,116–118]. As highlighted above, we have demonstrated that Syncytin-1 and -2 

are incorporated on the surface of placental exosomes and could actively act in a local or distal 

environment on the immune response [77,84]. In fact, Holder et al. [78] have also showed that 

placental exosomes alter PBMC activation, presumably through associated Syncytin-1 [119]. Hence, in 

a similar manner to the exosome-cell interactions described above, placental exosomes could also 

interact with various immune cell types and, through Syncytin-1 and -2 ISD, be involved in the 

immunosuppressive state, leading to immunotolerance. It will be important to further understand how 

Syncytin-1 and -2 incorporated in trophoblast-derived exosomes may mediate such immunosuppression, 

i.e., whether NK and CD8+ T-cells are being targeted, as suggested for the immunosuppression 

mediated by the Friend-MuLV envelope protein [71]. In addition, a more comprehensive mechanism 

of action of ISD on immune cell activation with respect to the exact nature of the cell membrane 

protein interacting with this domain would be valuable information. 

6. Association between Downregulation of Syncytin-1 and -2 and Preeclampsia and Their Use as 

New Potential Biomarkers 

Pre-eclampsia (PE) is a pregnancy disorder associated with a defect in placentation [120,121]. PE is 

one of the leading causes of maternal and neonatal mortality and morbidity. As appropriate 

management tools and preventives therapies are needed to achieve proper clinical follow-up of 

predisposed pregnant women, major efforts are ongoing to identify biomarkers for the early diagnosis 

of PE. We and others have reported that the expression of Syncytin-1 and -2 is reduced in the placental 

tissue of PE when compared to the tissue of normal pregnant women [65,122–130]. As PE has been 

associated with abnormal placentation (i.e., through the reduced size of the syncytiotrophoblast layer) 

and with an exacerbated inflammatory response, reduced Syncytin-1 and -2 levels might be 

determinant in these PE-associated features. Furthermore, based on our recent findings that Syncytin-2 

is also reduced in serum-derived exosomes from PE patients [84], we are suggesting that  

exosome-associated Syncytin-2 levels modify their ability to communicate with neighboring or more 

distant cells, such as endothelial cells, cytotrophoblasts and various immune cell population. This 

would, in turn, potentially impact normal placental development function and could have detrimental 

effects on fetomaternal immunotolerance. As a final point, reduced Syncytin-2 levels on the surface of 

serum-derived PE exosomes from second and third trimester samples warrants further investigation to 

determine if these exosomes harvested at an earlier time point (first trimester) could be an important 
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biological material to monitor pregnant women for predisposition toward PE through associated 

Syncytin-2 protein levels. 

7. Conclusions 

ERV envelope proteins Syncytin-1 and -2 have been clearly shown to be implicated in normal 

placenta function through their fusogenic ability to drive cytotrophoblast fusion to the 

syncytiotrophoblast layer. Through their active immunosuppression domain, these proteins might also 

modulate the immune response, which otherwise would harm the fetus. Recent findings have now shed 

light on how these proteins could also act more distally from the placenta through their incorporation 

in placental exosomes. Incorporated Syncytin proteins could also affect other exosomal functions and 

be implicated in intercellular communication with other cell types. ERV Syncytin-1 and -2 are also 

importantly reduced in PE patients, and their implication at the cellular and exosomal levels could 

have an important consequence in relation to exosomal function related to induced immunosuppression 

and other placental functions. In addition, the association between Syncytin proteins and placental 

exosomes opens up the possible use of these proteins as markers of various obstetric disorders, such as  

pre-eclampsia. In conclusion, more studies are needed to mechanistically address the exact function of 

these intriguing proteins in placental function, and exciting developments in this area of placenta 

research are expected to emerge in the upcoming years. 
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