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Abstract: The NSP4 protein is a multifunctional protein that plays a role in the
morphogenesis and pathogenesis of the rotavirus. Although NSP4 is considered an
enterotoxin, the relationship between gastroenteritis severity and amino acid variations in
NSP4 of the human rotavirus remains unclear. In this study, we analyzed the sequence
diversity of NSP4 and the severity of gastroenteritis of children with moderate to severe
gastroenteritis. The rotavirus-infected children were hospitalized before the rotavirus
vaccine program in Mexico. All children had diarrhea within 1-4 days, 44 (88%) were
vomiting and 35 (70%) had fevers. The severity analysis showed that 13 (26%) cases had
mild gastroenteritis, 23 (46%) moderate gastroenteritis and 14 (28%) severe.
NSP4 phylogenetic analysis showed three clusters within the genotype E1. Sequence
analysis revealed similar mutations inside each cluster, and an uncommon variation in
residue 144 was found in five of the Mexican NSP4 sequences. Most of the amino acid
variations were located in the VP4 and VP6 binding site domains, with no relationship to
different grades of gastroenteritis. This finding indicates that severe gastroenteritis caused
by the rotavirus appears to be related to diverse viral or cellular factors instead of NSP4
activity as a unique pathogenic factor.
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1. Introduction

Rotaviruses cause gastroenteritis in almost all mammals and some birds [1]. Group A, B and C
rotaviruses are known to infect humans and animals; however, group A is responsible for
gastroenteritis in children less than five years old [2]. The common symptoms of this disease are
diarrhea, fever and vomiting [3]. Dehydration is a consequence of severe diarrhea that may cause
infant death [2,3]. Statistics reveal that rotaviruses cause approximately 453,000 child deaths per year
worldwide, with the highest mortality rates primarily in developing countries [4]. The rotavirus
pathogenesis is related to the non-structural protein 4 (NSP4), which is a known enterotoxin [5].
NSP4 induces an intracellular calcium imbalance, resulting in membrane instability and loss of water;
the same effect would be present by phospholipase C-mediated inositol 1,4,5-trisphosphate production
when NSP4 interacts with non-infected cells [2,6-8].

NSP4 is a glycosylated protein of 175 amino acids and a molecular mass of 28 kDa in its mature
form. This protein is characterized by three hydrophobic domains named H1 (residues 7-21),
H2 (29-47) and H3 (67-85) and a coiled a-helical domain (95-137) [9]. The NSP4 amino-terminal
region (1-44) is located in the lumen of the endoplasmic reticulum, whereas its carboxy-terminal
region (45-175) is in the cytoplasm and interacts with different proteins including VP6 and VP4
during rotavirus morphogenesis [10-12]. NSP4 also interacts with some cellular proteins and
extracellular matrix proteins [13-15].

On the other hand, the NSP4 sequence analysis has revealed at least 14 genotypes named E1-E14
(for Enterotoxin). The human rotavirus genotypes are E1 (Wa-like), E2 (Kun-like) and E3 (AU-1),
previously known as genotypes B, A and C, respectively [16]. Information related to rotavirus
infection and the role of NSP4 pathogenesis in humans has not been described in detail. Some reports
indicate that changes in the sequence of NSP4, VP4 and VP7 are related with asymptomatic strains
isolated from humans [17,18], but amino acids variation in NSP4 has not always been associated with
asymptomatic infections [19-21]. In this study, we analyzed NSP4 of human rotavirus strains in
Mexican children with different grades of gastroenteritis to determine the genotype, distribution and
frequency of mutations in NSP4.

2. Results and Discussion
2.1. Rotavirus Positive Samples and Gastroenteritis Severity

A total of 123 diarrheic feces collected from October 2004 to March 2005 from hospitalized
children with gastroenteritis in Monterrey, Nuevo Leon, México, were analyzed to detect rotavirus.
Of all the analyzed samples, sixty-six (53.7%) were positive for the presence of a rotavirus. This is a
high percentage, because usually rotavirus infection is associated with 25-39% of hospitalizations for
acute gastroenteritis [22]. To further analyze the gastroenteritis severity, 16 of the 66 rotavirus positive
samples were discarded due to incomplete data about the infected children or their symptoms.
The remaining 50 gastroenteritis cases were considered in this study and the signs and symptoms of
the rotavirus gastroenteritis were examined. Twenty-eight (56%) cases were male children and 22
(44%) were female children. Most of the rotavirus gastroenteritis cases (86%) were related to children
under two years old, this is in agreement with previous reports on rotavirus infection [23-25]. All the
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infected children included in this study had diarrhea within 1 to 4 days, 44 (88%) of them were
vomiting and 35 (70%) had a fever. The results of the rotavirus gastroenteritis severity showed that 13
(26%) cases had a score < 10, whereas 23 (46%) infections showed a score > 11 and 14 (28%) cases
had a score > 15. Those scores were grouped as mild, moderate and severe gastroenteritis, respectively
(Table 1). Although some studies describe breastfeeding as an important factor to avoid severe
gastroenteritis, we did not find a relationship between breastfeeding and the rotavirus gastroenteritis
severity [26—28]. This type of analysis of rotavirus regarding the prevalence and severity of the
gastroenteritis may represent a basis to compare the epidemic seasons of the rotavirus before and after
the introduction of the Rotarix® vaccine (GSK) [29]. In this aspect, some studies have shown that this
vaccine can diminish the cases of hospitalization by the rotavirus from 40 to 60% [30-32].
Additionally, studies in Latin America have shown the efficiency of the vaccine to decrease the
severity of the rotavirus gastroenteritis [33,34].

2.2. The NSP4 Genotype

NSP4 is a main factor of rotavirus pathogenesis [35,36]. Therefore, in this study we have focused
on the analysis of the NSP4 genotype and its sequence relationship with the rotavirus gastroenteritis
severity. To amplify and identify the NSP4 genotype in all the rotavirus positive samples we used a
combination of different primers that have been previously described [20,21,37]. This was a useful
strategy that identified 61 (92.4%) of the samples as NSP4 genotype E1. The predominant NSP4
genotype E1 identified in the studied area is commonly reported; some studies identified the E2
genotype as the second common genotype [38—41]. Furthermore, others reported non-common NSP4
genotypes E3, E5, E6 and E13 in human rotavirus strains in Thailand, Brazil, Bangladesh and
Kenya [42—46].

2.3. The NSP4 Sequence Analysis

According to the gastroenteritis severity analysis (Table 1), the rotavirus positive samples were
classified as mild (26%), moderate (46%) and severe (28%). Based on these results a stratified random
sampling was done to select representative samples to the NSP4 sequence analysis, this selection
included 4(31%) of 13 samples of mild cases, 7 (30%) of 23 cases of moderate and 5 (36%) of 14
severe cases. The analysis of the deduced amino acid sequences of NSP4 reported in this study showed
three clusters inside the same genotype E1 (Figurel). The NSP4 sequences MX04-29, MXO05-58,
MX05-126 reported here grouped in the cluster I; the samples MX05-48, MX05-71, MX05-88,
MX05-137, and MX05-144 were in the cluster 1l and the samples MX04-27, MX04-28, MX05-36,
MX05-51, MXO05-64, MX05-68, MX05-107 and MXO05-119 in the cluster Il (Table 3).
Previous reports have shown the presence of at least two clusters within this genotype, and in some of
them the clusters were related to the location or to the isolation date of the rotavirus strains, in this
study we did not observed such relation [41,47,48]. The NSP4 amino acids variations showed in the
cluster I (amino acids AK in position 136-137 respectively) were related with rotavirus strains reported
in Italy, China, Spain, United States of America (USA) and Russia (Accession number ACF77154,
AFU36983, ADU55685, ADO78536 and ACY01369). The sequences in the cluster Il share the same
amino acid variations in the positions 141-145 with sequences from China, Russia, Thailand and USA
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(AAOO06852, ACQ99541, AFQ20926, ADO78564) and the cluster Ill shared common amino acid
variations in aa 141,142, 144 and 145 with the strain Vanderbilt isolated in USA (AEB80046).
Further analyses on NSP4 were performed using the amino acid frequency in each specific position in
the protein. The analysis of 349 NSP4 sequences from the GenBank database showed that this protein
is highly conserved in some specific domains (Table 2). These conserved regions include the
glycosylation sites (aa 8 and 18), the hydrophobic region H1, H2 and H3 (aa 7-21, 29-47 and 67-85),
the transmembrane domain (aa 22—-44) and the coiled a-helical domain (aa 97-137) where the
frequency of the consensus amino acid in a specific position was 97.6 to 100%; however, the H3
domain showed an amino acid frequency of 88.9% for 172 and 87.4% for 176 ( Table 2).
Conversely, punctual variations in the NSP4 sequence fell in the VP4 binding site domain where the
lowest amino acid frequency was at position 141 with a valine present for 58% of the studied
sequences, and also the VP6 binding site where a serine at position 169 had a frequency
of 56% ( Table 2). Most of the amino acids variations in the NSP4 sequences reported were positioned
in the carboxyl terminal region (Table 3). However, the samples MX04-29, MX05-58 and MX05-126
showed punctual variations in conserved amino acids 111, 136 and 137 (85.7-92.8%),
respectively (Table 3). In addition, five of the NSP4 sequences reported in this study had an
uncommon amino acid change at position 144, where a methionine was replaced by a valine.
Usually methionine is present in this position in 97.9% of all the 349 NSP4 sequences analyzed
(Figure 1), and thus this amino acid variation is unique in our sequences. Moreover, we did not find
valine in this position in any other NSP4 genotype E1 sequence in the NCBI database.
The replacement of a methionine may be not significant when it is replaced by another hydrophobic
amino acid such as valine, because both amino acids can play a role in binding or recognition of
hydrophobic ligands such as lipids. However, the sulfur atom in methionine can be involved in binding
metals [49] and NSP4 presents a metal binding domain between residues 114 and 135 [50,51];
nevertheless, further analysis is required to explain the importance of the mutations in such conserved
amino acid position within NSP4.
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Table 1. Characteristics and symptoms of the children infected with the rotavirus and the analysis of the rotavirus severity score from slight to
severe according to the Ruuska score [52].

Gastroenteritis diarrhea . Vomitin
. Gastroenterit . i Sex Age* . Days with . g Days of
severity ) ) Incidence  Breastfeeding episodes* . episodes* / "
IS severity (months) diarrhea* vomiting*
(Ruuska score) M F /24 h 24hrs
<10 Mild 13 (26%) 61.5% 6 7 8 6.1 2.4 2.6 1.0
>11 Moderate 23 (46%) 82.3% 15 8 12 8.1 3.1 4.8 2.7
>15 Severe 14 (28%) 71.4% 7 7 14 10.4 4.3 9.3 3.6

* Average Data
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Table 2. Consensus NSP4 sequence and the frequency of each amino acid in a specific position from residues 1 to 175. The analysis was
obtained from 349 NSP4 sequences from the GenBank and is complemented with the description of some of the NSP4 domains.
Abbreviations: GS: Glycosylation site, H: Hydrophobic domain.

H1 (aa 7-21) Transmembrane site (22—44)

GS1 GS2

Consensus seq M D K L A D L N Y T L S \% | T L M N D T L H S | |
Frequency % 100 985 99.7 98 976 995 100 99.7 100 99.4 994 927 997 979 982 99 100 994 979 988 100 988 98.8 100 98.8

aaposition 26 27 28 29 30 3L 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
H2 (29-47)

Transmembrane domain (22—-44)
Consensus seq. Q D P G M A Y F P Y | A S \Y% L T \Y% L F T L H K A S
Frequency% 97.6 99.7 100 100 964 100 100 100 978 100 988 100 99.7 994 100 100 994 994  99.7 984 100 994 99.4 100 99.4

aa position 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

H3 ( aa 67-85)

Consensus seq. | P T M K | A L K T S K C S Y K \% | K Y C | \% T |
Frequency%  99.4 994 991 99 997 994 100 994 966 994 100 988 991 100 99.7 100 994 979 991 985 988 889 99.1 99.4 95.5

aa position 76 7 8 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

H3 (67-85) Alpha coiled Domain (95-137)

Consensus seq. | N T L L K L A G Y K E Q \Y% T T K D E | E Q Q M D
Frequency % 874 99.7 985 100 99.1 988 982 988 100 994 985 100 99.1 967 988 98 99.1 985 988 997 100 98.2 99.7 99.7 99.1

aa position 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
Alpha coiled Domain (95-137)

Consensus seq. R | \Y% K E M R R Q L E M | D K L T T R E | E Q \Y% E
Frequency % 99.7 988 99.1 99 997 994 997 100 985 99.7 934 994 997 991 99.1 100 100 988 99.1 99.7 99.7 99.7 99.7 99.4 100

aa position 126 128 129 130 131 132 133 134 135
Alpha coiled Domain (95-137)

Consensus seq. L
Frequency % 99.4 100 997 99 997 928 991 786 100 907 934 871 784 88 898 58 76 994 979 643 991 991 973 991 100

aa position 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

Consensus seq. K N | K T L D E w E S G K N P
Frequency %  98.8 99.7 94 93 100 99.7 982 991 100 95.8 7 99.7 976 99.1 100 100 99.1 100 56 99.1 994 99.7 100 98.8 100
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Table 3. Sequence analysis of the amino acid variations in the NSP4 protein from rotavirus strains reported in this study.
Amino acid variability and distribution
NSP4 Severity | Cluster H3 * TD | ACD* | E/VP4* VP4 * VP6 *
Sequence scores
76 77 85 | 94 111 132 136 137 141 142 144 145 | 161 169 172 173 174 175
MX04-29 16 | N A K
MX05-58 14 | D A K
MX05-126 16 | \Y D A K
MX05-48 8 I \% H T T N |
MX05-144 13 I \Y T T N |
MX05-137 15 I \Y T T N |
MX05-88 16 I \Y T T N |
MX05-71 0 I \Y T T N M
MX04-27 11 1] S \% \% T |
MX04-28 14 1] S \% \% T |
MX05-36 8 1] S \% \% T |
MX05-51 14 1] N S \% \% T | |
MX05-64 12 1] S \% \% T |
MX05-68 8 11 G S \% \% T |
MX05-107 14 11 S \% \% T |
MX05-119 15 11 S \Y \Y T N [
Consensus amino acids | N Y E E D T R \% | M S S S T A S M
Frequency % 86 99.7 994 99.1 894 994 928 857 562 759 994 61 76 56 100 100 99 100

* H3: hydrophobic region 3; TD: Tetramerization Domain; ACD: Alpha Coiled Coil Domain E: Enterotoxin Domain; VVP4: VP4 Binding site domain; VVP6: VVP6 binding site domain
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Figure 1. Phylogenetic analysis of the deduced amino acid NSP4 sequences reported in
this study and other NSP4 genotypes previously reported in the NCBI. The phylogenetic
tree was constructed based on the neighbor-joining method. The bootstrap consensus tree
inferred from 500 replicates is taken to represent the evolutionary history of the taxa
analyzed. The evolutionary distances were computed using the p-distance method and are
in the units of the number of amino acid differences per site. Evolutionary analyses were
conducted in MEGADS package [54]. Accession number of the sequences reported in this
study in the GenBank: MX04-28: JX458969, MX04-29: JX458970, MX04-27:JX458971,
MX05-51:JX458972, MX05-144: JX458973, MX05-58: JX458974, MX05-68: JX458975,
MX05-71:JX458976, MX05-88:JX458977, MX05-119:JX458978, MX05-107: JX458982,
MX05-126: JX458983, MX05-137: JX458984.
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3. Experimental Section
3.1. Samples Recollection and Gastroenteritis Severity Score

A total of 123 stool samples were collected from hospitalized children with gastroenteritis in
Monterrey, Nuevo Ledn, México, from October 2004 to March 2005. The inclusion criteria were the
age of the child, up to five years old, and the hospitalization for nonbacterial gastroenteritis.
Diarrhea, vomiting and fever were used as registered symptoms to calculate the gastroenteritis
severity, and formed the basis of the Ruuska score [52].

3.2. Extraction of Rotavirus RNA.

The feces samples were used to isolate, purify and detect the rotavirus RNA genome by TRI
Reagent® (Molecular Research Center, Cincinnati, OH) as suggested the by supplier. The viral RNA
was loaded onto a 10% polyacrylamide gel under native conditions, and then stained by a
silver-staining procedure. A sample was considered positive to the rotavirus when a characteristic
double-stranded RNA genome was observed in the gel [53].

3.3. NSP4 Genotype Identification and Sequence

RNA positive samples for the rotavirus were retro transcribed and amplified by PCR to isolate the
NSP4 gene using the primers Begl6-End722 or NSP41F-NSP42R [20,21]; although in several
experiments, combinations of both primer pairs were required to achieve amplification.
NSP4 genotype identification was performed by a multiplex-seminested PCR, with 10END722 or
NSP42R as the external primers and Wa, Kun or RRV as the internal primers, which corresponds to
genotypes E1, E2 and E3, respectively [37]. Samples of the amplified NSP4 gene were cloned using
the pGEM-T vector (Promega Inc, Madison, WI) according to the manufacturer’s instructions.
The plasmid with the NSP4 insert was purified by the Wizard SV Minipreps kit (Promega Inc,
Madison, WI) and sequenced by the dideoxynucleotide chain termination method, using an ABI Prism
Big Dye Terminator Cycle Sequencing Ready Reaction kit (PE Applied Biosystems,
Whashington, DC). The DNA sequence was confirmed by sequencing both DNA strands of each of the
different clones using the pUCM13 sense and antisense standard primers. The resulting sequences
were analyzed with MEGA 5.0 and compared with other sequences reported in the GenBank data base;
the phylogenetic tree was determined by the Neighbor joining method [54]. The GenBank accession
numbers of NSP4 sequences used in sequence analysis were AB361285, AB008233, AB008237,
AB213391, AB326290, AB326294, AB326963, AB361282, AF170830, AF260930, AY159640,
AY159642, AY353740, AY353800, DQ909069, DQ909070, EF033202, EF033203, EF672575,
EU679377, EU679382, U42628, UB83798, AA006852, AAT48079, AB008229 - AB008231,
AB008234-AB008236, AB008238-AB008245, AB008247-AB008257, AB008259 - AB008263,
AB022772, AB043026, AB043069-AB043078, AB196491, AB196492, AB196958, AB196959,
AB211987-AB213392, AB232699, AB269688, AB303218, AB326286-AB326289, AB326293,
AB326295, AB326297, AB326334, AB326336, AB326337, AB326347, AB326348, AB326962,
AB326966, AB326969, AB326971, AB361276, AB361281, AB361284, AB361286-AB361288,
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ABK62862, ABU49806, ACF77153, ACF77154, ACJ54826, ACI66758, ACJ66769, ACL80635,
ACL80638, ACQ99541, ACY01369, ACY01381, ACZ51671, ADA70484, ADK46705, ADK46715,
ADO78533, ADO78536, ADO78564, AEB79485, AEB79550, AEK69633, AET43468, AF161810-
AF161815, AF170831-AF170833, AF173179, AF173181-AF173208, AF173211 - AF173214,
AF174300 - AF174302, AF260928, AF260929, AF284776-AF284778, AFA69676 - AF469679,
AF506016, AF541921, AFJ68184, AFJ68397, AFK27432, AJ236757 - AJ236770, AJ236772 -
AJ236774, AJ236778 - AJ236782, AJ400634, AY159630 - AY159632, AY159634 - AY159639,
AY159641, AY159643, AY159644 - AY159647, AY353727, AY353728, AY353730 - AY353739,
AY353741 - AY353746, AY353753 - AY353765, AY353767 - AY353790, AY353792 - AY353805,
AY601540 - AY601544, AY629562, BADS84188, BAF97950, CAB36938, D88830, DQ146647,
DQ146658, DQ146669, DQ146680, DQ189233 - DQ189237, DQ189240, DQ299876, DQ339147 -
DQ339151, DQ490543, DQ492678, DQ525182 - DQ525188, EF011980, EF033204, EF059918,
EF059919, EF059924, EF159574, EU679378 - EU679380, GAU78558, Q9YJIN7, U59108, U59110.

4. Conclusions

The presence of intra-genotypic clusters and punctual amino acid variations in the NSP4 genotype
E1 may indicate that NSP4 mutates mainly via accumulation of single point mutations. Since most of
the variations in NSP4 fell in the carboxylic terminal region, especially in the VP4 binding site
segment, it is important to consider that NSP4 is involved in morphogenesis and pathogenesis
activities. Further analysis of NSP4 in the VP4 and VP6 binding site segment should be studied,
especially with respect to structural conformational changes caused by amino acid variations. NSP4 is
an important factor in rotavirus pathogenesis, and in this study an analysis examining the amino acid
variations in the sequence and the gastroenteritis severity score was performed. The results failed to
show a relationship between punctual variations in NSP4 and the severity of rotavirus gastroenteritis.
The study of the NSP4 protein and its interaction with other viral proteins may aid our understanding
of the pathogenesis of the rotavirus.
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