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Abstract: The growing global demand for seafood together with the limited capacity of the 
wild-capture sector to meet this demand has seen the aquaculture industry continue to grow 
around the world. A vast array of aquatic animal species is farmed in high density in 
freshwater, brackish and marine systems where they are exposed to new environments and 
potentially new diseases. On-farm stresses may compromise their ability to combat 
infection, and farming practices facilitate rapid transmission of disease. Viral pathogens, 
whether they have been established for decades or whether they are newly emerging as 
disease threats, are particularly challenging since there are few, if any, efficacious 
treatments, and the development of effective viral vaccines for delivery in aquatic systems 
remains elusive. Here, we review a few of the more significant viral pathogens of finfish, 
including aquabirnaviruses and infectious hematopoietic necrosis virus which have been 
known since the first half of the 20th century, and more recent viral pathogens, for example 
betanodaviruses, that have emerged as aquaculture has undergone a dramatic expansion in 
the past few decades. 
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1. Introduction 

While early studies (pre-1950s) of fish pathology indicated the presence of ‘filterable agents’, 
i.e., viruses [1], the viral etiology of these previously recognized diseases such as infectious pancreatic 
necrosis, Oregon sockeye disease, although suspected, was not proven until the use of fish cell lines for 
the isolation of piscine viruses was established [2,3]. Over the following three decades, the availability 
of fish cell lines for virus isolation provided the stimulus for the development of “modern fish 
virology”. The ability to isolate and expand fish viruses in vitro not only facilitated research on viral 
diseases but also led to virus isolation becoming the “gold standard” for the detection of viruses in the 
important aquaculture species such as carp, rainbow trout and Atlantic salmon. Even in the modern 
molecular era virus isolation remains an important tool for research and diagnosis. Thus, over the past 
decade, through the use of cell culture and molecular approaches our knowledge of the biology of fish 
viruses has grown exponentially. Coincidentally, fish farming has expanded globally with an increase 
not only in absolute production (kilotonnes/year) but also in the number of fish species being cultured 
in both freshwater and marine systems. The increase in aquaculture operations world-wide has 
provided new opportunities for the transmission of aquatic viruses and the occurrence of viral diseases 
remains a significant limiting factor for aquaculture production and for the sustainability of 
biodiversity in the natural environment. Here we provide an overview of some of the significant viral 
pathogens affecting finfish species. 

Diagnostic techniques for viral diseases of fish will not be discussed since these have become 
relatively standard and include pathological and histopathological examination, virus isolation on cell 
culture (where cell culture systems exist), molecular techniques including conventional and real-time 
polymerase chain reactions, in situ hybridization and various immunodiagnostic techniques [4]. 

2. Aquabirnavirus 

Aquabirnavirus is the largest and most diverse of the three genera within the family Birnaviridae—
non-enveloped viruses with a bi-segmented, double-stranded RNA genome. The type species, 
infectious pancreatic necrosis virus (IPNV), was the first fish virus isolated in cell culture [5] and until 
recently has remained one of the most intensely studied viruses of fish. The associated disease in 
farmed trout was recognized as early as the 1940s but was not named infectious pancreatic necrosis 
(IPN), based on histopathological findings, until the mid-1950s [6]. The virus isolated from a disease 
outbreak causing 50% mortality of rainbow trout fingerlings is the archetype IPNV strain VR-299 [1]. 
Since that time a vast range of IPNV and IPN-like viruses has been isolated from a very wide host 
range of diseased and non-diseased salmonid and non-salmonid fish species and invertebrates 
world-wide [7,8]. An example of a pathogenic marine aquabirnavirus (MABV) is yellowtail ascites 
virus (YAV), which was the first aquabirnavirus isolated from marine fish, yellowtail 
(Seriola quinqueradiata) in Japan [9]. Since then MABV have been detected in various marine 
hosts [10]. This diversity within the Aquabirnavirus genus makes classification down to the species 
level difficult. 

IPN was first recognized as an acute contagious disease of young salmonid fry in the freshwater 
phase of production that could cause up to 100% mortality. More recently, disease associated with 
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significant mortality has emerged in the post-smolt, seawater stages [11,12]. Aquatic birnaviruses that 
cause disease in salmonids (IPNV) are distinguished from other viruses that are serologically related to 
IPNV but are apparently avirulent, isolated from non-salmonid fish species and invertebrates and are 
named IPN-like or aquatic birnaviruses. 

To date, 4 serogroups, A, B, C, D [7,13,14] have been proposed with most aquabirnaviruses 
comprising 9 serotypes (A1–A9) within serogroup A. These serotypes appear to correlate with 
geographical regions rather than host species. Viruses within the other 3 serogroups are less well 
studied. Genetic analysis indicates the clustering of 7 genogroups [15,16] which tend to correlate with 
geographical and serological characteristics [17]. 

Aquabirnavirus particles are non-enveloped icosahedrons, 60 nm in diameter (Figure 1), containing 
a genome consisting of two segments (A and B) of dsRNA. Segment A encodes a polyprotein which is 
post-translationally cleaved to form three viral proteins VP2, VP3 and VP4, with VP2 epitopes being 
responsible for serotype specificity and the target for neutralizing antibodies [18]. Segment B encodes 
VP1, an RNA-dependent RNA polymerase [19]. 

Figure 1. Transmission electron micrograph of a fathead minnow cell (FHM cell line) 
infected with infectious pancreatic necrosis virus (IPNV). Note the presence of 
virus-specific tubules (short arrow) and crystalline arrays of virions (long arrow). Scale bar 
represents 200 nm. 

 
 

Infectious pancreatic necrosis in its acute form can cause up to 100% mortality in young salmonids 
and remains one of the most significant diseases of major concern to the salmonid aquaculture 
industry. Of further significance, the majority of fish that survive a disease outbreak become 
sub-clinical carriers—fish that are persistently infected with no clinical signs. These sub-clinical 
carriers are a source of horizontal transmission, shedding virus in their feces particularly under 
stressful conditions such as spawning. 
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Mortality rates associated with disease outbreaks can be quite variable (5–100%) and it is probable 
that various host, viral and environmental factors influence the severity of the outbreak [20]. While 
some host (e.g., nutritional status) and environmental factors (e.g., water quality) can be controlled 
little is known about viral virulence factors [17,21–23]. The vast diversity within this group of viruses 
and the broad host range has hindered progress in this area. 

As with all viral diseases of finfish, avoidance is an important control strategy through the use of 
good bio-security measures that have been developed over the decades and are now well-established [4]. 
However, disease outbreaks still occur and much current research is aimed at vaccine development for 
viral diseases of finfish including IPN. While the lack of a reliable challenge model has slowed 
research on immunity to IPNV infections [24–26], there are a number of vaccines available and in use [27]. 

3. Betanodavirus 

Betanodavirus [28] is one of the two genera making up the family Nodaviridae and is the etiological 
agent of viral nervous necrosis (VNN, also known as viral encephalopathy and retinopathy—VER). The 
disease was first reported in barramundi (Lates calcarifer) farmed in Australia [29,30], Japanese 
parrotfish Oplegnathus fasciatus [31] followed a year later in turbot Scopthalmus maximus [32], 
European sea bass Dicentrarchus labrax [33], redspotted grouper Epinephalus akaara [34] and striped 
jack Pseudocaranx dentex [35]. The disease is characterized by vacuolating necrosis of neural cells of 
the brain, retina and spinal cord and causes up to 100% mortality in larval and juvenile fish, and can 
cause significant losses in older fish. The pathology has been well-described [30,36] but research on 
viral characterization was delayed until the virus was eventually isolated and expanded in the SSN-1 
cell line [37] and since then our knowledge on the biology of this virus has expanded rapidly. 

The virus infects a large range of host species—at least 40 species of marine and freshwater fish 
world-wide [30]—and the known host range continues to expand as new species of fish are used for 
aquaculture [38,39]. Of further interest is the potential of wild fish to become sub-clinical carriers as 
virus-contaminated water spreads from aquaculture enterprises into the marine environment 
particularly for those countries with large mariculture industries [40].  

Viral nervous necrosis has a wide geographical distribution and includes south and east Asia, 
Oceania, Mediterranean Europe and Tunisia, UK, Norway and North America. To date, the virus has 
not been reported from South America. 

Virions of nervous necrosis virus (NNV) are small (25–30 nm in diameter), spherical and 
non-enveloped (Figure 2) with a genome consisting of two molecules (RNA1 and RNA2) of +ve sense 
ssRNA, the complete sequences of which have been determined [41]. RNA1 encodes a non-structural 
protein and RNA2 encodes the coat protein [35,42,43]. Based on the coat protein gene sequence, 
betanodaviruses have been classified into a number of genotypes; the number of genotypes has 
increased from the initially proposed four [44] to at least five genotypes [45,46], and several 
sub-genotypes [39], which appear to be restricted to geographical locations relating to water 
temperatures [47].  
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Figure 2. Transmission electron micrograph of an infected retinal cell with nervous 
necrosis virus. Virions (arrows) are located within the smooth endoplasmic reticulum. 
Scale bar represents 100 nm. 

 
 

Current research is focused on vaccination as a potential means of control. While protection has 
been demonstrated in various host species using a number of different vaccination schemes [48–53], a 
commercially available vaccine is yet to be developed. It is likely that one vaccine will not be 
sufficient for the control of this disease. There are a number of considerations to be addressed 
including the number of different genotypes/serotypes of the virus, the relatively large number of 
susceptible aquaculture species, the range of environmental factors (e.g., water temperature and 
husbandry practices) involved with aquaculture in the different geographical locations around 
the world. 

4. Infectious Salmon Anemia Virus 

The orthomyxovirus, infectious salmon anemia virus (ISAV), is the causative agent of infectious 
salmon anemia (ISA), a disease of sea-farmed Atlantic salmon (Salmo salar). The disease initially 
reported in Norway [54] had been known for some time before its viral nature was confirmed when a 
new salmon cell line (SHK-1), susceptible to infection, was developed [55]. Since that time, with the 
ability to expand the virus in vitro and obtain purified virus, research accelerated and the virus is now 
well-characterised [56]. 

Since initial reports in Norway, ISA in Atlantic salmon has been reported in Canada [57–59], where 
it was originally designated hemorrhagic kidney disease, UK [60,61], Faroe Islands [62], USA [63] 
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and Chile [64]. Virus has also been isolated (in the absence of ISA) from rainbow trout in Ireland [65] 
and Coho salmon in Chile [66]. 

The genetic and phenotypic characteristics of ISAV place it in the Orthomyxoviridae [67] and it is 
the type species of the genus Isavirus [68]. ISAV virions are pleiomorphic and enveloped with a 
diameter of 100–130 nm and 10–12 nm surface projections (Figure 3). The genome consists of eight 
negative-sense ssRNA molecules which encodes at least 10 proteins including the two main surface 
glycoproteins, the hemagglutinin-esterase (HE), responsible for receptor-binding and receptor-
destroying activities and a fusion protein [56]. 

Figure 3. Transmission electron micrograph of a cultured cell (SHK-1 cell line) infected 
with infectious salmon anemia virus (ISAV). Arrow indicates an extracellular virion. Scale 
bar represents 100 nm. 

 
 

The ISAV genome has been fully sequenced [69]. Based on sequence differences of the HE gene, 
ISAV isolates have been divided into two major groups—the European group and the North American 
group [70–72]. Within these two major groups, isolates can be typed according to variations within a 
small, highly polymorphic region (HPR) of the hemagglutinin gene [73–76]. The HPR is characterised 
by the presence of gaps rather than single nucleotide mutations and, together with the fusion protein, 
has been implicated in viral virulence [77–80]. 

While fish species other than Atlantic salmon are susceptible to infection with ISAV, only Atlantic 
salmon develop ISA disease following infection with ISAV. Of interest, a survey of wild fish 
undertaken following the 1998 outbreak in farmed salmon in Scotland [60] revealed sub-clinical 
infections of sea trout (S. trutta) from which virus was isolated (5 fish positive out of 203 tested). In 
addition, ISAV was isolated in cell culture inoculated with one of 24 tissue pools (5 fish/pool) from 
cod (Gadus morhua) sampled from a well-boat that contained ISA-diseased salmon. 
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Experimental infections have demonstrated that herring (Clupea harengus) can be infected after 
immersion in ISAV-contaminated water [81], and rainbow trout (Oncorhynchus mykiss) by 
co-habitation with ISAV-infected salmon [82]. Experimental infection by intraperitoneal injection has 
been reported for sea/brown trout (S. trutta), Arctic char (Salvelinus alpinus) and rainbow trout 
[83,84]. No mortalities were associated with infection. ISAV has also been isolated from farmed Coho 
salmon (O. kisutch) in Chile [66] even though experimental studies indicate that Pacific salmon are 
relatively resistant to the virus [85]. Thus these fish species in which natural and/or experimental 
infections have been demonstrated can be considered potential carriers/reservoirs for ISAV. 

As with many infectious diseases of fish, ISAV-infected fish may not necessarily exhibit clinical 
signs but the onset of disease may be precipitated by adverse environmental conditions or stress such 
as increased water temperature or poor water quality [86]. Stress factors (e.g., rising or falling 
temperatures) appear to play an important role in precipitating disease outbreaks in sub-clinical carrier 
fish; ISA outbreaks tend to occur during the spring (rising water temperatures) or with onset of winter 
(falling water temperatures). Cumulative mortality during an outbreak appears to be variable (from 
insignificant to >90%). Epidemiological studies have indicated that ISAV is transmitted from infected 
sources horizontally via seawater [87]. Significant risk factors include geographical proximity to 
infected marine sites or slaughterhouses/processing plants releasing unprocessed, contaminated water, 
and sharing of staff and equipment between sites. It is interesting to note that ISAV nucleic acid has 
been detected by RT-PCR in water samples taken up to 1.5 km away from infected sites. Thus prompt 
disinfection of affected and contaminated sites is likely to mitigate the risk of transmission [88]. 

Atlantic salmon survivors of an ISAV infection appear to be less susceptible to re-infection 
indicating the presence of a protective immune response [89]; in addition, convalescent antiserum has 
ISAV-neutralising activity [90]. For the development of vaccines the existence of different ISAV 
strains needs to be taken into consideration. Inactivated viral [91,92] and DNA vaccines [93] have 
been investigated and shown not to be 100% protective. Nevertheless, vaccines are available and have 
been used in North America, Faroe Islands and Norway [4]. 

5. Salmon Alphavirus 

Pancreas disease (PD) has been recognized in farmed Atlantic salmon since the 1970s but the 
infectious nature of the disease was not proven until a toga-like virus was isolated two decades later 
from an outbreak in Ireland [94] and, subsequently, from outbreaks in Norway [95] and Scotland [96]. 
Sequence analyses [97] demonstrated that this new virus was related to the alphaviruses. Thus, Salmon 
alphavirus (SAV) is a relatively new species of the genus Alphavirus within the family Togaviridae. It 
is only recently that the relationship between salmon pancreas disease virus (SPDV) and sleeping 
disease virus (SDV) has been clarified. At least six subtypes of SAV (Table 1), based on analyses of 
partial E2 and nsP3 gene nucleotide sequences [98], have been described that are the causative agents 
of significant diseases of farmed Atlantic salmon and rainbow trout in Europe [99]. SAV1 or SPDV 
causes PD in farmed Atlantic salmon in Ireland. SAV2 or SDV causes sleeping disease in England, 
France, Germany, Italy, Scotland and Spain. SAV3 or Norwegian salmon alphavirus is responsible for 
PD in Norway, exclusively [100]. SAV4 consists of Atlantic salmon strains from Ireland, SAV5 
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consists of Scottish strains only and SAV6 contains one virus only, isolated from Atlantic salmon in 
Ireland [98]. 

Typical alphaviruses are transmitted by arthropods or insects, usually mosquitoes [101]. While an 
invertebrate vector for SAV has not been identified and direct horizontal transmission has been 
demonstrated [102], it is not known whether aquatic invertebrates play a significant role in the 
epizootiology of the SAV-associated diseases. 

Table 1. Summary of Salmon Alphavirus (SAV) Subtypes. 

Virus Subtype Host Range Disease Geographical Range 
SAV1 Marine Atlantic salmon Pancreas disease Ireland 

SAV2 Freshwater rainbow trout Sleeping disease England, France, Germany, Italy, 
Scotland, Spain 

SAV3 Sea-reared Atlantic 
salmon, rainbow trout Pancreas disease Norway 

SAV4 Marine Atlantic salmon Pancreas disease Ireland, Scotland 
SAV5 Marine Atlantic salmon Pancreas disease Scotland 
SAV6 Marine Atlantic salmon Pancreas disease Ireland 
 

Alphaviruses are enveloped, spherical (ca. 60 nm diameter) viruses with a ssRNA genome (11–12 kb 
in size) the coding sequences of which are organized into two large, non-overlapping open reading 
frames [103]. The genomes of the reference strains of SPDV (F93-125) and SDV (S49P) have been 
sequenced and compared demonstrating that these strains are subtypes of the same virus [104], as 
indicated by an earlier comparative histopathology study [105]. 

Early studies suggested that pre-exposed fish developed resistance to re-infection [106]. Subsequent 
studies have shown that inactivated virus [107] and a recombinant, attenuated salmonid alphavirus 
[108] could provide good protection against PD, indicating that development of a commercial vaccine 
should be possible. 

6. Infectious Hematopoietic Necrosis Virus 

Infectious hematopoietic necrosis virus (IHNV) is one of three rhabdoviruses of finfish listed by the 
OIE (the World Organisation for Animal Health), the other two being viral hemorrhagic septicemia 
virus (VHSV) and spring viremia of carp virus (SVCV). It is the causative agent of infectious 
hematopoietic necrosis (IHN) which affects most salmonid fish species [109]. First described in the 
1950s, IHNV caused severe losses in salmonid hatcheries in the Pacific Northwest of the USA and 
since then has spread throughout North America (USA and Canada) and overseas to Asian (PR China, 
Iran, Japan, Rep of Korea, Russia) and European (Austria, Croatia, Czech Republic, France, Germany, 
Italy, Netherlands, Poland, Slovenia, Spain) countries [4] through the movement of infected eggs 
and/or fish [110]. Moreover, recent studies have demonstrated that spread through Europe in recent 
times has occurred via trade in infected fish [111]. Following introduction to a new environment with 
host fish of different genetic backgrounds representing new selection pressures, studies both in 
Europe [111] and in Japan [112] have indicated a relatively rapid evolution of IHNV. 
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The virus has the typical bullet shape of members of the Rhabdoviridae and the genome consists of 
a single molecule of negative-sense ssRNA (ca. 11 kb) encoding six proteins: a nucleoprotein, a 
phosphoprotein, a matrix protein, a glycoprotein, a non-virion protein and a polymerase [113,114]. 
IHNV is the type species of the genus Novirhabdovirus which also contains VHSV. 

Originally, the host range was thought to be restricted to species within the genus Oncorhynchus, 
until in 1984 when an outbreak in Atlantic salmon (Salmo salar) occurred for the first time [115]. 
Since then, in addition to most salmonid species [109], several non-salmonid species are known to be 
susceptible. For example, studies with white sturgeon (Acipenser transmortanus) demonstrated this 
species susceptibility to IHNV and suggested that it represented a potential virus vector [116]. Of 
further interest, Hirame rhabdovirus (HIRRV), a cold water virus isolated from flounder (Paralichthys 
olivaceus) and ayu (Plecoglossus altivelis) in Japan [117], has been shown to be closely related to 
IHNV and is also a member of the genus Novirhabdovirus [118].  

The clinical signs and histopathology have been well-documented [1]. Risk factors include fish 
species and fish age—as with many viral diseases of finfish, younger life stages are more susceptible 
and losses during acute outbreaks can reach 95% [119]. There are 4 genogoups based on nucleotide 
sequence variation within the G gene that encodes the viral glycoprotein [112,120] and these 
genogroups demonstrate differential host-specificity [121] and virulence [122]. As with most other 
infectious diseases of farmed fish, fish density, temperature, water quality and nutritional status of the 
host, and virus strain influence susceptibility to IHNV [119]. Recent studies have demonstrated that 
the basis for viral host-specificity and virulence are, in part, due to fish host entry and kinetics of viral 
replication [123]. 

Due to the severe losses caused by IHN [109] there has been a long interest in the development of a 
vaccine [124–126]. While research on inactivated [127], recombinant [128] and DNA vaccines  
[129–131] have demonstrated that protective vaccination against IHN is readily achievable, further 
research is required to address practical and regulatory issues with respect to vaccine delivery and 
safety [132]. 

7. Epizootic Hematopoietic Necrosis Virus 

Epizootic hematopoietic necrosis virus (EHNV) is a member of the genus Ranavirus in the family 
Iridoviridae; other genera in the family include Iridovirus, Chloriridovirus, Lymphocystivirus 
and Megalocytivirus. There are six viral species within the genus (Ambystoma tigrinum virus; 
Bohle iridovirus; Epizootic hematopoietic necrosis virus; European catfish virus; Frog virus 3; 
Santee-Cooper ranavirus). Species can be differentiated via RFLP profiles, virus protein profiles, 
DNA sequence analysis and host specificity, however none can be differentiated via classical 
antigen-antibody interactions (e.g., antigen capture ELISA) [4]. 

EHNV is a large icosahedral virus, approximately 175 nm (Figure 4) with a double-stranded DNA 
genome of 127 kb. It replicates in both the nucleus and cytoplasm with intracytoplasmic assembly. The 
virus obtains its outer limiting membrane via budding from the host cell plasma membrane. The inner 
capsid is surrounded by an internal lipid bilayer similar to that described for FV3 [133] and contains a 
nucleoprotein core consisting of a genome that is circularly permuted and terminally redundant.  
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Figure 4. Transmission electron micrograph of a fathead minnow cell (FHM cell line) 
infected with epizootic hematopoietic necrosis virus (EHNV). Paracrystalline arrays are 
indicated by the arrow. An enveloped virus that has budded from the host cell plasma 
membrane can also be seen. Nu = nucleus. Scale bar represents 200 nm. 

 
 

EHNV was first isolated in 1985 from fatalities of juvenile redfin perch (Perca fluviatilis) in 
Victoria, Australia. It was the first virus isolated from freshwater finfish in Australia [134,135]. Since 
then it has been isolated from farmed rainbow trout (Oncorhynchus mykiss (Walbaum)) [136]. To date 
these are the only teleost species known to be naturally infected by EHNV with redfin perch being 
highly susceptible compared to rainbow trout which, under laboratory conditions, succumb only after 
intraperitoneal infection [137]. Laboratory infections by bath immersion have shown that a number of 
other species including Macquarie perch (Macquaria australasica), silver perch (Bidyanus bidyanus), 
mosquito fish (Gambusia affinis) and mountain galaxias (Galaxias olidus) are susceptible to infection 
and associated mortality. Other host species including Murray cod (Maccullochella peeli), golden 
perch (Macquaria ambigua), Australian bass (Macquaria novemaculeata), Macquarie perch, silver 
perch and Atlantic salmon (Salmo salar) were also shown to be susceptible following intraperitoneal 
injection with varying degrees of mortality [138].  

The disease associated with EHNV is termed epizootic hematopoietic necrosis (EHN). The name 
implies the pathology of the disease includes necrosis of hematopoietic tissues. Specifically, EHNV 
causes multifocal necrosis of the spleen and renal hematopoietic tissue as well as the liver. 
Microscopically, there is a distinctive feature of infected cells—basophilic intracytoplasmic inclusion 
bodies—these structures are assembly sites of the virus where, by electron microscopy, paracrystalline 
arrays can be observed. Other lesions include hyperplasia and multifocal necrosis of gill epithelial 
cells, necrosis of atrial trabeculae and gastrointestinal epithelial cells, focal pancreatic necrosis, 
necrotic circulating hematopoietic cells and degenerate vascular endothelial cells in many organs 
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[135,136,139–141]. Pathology such as ulcerative dermatitis and swim bladder oedema and necrosis has 
only been described in EHNV-infected rainbow trout [140]. EHNV infection is not associated with 
either enlarged/giant cells or erythrocytes. 

Within Australia the geographical range is limited to south-east Australia (South Australia, New 
South Wales and Victoria). EHNV is endemic in these areas and is now only infrequently reported. 
Early work by Langdon [138] demonstrated that EHNV is extremely resistant to drying, can survive 
for months in water, can persist in frozen fish tissues and carcasses for at least a year [138,142]. To 
date, no vaccines exist for the control of EHN and so on-farm control relies on bio-security measures, 
health surveillance schemes and good husbandry practices that reduce physiological stressors. For 
infected properties, de-stocking and disinfection as per OIE protocols [4] assist in preventing 
re-infection. 

7. Viral Hemorrhagic Septicemia Virus 

Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus of the genus Novirhabdovirus 
(Family: Rhabdoviridae) and is the causative agent of viral hemorrhagic septicemia—the most serious 
disease of farmed rainbow trout in Europe [1]. Well-recognized since the early 1900s, VHS had been 
considered a disease more or less restricted to rainbow trout in Europe [1,143] until, in 1988, a VHS 
virus was isolated from Pacific salmon returning from the sea to two Washington State hatcheries. 
Subsequent genetic analyses demonstrated that this virus had not in fact been imported from Europe 
but was a distinct strain presumably emanating from reservoir fish species in the Pacific Ocean 
[144,145]. Since then, through systematic surveillance programs, the known host range for VHSV has 
expanded enormously to include species from several fish families including Salmonidae, Esocidae, 
Clupidae, Gadidae, Pleuronectidae, to name just a few [4]. It is likely that the true host range for this 
virus is so large that it will never be entirely known. 

Currently, four genotypes (I-IV) and several sub-genotypes of VHSV have been identified using 
modern molecular tools [4]. Basically, genotype I includes the European freshwater isolates as well as 
some marine isolates. Genotype II consists of marine isolates from the Baltic Sea. Genotype III 
comprises marine isolates from the North Atlantic Ocean, and genotype IV consists of the North 
American (IVb) and Japanese/Korean (IVa) isolates. A separate paper in this special edition of Viruses 
is devoted to the emergence of the North American genotype IVb which has caused recent significant 
mortality episodes in a range of fish species inhabiting the Great Lakes of North America [146]. 
Therefore, the section on VHSV in this paper is only brief, understanding that there are some excellent 
reviews available [1,143,147,148]. Current knowledge indicates that VHSV is limited to the Northern 
Hemisphere, although there have been no extensive surveys of wild fish populations in the Southern 
Hemisphere. 

It is recognized that the existence of various strains of VHSV, the large host range, and the 
differences in pathogenicity of these strains in the various host species presents difficulties for disease 
control programs. Nevertheless, it is significant that eradication of VHS post-disease outbreaks in the 
UK [149] and Norway [150] have been successful. Indeed, Denmark, through a persistent surveillance 
and control program, has been declared VHS-free, after decades with endemic VHS [151]. 
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It was recognized early on that survivors of VHS outbreaks developed resistance to re-infection 
[152] and so research on vaccines against VHS has a long history [153]. Currently, while there is no 
available commercial vaccine, use of DNA vaccines appears promising [154]. 
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