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Abstract: The suboptimal performance of rotavirus (RV) vaccines in developing countries and in
animals necessitates further research on the development of novel therapeutics and control strategies.
To initiate infection, RV interacts with cell-surface O-glycans, including histo-blood group antigens
(HBGAs). We have previously demonstrated that certain non-pathogenic bacteria express HBGA- like
substances (HBGA+) capable of binding RV particles in vitro. We hypothesized that HBGA+ bacteria
can bind RV particles in the gut lumen protecting against RV species A (RVA), B (RVB), and C (RVC)
infection in vivo. In this study, germ-free piglets were colonized with HBGA+ or HBGA- bacterial
cocktail and infected with RVA/RVB/RVC of different genotypes. Diarrhea severity, virus shedding,
immunoglobulin A (IgA) Ab titers, and cytokine levels were evaluated. Overall, colonization with
HBGA+ bacteria resulted in reduced diarrhea severity and virus shedding compared to the HBGA-

bacteria. Consistent with our hypothesis, the reduced severity of RV disease and infection was not
associated with significant alterations in immune responses. Additionally, colonization with HBGA+

bacteria conferred beneficial effects irrespective of the piglet HBGA phenotype. These findings are the
first experimental evidence that probiotic performance in vivo can be improved by including HBGA+

bacteria, providing decoy epitopes for broader/more consistent protection against diverse RVs.

Keywords: probiotics; rotavirus infection; histo-blood group antigens; glycans; diarrhea; shedding

1. Introduction

Rotavirus (RV) is the major causative agent of acute gastroenteritis and is associated
with an increased risk of secondary bacterial infections in children and young animals
globally [1]. In children younger than 5 years of age, severe RV-induced diarrhea may
lead to hospitalization and even death [2,3]. RV mainly targets the mature terminally
differentiated intestinal epithelial cells (IECs), primarily of the ileum and jejunum [4,5].
Among a variety of RV receptors, cellular glycans have been shown to play a major role
as attachment sites [5]. Specifically, histo-blood group antigens (HBGAs), including the
antigens of the ABO blood group system, have been shown to play a critical role in
determining RV species/genotype-specific binding and disease [5–8]. O and A but not B
have been described for pigs (AO system) [9,10]. This is determined by the presence of
only two alleles, A and O, in the porcine ABO gene [11,12], resulting in the existence of
four phenotypes: A, Aweak, O, and “H-A-” [10]. Based on reactivity with “anti-A” and
“anti-H” antibodies, pigs can be H−A+ (A phenotype), H+A+ (Aweak phenotype), H+A− (O
phenotype), and H−A- (H−A- phenotype) [12]. Our previous studies have demonstrated
that the piglet HBGA phenotype affects RVA/RVC replication levels in vitro (in porcine
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ileal enteroids) [6,7]. This underscores the importance of considering the AO phenotype as
an important factor influencing RV replication in vivo.

Before reaching its principal target, IECs, RV must penetrate the mucus layer, which
protects IECs against enteric pathogens, including RV [13], and provides a niche for
intestinal commensals [14]. There is growing evidence that several members of non-
pathogenic bacteria produce glycans recognized by human HBGA-specific monoclonal
antibodies [15–19]. Thus, while cellular HBGAs aid RV attachment, bacterial HBGAs might
act as decoy epitopes, preventing RV attachment to the IECs. Our recent study has demon-
strated the ability of some Gram-positive and Gram-negative non-pathogenic bacteria to
express a variety of HBGAs and bind RV of different species (RVA/RVC) and genotypes in
a genotype-specific manner [16,20], suggesting the potential role of these bacteria as decoy
receptors for RV (Table S1). However, the impact of these HBGA-expressing bacteria on RV
infection and disease in vivo remains unknown.

While probiotic supplementation is generally beneficial in terms of the overall perfor-
mance of livestock animals [21], feed conversion efficiency, and in reducing post-weaning
diarrhea in pigs [21,22], it does not always meet producer expectations mostly due to the
inconsistent outcomes [23–26]. This is likely due to variable dosages and types of probiotics
used, animal diet, and age. While most studies on the impact of probiotics demonstrate
immune-mediated decreases in viral shedding and clinical disease severity [20,27–29],
the data on the role of direct bacteria–RV interactions are limited. We hypothesized that
colonization of germ-free (GF) piglets with HBGA expressing (HBGA+) vs. non-expressing
(HBGA-) bacteria would lead to decreased replication of RV, resulting in reduced diarrhea
severity and virus shedding after virus inoculation, and that these beneficial effects will
be independent of the probiotic-induced immunomodulation. Thus, the goal of this study
was to evaluate the protective effects of HBGA+ vs. HBGA- bacteria against RVA, RVB, and
RVC infection in vivo.

2. Materials and Methods
2.1. Commensal Bacteria

We used two commensal facultative anaerobic bacteria (L. brevis, S. bovis) and four
obligate anaerobes (B. adolescentis, B. longum, B. thetaiotaomicron, and C. clostridioforme)
previously isolated from the gut of healthy pigs (kindly provided by Dr. David Francis,
South Dakota State University, Brookings, SD, USA). An additional facultative anaerobe,
E. coli G58 (kindly provided by Dr. Carlton Gyles, University of Guelph, Guelph, ON,
Canada) was also included in this study. All strains were cultured under aerobic (E. coli
G58) and anaerobic conditions (S. bovis, B. thetaiotaomicron, B. adolescentis, L. brevis, C.
clostridioforme, B. longum); the latter were generated using the GasPakTM EZ Anaerobe
Container System Sachets (BD, Franklin Lakes, NJ, USA). All bacteria were enumerated as
described previously [30]. Selected media and growth conditions for preparing bacterial
cultures were reported previously [16].

2.2. Rotaviruses

Intestinal contents of GF piglets containing rotavirus A (RVA): Wa G1P[8] [31], RV0084
G9P[13] [32], Gottfried G4P[6] [33], OSU G5P[7]; rotavirus B (RVB): Ohio [34] (non-typed);
and rotavirus C (RVC): Cowden G1P[1] [35]; RV0104 G3P[18]; RV0143 G6P[5] [32], were
used to orally inoculate piglets at a dose of 1 × 106 fluorescent focus units (FFU).

2.3. Animal Experiments

All our animal experiments were approved by the Institutional Animal Care and Use
Committee (IACUC) at Ohio State University (protocols #2009A0146, #2010A00000088).
Near-term sows (Landrace × Yorkshire × Duroc crossbred) were purchased from the Ohio
State University swine center facility/Shoup Brothers Farm LTD, Orville, OH, USA. GF
piglets were derived by cesarean section and maintained as described previously [36]. On
the 2nd day of life, rectal swabs were taken from all the piglets, and sterility was confirmed
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by culturing of rectal swabs in blood agar plates and thioglycolate broth culture. The
presence of bacteria in the intestine vs. GF conditions has been shown to play a crucial
role in nutrient absorption [37], immune system development [38], glycosylation profiles,
and maintaining intestinal epithelial cell integrity [39], thus impacting immune responses
to pathogens, including RV [40–42]. Therefore, to evaluate the anti-RV properties of the
HBGA+ bacterial cocktail, instead of using non-colonized piglets, we used the HBGA-

bacterial cocktail as a control. Five- to seven-day-old GF piglets were supplemented for
5 consecutive days with one of the commensal bacteria cocktails (1 × 105 colony-forming
units, CFU, of each strain per pig) containing (1) HBGA-expressing bacteria (HBGA+): Es-
cherichia coli G-58, Bifidobacterium adolescentis, Bacteroides thetaiotaomicron, Streptococcus bovis,
and Clostridium clostridioforme; (2) HBGA-non-expressing bacteria (HBGA-): Lactobacillus
brevis and Bifidobacterium longum. The HBGA expression profiles of the bacterial strains
used in this study were evaluated in our previous study [16]. On day 5 of supplementa-
tion, rectal swabs were collected for enumeration of fecal bacterial shedding [30] in the
colonized pigs. Additionally, the presence of each bacterial strain was confirmed using
PCR, as described previously [43] (primers [44–49] are listed in Table S2). On day 5 of
supplementation, all piglets were inoculated with individual RVA/RVB/RVC strains at
a dose of 1 × 106 FFU/piglet. After the RV challenge, rectal swabs were collected daily
to assess RV shedding and diarrhea severity, as previously described [50]. Blood samples
were collected on days 0, 3, 7, and 11 post-infection (dpi) to evaluate the IgA Ab titers
and canonical innate and pro-inflammatory cytokine responses to RV infection. An innate
immune response early-response cytokine IFN-α was evaluated at dpi 0 and dpi 3, while
TNF-α, IL-10, and IL-22 were assessed at dpi 0 and dpi 11 to capture the late phase of
the immune response [51–53]. All piglets were euthanized at dpi 11, and small and large
intestinal contents (SIC and LIC) were collected, resuspended at a 1:1 ratio in MEM with
a protease inhibitor cocktail containing 250 µg/mL of trypsin inhibitor and 50 µg/mL of
leupeptin (Sigma, Saint Louis, MO, USA), and stored at −70 ◦C to evaluate the local IgA
response. Ileum sections were collected to determine porcine HBGA phenotype.

2.4. Rotavirus Fecal Shedding

Cell culture immunofluorescence (CCIF) assay was used to quantify RVA as previously
described [54]. The final RV titers were calculated and expressed as the reciprocal of the
highest dilution showing positive fluorescing cells. To detect/quantify RVC and RVB,
real-time RT-PCR was used as previously described [55,56] (primers are listed in Table S2).

2.5. Rotavirus A-Specific Antibody (Ab) ELISA Assay

Cell-culture-adapted RVA OSU G5P[7] and Wa G1P[8] strains were used to inoculate
MA-104 cells, as described previously [57]. Infected cells were frozen/thawed 3 times,
and after centrifugation, the supernatant was used as an antigen for IgA Ab ELISA (mock-
infected MA-104 cells were used as a control). RV IgA ELISA was performed as described
previously [58]. The RVA-specific IgA Ab titers were expressed as the reciprocal of the
highest dilution that had a corrected optical density (OD)450 value (sample OD450 in the
RVA antigen-coated well minus sample OD450 in the mock antigen-coated well) greater
than the cut-off value (the mean + three standard deviations of negative control samples).

2.6. RVC ELISA

Ninety-six-well plates (Nunc Maxisorp, Thermo Scientific Pierce, Rockford, IL, USA)
were coated with lysates (normalized for total protein content) of High-Five cells (Mock) or
High-Five cells infected with the recombinant baculovirus containing the VP6 gene of RVC
G1P[1] diluted 1:50 in carbonate–bicarbonate (coating) buffer (pH 9.6). After overnight
incubation at 4 ◦C, the plates were rinsed twice with PBS containing 0.05% Tween-20 (PBST)
and blocked with PBST containing 2% non-fat dry milk, and then incubated at 37 ◦C for
1 h. After rinsing the plates 5 times with PBST, seven 3-fold dilutions of serum samples
(starting at 1:5) were added to both Mock/VP6-coated plates and incubated at 37 ◦C for
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1 h. The plates were rinsed 5 times with PBST, and the secondary antibody, horseradish
peroxidase-conjugated goat anti-porcine IgA antibody (Bio-Rad, Hercules, CA, USA), was
added and incubated at 37 ◦C for 1 h. Then, the plates were rinsed 5 times with PBST,
developed with TMB 2-Component Microwell Peroxidase Substrate Kit, and stopped with
TMB Stop Solution (both from SeraCare Life Sciences Inc. Milford, MA, USA), and the OD
values were read at 450 nm using SoftMax Pro 7.1 (Molecular Devices, LLC., San Jose, CA,
USA). The antibody titers were determined as described previously [57].

2.7. Cytokine ELISA

Porcine TNF-α, INF-α, IL-10, and IL-22 ELISA kits were used as described in the
manufacturer’s recommendations (Thermo Scientific Pierce, Rockford, IL, USA).

2.8. HBGA Immunohistochemistry

To determine porcine HBGA phenotype, formalin-fixed ileal sections [59] were stained
with HBGA-A- or -H-specific mouse monoclonal antibodies (mAb) (Biolegend, San Diego,
CA, USA) as described previously [6].

2.9. Statistical Analysis

All statistical analyses were performed using GraphPad Prism version 8 (GraphPad
Software, Inc., La Jolla, CA, USA). The mean duration of diarrhea and fecal RV shedding
post-challenge were analyzed using an unpaired t-test. Log-transformed RV-specific IgA Ab
antibodies were analyzed using two-way ANOVA followed by Duncan’s multiple range test.
The area under the curve (AUC) analysis was conducted to compare diarrhea severity and
shedding among the groups [60]. A Kruskal–Wallis rank sum test was then performed to
compare the total AUC values between the groups. Differences were considered significant
at p ≤ 0.05.

3. Results
3.1. HBGA-Expressing Bacteria (HBGA+) Cocktail Reduces Diarrhea Severity and Virus Shedding

The presence of individual strains of both HBGA+ and HBGA− bacterial cocktails
in rectal swabs was confirmed by using species-specific primers in PCR analysis. Total
aerobic bacterial counts in piglets colonized with HBGA− vs. HBGA+ bacteria did not
differ, while the numbers of anaerobic bacteria were significantly higher in the piglets
colonized with HBGA− bacteria (Figure S1, p < 0.05). Diarrhea onset after infection with
RVA (G5P[7], G4P[6]), RVC G3P[18], and RVB strains was significantly delayed in the
HBGA+ vs. HBGA− piglets (Table 1). Further, the RV-induced diarrhea lasted significantly
longer in the piglets colonized with HBGA− bacteria, in groups infected with RVA G4P[6]
and RVB strains (Table 1, p < 0.05). In addition, piglets colonized with HBGA+ bacteria
displayed a significant reduction in the mean cumulative fecal score (Table 1, p < 0.05),
in the RVB-infected piglets. A significantly lower AUC value was noted in the piglets
colonized with the HBGA+ bacterial cocktail after infection with RVA G4P[6], G9P[13],
and RVB (Table 1, p < 0.05). Further, statistically significant decreases in diarrhea severity
were noted at dpi 1 for the RVB-infected piglets (Figure 1E, p < 0.05); at dpi 6 for the
RVA G9P[13]-infected piglets (Figure 1D, p < 0.01), and at dpi 7 for the RVA G4P[6]- and
G9P[13]-infected piglets (Figure 1C,D, p < 0.05).
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Table 1. Diarrhea in piglets orally inoculated with virulent RVs.

N Mean Days to
Diarrhea Onset 1

Mean Diarrhea
Duration (Days) 2

Mean Cumulative
Fecal Score 3 AUC 4

RV Strains HBGA+ HBGA− HBGA+ HBGA− HBGA+ HBGA− HBGA+ HBGA− HBGA+ HBGA−

Wa G1P[8] 4 4 2.0 2.8 3.3 4.8 13.0 13.8 12.50 12.88

OSU G5P[7] 4 4 3.3 2.5 5.5 6.0 15.0 17.0 14.38 16.50

Gottfried G4P[6] 3 3 2.0 1.0 3.3 5.7 11.7 15.3 11.17 14.83

RV0084 G9P[13] 4 4 1.0 1.0 2.3 3.8 8.8 13.8 8.625 13.75

RVB Ohio 4 4 2.0 1.0 5.3 7.3 13.5 19.0 13.50 19.00

Cowden G1P[1] 4 4 2.7 2.8 2.7 4.5 10.3 13.5 9.833 12.75

RV0104 G3P[18] 4 4 4.5 3.8 3.8 5.3 14.3 16.3 13.75 15.83

RV0143 G6P[5] 4 8 2.3 2.1 6.0 5.3 16.3 16.0 15.75 15.50
1 Diarrhea onset is defined as the number of days between the virus inoculation and the first manifestation of
diarrhea (e.g., fecal consistency score of ≥2). 2 Duration of diarrhea is defined as the number of days that the
fecal consistency score was ≥2. Fecal diarrhea was scored as follows: 0, normal; 1, pasty; 2, semiliquid; 3, liquid.
3 Mean cumulative fecal score [(sum of fecal consistency score for 11 days postinoculation)/N], where N is the
number of pigs receiving the inoculation. Means in the same row were analyzed by unpaired t-test. 4 Area
under the curve (AUC) was calculated using the area under the curve analysis function in the Prism software.
A Kruskal–Wallis rank sum test was then performed to compare the total AUC between the groups. Significant
differences (bold) are indicated as calculated by an unpaired t-test.
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Figure 1. Diarrhea in piglets following RVA (A–D), RVB (E), and RVC (F–H) inoculation. Individual
RV strains were used to inoculate (1 × 106 FFU) piglets after 5 consecutive days of supplementation
with HBGA+ or HBGA- bacteria. Fecal consistency was scored as follows: 0, normal; 1, pasty;
2, semiliquid; 3, liquid; and diarrhea was considered as a score of ≥2. The error bars represent the
standard deviations; significant differences (* p < 0.05, ** p < 0.01) are indicated as calculated by
two-way ANOVA followed by Duncan’s multiple comparisons test.

Consistent with the clinical data, we observed a significantly delayed onset of virus
shedding in the piglets colonized with HBGA+ bacteria after infection with RVC strains
G6P[5] and G3P[18] (Table 2, p < 0.05) compared to the piglets colonized with HBGA−

bacteria. In addition, HBGA+-inoculated piglets had a significantly shortened duration
of virus shedding in piglets infected with RVA G1P[8] and RVC G6P[5] (Table 2, p < 0.05).
Significantly lower viral shedding titers in this group were observed on dpi 1 after infection
with RVA G4P[6], G9P[13], RVB (Figure 2C–E, p < 0.001), and RVC G6P[5] (Figure 2H,
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p < 0.05); on dpi 2 after infection with RVA G4P[6] (Figure 2C, p < 0.05); and at dpi 6 after
infection with RVA G5P[7] and RVC G1P[1] (Figure 2B,F, p < 0.05).

Table 2. Virus shedding in piglets orally inoculated with virulent RVs.

N Mean Days to
Shedding Onset

Mean Shedding
Duration (Days)

Avg Peak Titer
(FFU/mL) AUC 1

RV Strains HBGA+ HBGA− HBGA+ HBGA− HBGA+ HBGA− HBGA+ HBGA− HBGA+ HBGA−

Wa G1P[8] 4 4 2.0 2.0 6.3 8.5 5.58 × 104 6.14 × 104 6.04 × 104 2.50 × 105

OSU G5P[7] 4 4 2.0 2.0 6.8 6.5 7.41 × 106 9.01 × 106 2.16 × 107 2.18 × 107

Gottfried G4P[6] 3 3 2.0 1.7 4.7 5.7 6.63 × 105 4.83 × 106 6.62 × 105 4.82 × 106

RV0084 G9P[13] 4 4 1.3 1.0 7.5 8.3 8.02 × 106 9.85 × 106 8.04 × 106 9.87 × 106

RVB Ohio 4 4 1.0 1.0 7.0 7.0 7.00 × 102 1.74 × 103 2.07 × 103 2.64 × 103

Cowden G1P[1] 4 4 2.0 2.0 10.0 10.0 3.76 × 105 4.12 × 105 9.60 × 105 8.29 × 105

RV0104 G3P[18] 4 4 2.0 1.0 9.8 10.3 5.07 × 104 3.94 × 104 1.32 × 105 9.23 × 104

RV0143 G6P[5] 4 8 3.5 1.1 8.0 10.5 1.60 × 105 1.83 × 106 3.97 × 105 3.53 × 106

Means in the same row were analyzed by unpaired t-test. 1 Area under the curve (AUC) was calculated using the
area under the curve analysis function in the Prism software. A Kruskal–Wallis rank sum test was then performed
to compare the total AUC between the groups. Significant differences (bold) are indicated as calculated by an
unpaired t-test.
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Figure 2. Mean virus shedding titers in piglets following RVA (A–D), RVB (E), and RVC (F–H)
inoculation. Individual RV strains were used to colonize (1 × 106 FFU) piglets after 5 consecutive
days of supplementation with HBGA+ or HBGA− bacteria. The error bars represent the standard
deviations; significant differences (* p < 0.05, *** p < 0.001) are indicated as calculated by two-way
ANOVA followed by Duncan’s multiple comparisons test.

3.2. There Was No Evidence That the Protective Effect of HBGA+ Bacteria Was Immune-Mediated

To confirm that the observed protective effect of HBGA+ bacteria on RV infections
was not associated with bacteria-mediated immunomodulation, we evaluated the local
(intestinal content) and systemic (serum) RV-specific IgA Ab responses. Data on the mean
RVA/RVC-specific IgA Ab titers in the blood (Figure 3) and intestinal contents (Figure 4)
revealed that colonization with HBGA+ bacteria did not result in significantly higher
IgA Ab titers (compared to piglets colonized with HBGA− bacteria) after infection with
RVA/RVC strains. In addition, significantly lower IgA Ab titers in the blood of HBGA+

bacteria-colonized piglets were observed after infection with RVA G1P[8] (Figure 3A,
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p < 0.01), RVA G5P[7] (Figure 3B, p < 0.001), and RVC G1P[1] (Figure 3E, p < 0.05). This
coincided with significantly lower IgA Ab titers in the intestinal contents of the piglets
colonized with HBGA+ bacteria after infection with RVA G1P[8] and G9P[13] (Figure 4A,D,
p < 0.01).
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Figure 3. IgA Ab titers in blood samples collected on dpi 0, 3, 7, 11 following RVA (A–D), and RVC
(E–G) infection. ELISA IgA Ab titers were analyzed using two-way ANOVA followed by Duncan’s
multiple comparisons test (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 4. IgA Ab titers in piglet small/large intestinal content (SIC/LIC) samples collected at necropsy
11 days after RVA (A–D), and RVC (E–G) infection. ELISA IgG Ab titers were analyzed using two-way
ANOVA followed by Duncan’s multiple comparisons test (** p < 0.01).

We also evaluated the cytokine profiles in blood samples collected before (dpi 0) and
after (dpi 3) virus inoculation (Figures S2 and S3). In piglets colonized with HBGA- bacteria,
we observed a higher IFN-α concentration compared to those colonized with HBGA+
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bacteria after infection with RVA G5P[7] (Figure S2B, p < 0.05). The TNF-α concentrations
were higher following RVC G3P[18] infection in the piglets colonized with HBGA+ vs.
HBGA− bacteria (Figure S3G, p < 0.05). However, the rest of the data on TNF-α and
IL-22/IL-10 responses did not allow for discrimination between piglets colonized with
HBGA+ vs. HBGA- bacterial cocktails.

3.3. The Protective Effect of HBGA+ Bacteria Did Not Vary with the Piglet HBGA Phenotype

Although previous studies suggested that the host HBGA phenotype plays an im-
portant role in RV infection and evolution [61,62], there are no in vivo data for porcine
RVs [6,7]. Here, we aimed to establish whether the protective effect of the bacterial cocktail
was independent of the piglet HBGA phenotype. In our study, the data for piglets with the
Astrong (A+H−) and Aweak (A+H+) phenotypes were combined and compared with the O
phenotype (A−H+). Our analysis demonstrated that there were no significant differences in
diarrhea severity and virus shedding associated with the A+ vs. A− phenotypes (Table S3).
This indicates that the protective effect of HBGA+ bacteria on RV infection was not affected
by piglet HBGA phenotype.

4. Discussion

The tripartite RV–host–commensal bacteria interactions have been demonstrated to
have profound impacts on RV infection and disease [13,18,63]. In addition to the known
mechanisms of protection, such as immunomodulation [64], metabolic and enzymatic
support [65], and improved barrier function [66] utilized by probiotics, studies have shown
that certain non-pathogenic bacteria possess the ability to directly bind certain viruses [67],
including RVs [13,68]. For RVs, this phenomenon has been shown to be associated with the
ability of bacteria to express structures similar to what RV uses as attachment sites on IECs,
such as HBGAs [16]. However, there is no consensus opinion on the significance of these
interactions in vivo [13,69,70]. The current study aimed to evaluate whether direct binding
of RV by HBGA+ bacteria is associated with reduced or enhanced RV infection and disease.

Our current data suggest that HBGA+ bacteria improved protection against RVA, RVB,
and RVC infection compared to HBGA- bacteria [16]. Although several studies have shown
that the presence of bacterial HBGA-like structures enhanced viral replication [71,72], our
study demonstrated that the direct binding of RV virions may represent an additional
mechanism of antiviral protection conferred by probiotic/commensal bacteria. These
contrasting findings may be attributed to the use of in vitro models (cell culture) in other
studies, which lack a key component of the RV–host–bacteria interactions, the mucus, and,
thus, may not be physiologically relevant. While RV binding by bacteria can facilitate RV
particle delivery to target cells in vitro, the intestinal mucus in the gut may significantly
restrict direct contact between bacteria and IECs [73,74], thus limiting the ability of bacteria
to serve as a “Trojan horse” for viruses.

There are multiple studies on the use of probiotics against RV infection in which the
beneficial/protective effects of certain bacteria are linked to the immunomodulatory effects
of bacteria [75–78]. Our findings indicated that in most cases, the IgA Ab titers and IFN-α
concentrations following RV infection were either similar or lower in the piglets colonized
with HBGA+ bacteria. This suggests that the beneficial effect of HBGA+ bacteria was not
associated with improved immune responses. In contrast, increased IgA Ab titers and
cytokine concentrations in most cases could be associated with increased virus replication
in the piglets colonized with HBGA- bacteria.

Our study has several limitations related to the inability to control all the aspects of the
bacteria–RV interactions between the two different bacterial cocktails. First, in this study,
we utilized a different number of bacterial strains in probiotic cocktails (five in the HBGA+

and two in the HBGA−). However, our previous study demonstrated that an increased
number of probiotics in treatment does not result in superior anti-RV protection compared
to an individual probiotic treatment [20]. In our current study, both HBGA+ and HBGA-

bacteria colonized GF piglets effectively, with higher total bacterial counts observed in
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piglets colonized with HBGA- bacteria, which could be due to the individual growing
characteristics of bacterial strains. This indicates that the higher number of bacterial
strains used in the HBGA+ bacterial cocktail did not result in a higher bacterial load in the
colonized piglets. Next, while we did not have any evidence that the protective effect of
the HBGA+ probiotic cocktail was immune-mediated, there are other bacteria-mediated
effects on the host and RV infection that were not evaluated in this study. For example,
bacteria can regulate the mucus composition by stimulating the production or degradation
of mucin-type glycans, altering the ability of mucus to provide decoy epitopes for RV
attachment. Several probiotics have been shown to up- (Lactobacilli) and down-regulate
(Bifidobacteria and Streptococci) mucin secretion [79]. In addition, B. thetaiotaomicron, which
was used in this study as a component of the HBGA+ bacterial cocktail, was previously
shown to stimulate mucin secretion in vitro [80]. In addition, various commensal bacteria,
including B. thetaiotaomicron and B. longum were shown to produce sialidases, a group of
enzymes responsible for sialic acid removal and mucin degradation, thus affecting the
protective role of the intestinal mucus [81,82]. Thus, more studies are needed to dissect the
roles of individual/combined HBGA+ bacteria in RV infection.

Nevertheless, this is the first study that evaluated a probiotic cocktail broadly pro-
tective against genetically distinct RVA, RVB, and RVC strains and demonstrated the role
of the HBGA-mediated interactions in this protection in vivo. Thus, our data provide a
proof-of-concept that probiotic/commensal bacteria can act as decoy receptors reducing
the severity of RV infection and disease in vivo. Further studies are needed to validate the
feasibility of this concept in conventional animals.

5. Conclusions

In conclusion, we demonstrated the ability of the HBGA+ bacteria to reduce species
A, B, and C RV infection in vivo. This may represent a novel mechanism for protection
against RV-associated diarrhea. However, the protective effects of the HBGA+ bacteria
in conventional animals, where HBGA+ bacteria would need to compete with already
established microbiota, remain to be evaluated. In addition, other aspects of RV–host–
bacteria interactions, such as enzymatic and metabolic alterations associated with the
HBGA+ bacterial cocktail and their effects on IEC integrity, must be further investigated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v16050660/s1, Table S1: Data on the ability of individual HBGA+
and HBGA- bacterial strains to bind virulent RVs; Figure S1: Fecal probiotic bacterial shedding from
probiotic colonized piglets. An asterisk indicates a significant difference (p < 0.05) in fecal probiotic
counts among treatment groups; Figure S2: IFN-α concentrations in piglet blood samples collected
on dpi 0 and dpi 3 following RVA (A–D), RVB (E), and RVC (F–H) infection. Significant differences
(* p < 0.05) are indicated as calculated by two-way ANOVA followed by Sidak’s multiple comparisons
test; Figure S3: TNF-α concentrations in piglet blood samples collected on dpi 0 and 11 following
RVA (A–D), RVB (E), and RVC (F–H) infection. Significant differences (* p < 0.05) are indicated as
calculated by two-way ANOVA followed by Duncan’s multiple comparisons test; Table S2: Primers
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