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Abstract: Avian metapneumovirus (aMPV), classified within the Pneumoviridae family, wreaks havoc
on poultry health. It typically causes upper respiratory tract and reproductive tract infections, mainly
in turkeys, chickens, and ducks. Four subtypes of AMPV (A, B, C, D) and two unclassified subtypes
have been identified, of which subtypes A and B are widely distributed across the world. In January
2024, an outbreak of severe respiratory disease occurred on turkey and chicken farms across different
states in the US. Metagenomics sequencing of selected tissue and swab samples confirmed the
presence of aMPV subtype B. Subsequently, all samples were screened using an aMPV subtype A
and B multiplex real-time RT-PCR kit. Of the 221 farms, 124 (56%) were found to be positive for
aMPV-B. All samples were negative for subtype A. Six whole genomes were assembled, five from
turkeys and one from chickens; all six assembled genomes showed 99.29 to 99.98% nucleotide identity,
indicating a clonal expansion event for aMPV-B within the country. In addition, all six sequences
showed 97.74 to 98.58% nucleotide identity with previously reported subtype B sequences, e.g.,
VCO3/60616, Hungary/657/4, and BR/1890/E1/19. In comparison to these two reference strains,
the study sequences showed unique 49–62 amino acid changes across the genome, with maximum
changes in glycoprotein (G). One unique AA change from T (Threonine) to I (Isoleucine) at position
153 in G protein was reported only in the chicken aMPV sequence, which differentiated it from
turkey sequences. The twelve unique AA changes along with change in polarity of the G protein may
indicate that these unique changes played a role in the adaptation of this virus in the US poultry. This
is the first documented report of aMPV subtype B in US poultry, highlighting the need for further
investigations into its genotypic characterization, pathogenesis, and evolutionary dynamics.

Keywords: Avian metapneumovirus; subtype-B; respiratory disease; poultry; NGS; phylogeny

1. Introduction

Avian metapneumovirus (aMPV) is a highly contagious air-borne pathogen which
infects turkeys and chickens, causing turkey rhinotracheitis (TRT) and swollen head syn-
drome (SHS), respectively [1]. aMPV can infect Guinea fowl, pheasants, and ducks as
well [2]. The virus is mainly associated with upper respiratory infections leading to clump-
ing and loss of cilia, which predispose the birds to secondary bacterial pathogens resulting
in severe respiratory signs, high morbidity, and mortality. aMPV can infect the reproductive
system as well, resulting in a significant decrease in egg production [3].

The aMPV is a single-stranded, non-segmented, enveloped, and negative-sense RNA
virus (~13.3–14 kb in size) in the family Pneumoviridae, genus Metapneumovirus [4]. The
genome contains eight genes: 3′-Nucleoprotein (N), Phosphoprotein (P), Matrix (M), Fusion
(F), Matrix 2 (M2), Small hydrophobic (SH), attachment (G), and large polymerase (L)-5′,
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in this order, with leader and tailer sequences at both ends: 3′-le–N–P–M–F–M2–SH–G–L–
tr-5′ [5]. The L and P are non-structural proteins involved in genome replication, while
the others code for nucleocapsid, matrix, and envelope structural proteins. The viral
envelope is embedded with F (which promotes viral-to-cell membrane fusion), G (a major
antigenic determinant involved in viral attachment), and SH (a viroporin involved in
membrane permeability) proteins [6–8]. Proteins N, P, and L encapsulate the viral RNA to
form the viral ribonucleoprotein complex (RNP), while the accessory proteins M2-2 and
M2-1 are involved in viral genome replication and the 3′-leader/5′-trailer contains viral
transcriptional promoters [7,8].

The attachment (G) and fusion (F) proteins are the major structural proteins, which
exist on the envelope of the virus and are responsible for virus attachment and fusion to
the host cells [9]. The attachment protein is a highly glycosylated type II membrane protein
containing neutralizing epitopes, which are responsible for virus attachment to the cell
membrane. Thus, the genotypic characterization and phylogenetic classification of the
aMPV is mainly based on the nucleotide sequence of the G protein [10]. The F protein is
a more conserved type I membrane protein, which is initially synthesized as a precursor
(F0) protein and then cleaved into F1 and F2 subunits. The amino acid residues at the
cleavage site can be used as a motif to distinguish among various aMPV subtypes. Changes
in these amino acid residues result in failure of cleavage and subsequent decrease in virus
infectivity [11]. The L gene is a polymerase enzyme responsible for virus virulence and
viability, and is highly sensitive to mutation [12].

The aMPV was first reported in South Africa in 1970. Afterwards, it spread to several
European countries, including the UK, France, Germany, Hungary, and Italy. In the
meantime, another distinct aMPV, later identified as subtype B, was reported in several
countries, causing serious economic losses in both turkeys and chicken [2]. In the U.S.,
the aMPV outbreak was not detected until 1996. The first case of aMPV was reported
from commercial turkey farms in Colorado and Minnesota. Based on genetic diversity,
this aMPV was named as subtype C [13]. Subsequently, it was detected in several turkey
farms in different states as well as in wild birds [14]. Additionally, the C subtype was
sporadically reported in pheasants and ducks in Korea, Italy, France, and China [15] and a
one-time detection in Chinese commercial chickens [16]. Based on a retrospective study, a
strain detected in 1985 from commercial turkeys in France was named as subtype D due
to high genetic divergence from subtypes A and B [17]. Recently, two new subtypes have
been discovered in North America, one in the black back gull [18] and the other in Monk
parakeet chicks [19].

Subtypes A and B are considered a threat for the poultry industry because of their
highly contagious nature and broad geographical distribution all over the world. The
epidemiological studies performed in Europe have consistently reported the absence of
subtype A, which was clearly surpassed by subtype B [2,20–22]. A recent phylodynamic
study [2] reported that subtype B was able to spread rapidly in Western European countries,
followed by Eastern countries. Whole genome sequences (WGS) of subtype B have been
reported from different countries using advanced next generation sequencing (NGS) [8].
A recent study from South Korea reported six whole genomes of subtype B from chicken
samples collected from live bird markets during 2019–2022. Kariithi et al. [8] reported whole
genome sequence analysis of subtype B vaccine strains BR/1890/E1/19 (PL21, Nemovac;
Boehringer Ingelheim Animal Health, Brazil) and BR/1891/E2/19 (1062; Hipraviar, France)
along with that of the pathogenic field strain VCO3/60616. Goraichuk et al. [23] reported
the whole genome sequence of the subtype B strain Hungary/657/4, which was isolated
from a turkey in Hungary in 1989.

The present study reports further geographical expansion of subtype B with first-time
detection in US poultry. Molecular detection and characterization based on whole genome
sequencing is the scope of this study.
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2. Materials and Methods
2.1. Clinical Cases

In January 2024, respiratory disease outbreaks were reported in chicken and turkey
farms mainly in the eastern states, e.g., North Carolina and Virginia. To investigate the cause
of this outbreak, necropsy of affected birds was performed in the field and swabs (nasal,
tracheal and choanal, and cloacal swabs), trachea and nasal cleft/turbinate, and additional
oviducts from breeders were submitted to the South Dakota State University Animal
Disease Research and Diagnostic Laboratory (SDSU-ADRDL). Samples were received from
221 affected farms across 10 states; 197 were from turkey farms and 24 from chicken farms.
Five to ten tissue samples or two pools of swab samples (11 swabs in each pool) in BHI
were submitted from each flock. All samples were maintained at 4 ◦C during shipment to
the laboratory and underwent initial processing steps, including pooling, aliquoting, and
storage at −80 ◦C until further analysis.

2.2. Metagenomic Sequencing

The initial submissions (n = 39) from turkey and chicken farms were processed for
next generation sequencing (NGS) to obtain a clear picture of the pathogens associated
with the outbreak. The tissue samples were homogenized in a Stomacher by adding
1:10 phosphate buffer saline (PBS). The homogenized tissue samples and swab samples
were centrifuged at 4 ◦C for 15 min at 3200× g. The supernatants were collected and
processed for viral RNA extraction. The samples selected for NGS were further clarified by
centrifugation at 6000× g for 5 min. The supernatants were incubated at 37 ◦C for 90 min
with nuclease cocktail to degrade the unprotected DNA and RNA. The RNA was extracted
using a QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) without Carrier RNA in
the lysis buffer AVL. The extracted RNA samples were processed for avian-specific host
ribosomal RNA depletion [24]. The cDNA synthesis was performed using SuperScript III
First Strand Synthesis System (Invitrogen, Carlsbad, CA, USA) with random hexamers
FR26RV-N followed by double-stranded DNA amplification with Sequenase Version 2.0
DNA Polymerase (Applied Biosystems, Vilnius, Lithuania). PCR amplification of dsDNA
was performed using TaKaRa rTaq with primers FR20RV [25]. The amplified dsDNA was
purified, quantified, and used for DNA library preparation using Illumina DNA Prep
kit (Illumina, San Diego, CA, USA). The libraries were loaded on Illumina MiSeq for
300 cycles sequencing.

2.3. Realtime RT-PCR

The extracted RNA from all samples was screened using a RealPCR AMPV A/B
Multiplex RNA Mix kit (IDEXX, Montpellier, France) for detection of the RNA of AMPV/A
and B (IDEXX-99-56487). The primers and probes in this RNA mix are designed for the
identification of and differentiation between AMPV/A and B. TaqMan™ Fast Virus 1-
Step Master Mix (Applied Biosystems-4444434, Vilnius, Lithuania), standardized at a total
reaction volume of 20 µL, was used to optimize real-time RT-PCR. Each reaction contained
5 µL extracted RNA, 5 µL master mix, 5 µL primer and probe kit, and 5 µL RNase-free water.
A total of 40 cycles were conducted in a 7500 fast Thermocycling (Applied Biosystems)
under the following conditions: 5 min reverse transcription at 50 ◦C followed by an initial
denaturation step at 95 ◦C for 20 s and 40 cycles of final denaturation at 95 ◦C for 3 s
followed by an annealing step at 60 ◦C for 30 s. Selected chicken and turkey samples of
different Ct values and from different states were submitted to the National Veterinary
Services Laboratories (NVSL), Ames, IA for further confirmation.

2.4. Sequence Assembly and Annotations

The raw reads were processed with Kraken2 v2.0.8 [26] for k-mer based taxonomic
classification of raw reads. To ensure data quality, reads were subsequently analyzed with
FASTQC. Subsequently, low-complexity sequences, short reads (<50 bp, specify length),
and adapter contamination were removed using Trimmomatic [27]. The final cleaned
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reads were aligned to the reference genomes of both turkey and chicken downloaded from
(https://ensembl.org accessed on 10 January 2024) using STAR aligner [28]. All these steps
were performed simultaneously with pySeqRNA [29]. The unmapped reads, potentially
representing non-avian or viral sequences, were extracted from BAM files using SAM-
tools [30]. De novo assembly of these unmapped reads was performed using MegaHIT [31]
with the parameters “-no-mercy” and k-mer sizes ranging from 21 to 141, with the aim
of maximizing the assembly of diverse viral sequences. The resulting contigs were then
subjected to two rounds of annotation for functional and taxonomic insights. Kraken2
was utilized again for rapid k-mer based taxonomic classification, providing preliminary
identification of potential viral sequences within the assembled contigs. Subsequently,
National Center for Biotechnology Information (NCBI) BLAST [32] was employed for more
in-depth annotation, allowing for specific gene identification and comparison with known
viral references. Further, the unmapped reads were mapped on the identified reference
genome using BWA [33]. The resulting alignments, stored in BAM files, were subsequently
analyzed with Reditools2 [34] to identify single nucleotide variations (SNVs) within the
mapped reads, including both substitutions and indels.

2.5. Phylogenetic Analysis

Phylogenetic analysis of assembled aMPV genomes was performed with aMPV se-
quences available in GenBank. Multiple sequence alignment was performed using Mus-
cle [35] and to quantify the degree of sequence similarity between the aMPV strain and
other aMPV lineages, a percent identity matrix was generated using a custom Python script.
The maximum-likelihood tree was generated using PhyML with the JC69 substitution
model [36] and 100 bootstraps. Finally, the tree was plotted using a custom Python script.

3. Results
3.1. Clinical Cases

Affected turkeys showed nasal discharge, frothy eyes, and conjunctivitis followed in
later stages by mucopurulent turbid nasal discharge, plugged nostrils, swollen infraorbital
sinuses, rhinitis with a snick, sinusitis (white caseous mucous in the sinuses), large amounts
of mucus in the tracheas, pericarditis, and air sacculitis (Figure 1A). Typical signs in
chickens were decreased feed intake and huddling at about 5 weeks of age followed by
the appearance of upper respiratory noise (snick, cough). The eyes of affected chickens
became squinty and reddened, and showed noticeable swelling around the eyes (Figure 1B).
Mortality gradually increased mainly due to secondary bacterial infection with Escherichia
coli and Ornithobacterium rhinotracheale (ORT). Necropsy showed extensive thoracic and
abdominal air sacculitis, pericarditis, perihepatitis, and generalized polyserositis (personal
communication with field veterinarians). Affected turkeys, mainly 6–10 weeks of age,
experienced 30% to 50% mortality. One of the first cases from North Carolina lost 80% of
the birds in a barn. Chickens were mainly affected at about five weeks of age (personal
communication with field veterinarians). Breeder flocks experienced a significant drop in
egg production with and without respiratory signs.

3.2. Metagenomic Sequencing

The metagenomic sequence data analysis confirmed the presence of aMPV. The aMPV
subtype B whole genome was assembled in six samples with and without other viruses
(such as paramyxovirus and adenovirus) and bacteria (such as E. coli and ORT). This
information was helpful in implementing commercially available real-time RT-PCR for
screening of outbreak samples.

3.3. De Novo Genome Assembly and Annotation

High-throughput paired-end sequencing was conducted on the isolated RNA using
the Illumina MiSeq platform, generating approximately 174 million reads (detailed read
distribution available in Supplementary File S1). This sequencing effort resulted in the

https://ensembl.org
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assembly of six complete aMPV genomes, with five originating from turkey samples
(ADRDL-1-5) and one from a chicken (ADRDL-6) sample. Genome sequences [13,508
nucleotides (NT) long] were assembled with coverage ranging from 384.25X to 3552.28X,
indicating high-quality sequencing depth confidence in the assembled sequences. The
full-length genome sequences were deposited in GenBank (accession numbers PP273456-
PP273461).
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3.4. Realtime RT-PCR

Samples from 221 farms in 10 states were tested by aMPV RT-PCR. A total of 197 turkey
farms were tested from the following states: Virginia (74), North Carolina (97), Illinois
(1), Iowa (2), Minnesota (7), Missouri (3), Pennsylvania (10), Indiana (1), and Wisconsin
(2). Additionally, 24 chicken farms were tested, originating from North Carolina (23) and
South Carolina (1). A total of 100 (50.76%) turkey farms were positive for subtype B, with
Ct values ranging from 14.78 to 35. All 24 (100%) chicken farms tested positive for aMPV
subtype B, with Ct values ranging from 17.61 to 34.76. Samples tested positive from three
states (NC, PA, and VA). The geographical distribution of positive and negative turkey
samples across farms is visually represented in Figure 2. All samples were negative for
subtype A by our multiplex PCR.

Most turkey samples tested positive at 6 to 10 weeks, while chicken samples were
positive at about 5 weeks of age. Positive samples were found in breeder farms as well
(both turkey and chicken). Choanal cleft/choanal swab was the most common sample type
collected from infected farms, representing about 88% of the total number of positive aMPV
subtype B samples. The samples submitted to NVSL were confirmed positive for subtype
B by aMPV subtype specific real-time RT-PCR and sequencing.

3.5. Phylogenetic Analysis

Phylogenetic analysis of the assembled genomes was performed using previously
published sequences of all aMPV subtypes from GenBank (Table 1). The phylogenetic
analysis based on WGS, G, and F sequences clustered all six sequences with subtype B
sequences of field strains and vaccine strains reported from Europe and South America
followed by subtype B sequences from Korea and China (Figures 3–5). All six sequences
clustered with 99.29 to 99.98% nucleotide identity, indicating that a single strain is circulat-
ing in both chicken and turkey populations in US. All six sequences showed 97.74 to 98.58%
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nucleotide identity with previously reported subtype B sequences, mainly VCO3/60616,
Hungary/657/4, and BR/1890/E1/19. All six sequences showed significantly lower iden-
tities with aMPV/C (54%) and human metapneumovirus (hMPV, 54%). aMPV/A and D
showed moderate identities (around 67%).
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Table 1. Representative sequences of aMPV subtypes used in phylogenetic analysis.

Accession Number Subtype Country Species ID

ON854014.1 A Mexico Chicken aMPV/ck/MEX/3155/22

NC_039231.1 A UK Chicken LAH A

MF093139.1 A Brazil Chicken chicken/Brazil-SP/669/2003

MN729604.1 B Hungry Turkey Hungary/657/4

AB548428.1 B France Turkey VCO3/60616

OP572408.1 B Brazil vaccine aMPV-B/BR/1890/E1/19

OM249787.1 B Korea Chicken chicken/Korea/21004-PLQ7/2021

MH745147.1 B China Chicken LN16

AY590688.1 C USA Turkey Colorado

FJ977568.1 C USA Turkey MN/turkey/2a/97

HG934338.1 C France Muscovy duck 1999/99178/

OM179883.1 C Netherland Mallard Duck NL/1/2019

OR365551.1 C China Jinding duck 2022/HL1

KY474530.1 HMPV USA Human hMPV/USA/AR002/2016

HG934339.1 D France Turkey Turkey/1985/Fr85.1
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The highly variable attachment (G) protein showed maximum divergence (93–97% NT
and 93–95% AA identities) with previously reported subtype B sequences. The G protein
was highly divergent from aMPV/A (52% NT and 32% AA identities), subtype D (39% NT
and 25% AA identities), and subtype C (25% NT and 15% AA identities). Interestingly, the
fusion protein analysis revealed an even closer relationship with aMPV/Bs, showcasing a
remarkable 99% identity with subtype B as compared to only 67% with aMPV/Cs (Table 2).

3.6. Single Nucleotide Variation (SNV) in Newly Detected aMPV/Bs and Other Subtype B Strains

Comparative analysis of the assembled aMPV subtype B genomes revealed intriguing
differences compared to the reference strains VCO3/60616 and BR/1890/E1/19 (PL21).
Mapping the raw reads identified 189–207 SNVs with VCO3/60616 and 206–220 SNVs
with BR/1890/E1/19, with over 20% exceeding the 25% read frequency threshold. Notably,
23–30% of these SNVs were missense variants, potentially altering amino acid sequences.
Interestingly, most missense mutations (21–24) clustered within the attachment G protein
gene across both reference strains (Figure 6). This translates to a potential change in 3–4%
of G protein amino acid residues, raising questions about potential functional implications.
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One unique AA change from T (Threonine) to I (Isoleucine) at 153 was reported only
in chicken ADRDL-6 sequence. Hence, there was a change in polarity from neutral to
hydrophobic aliphatic AA in the ADRDL-6 sequence. At position 322, there was a change
from I to T in chicken the ADRDL-6 sequence, which was different from all five aMPV
subtype B sequences from turkey samples (Figure 6). While this T AA is present in all
reference sequences, I was detected in ADRDL-1–5 sequences from turkey samples; this
AA change at the 322 position confirms the change in polarity in the ADRDL-1–5 sequences
from turkey samples (Figure 6). There were twelve unique AA changes observed in G
protein of ADRDL-1–6 subtype B sequences, with change in polarity at some positions, such
as a change from acidic glutamic acid (E) to basic lysine (K) at position 172, strongly basic
arginine (R) to neutral serine (S) at position 256, and neutral asparagine (N) to acidic aspartic
acid (D) at position 346 (Figure 6). The missense mutations were detected in different
proteins; details of these mutations are presented in Supplementary Files S2 and S3.
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Table 2. Nucleotide and amino acid identity among the American subtype B and the other subtypes
A, B, C, and D based on whole genome sequence (nucleotides only) and on G attachment and F
fusion proteins.

WGS
G Protein F Protein

Nucleotide Amino Acids Nucleotide Amino Acids

aMPV/B 97.74 to 98.58% 93–97% 93–95% 99% 99%

aMPV/A 65–68% 52% 32% 74% 74%

aMPV/C 52–55% 25% 12–15% 67% 67%

hMPV 54% 20% 5% 64% 64%

aMPV/D 65% 39% 25% 72% 72%
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4. Discussion

This study is the first documented report of aMPV subtype B infection in US poultry.
aMPV infection primarily manifests as a respiratory syndrome localized in the upper respi-
ratory tract of birds, mainly turkeys and chicken. However, co-infection with opportunistic
pathogens can exacerbate disease severity by exploiting immune suppression induced by
aMPV. While aMPV infection may cause 100% morbidity, mortality varies significantly,
ranging from 0 to 30%. In breeders and laying birds, aMPV infection can extend to the re-
productive organs, resulting in significant economic losses due to decreased egg production
and quality [1].

Six aMPV subtype B whole genomes were assembled from turkey (n = 5) and chicken
(n = 1) samples from Virginia, and North Carolina. This finding was initially not antic-
ipated, considering that only aMPV subtype C has previously been reported in the US
turkey population [14]. Detection and characterization of emerging pathogens such as
aMPVs can be performed rapidly using advanced NGS technologies, which can identify
divergent strains that are not detected by conventional PCR and enable immediate outbreak
response [8,18,19,37]. As a result of the early detection and confirmation of aMPV subtype
B in this study, molecular and serological testing was implemented very quickly for further
testing of new samples.

Of the 221 farms, 124 were positive for aMPV-B, with Ct values ranging from 17 to
35. This indicates rapid spread of this virus in a relatively short amount of time. Most
of the infected birds from commercial turkey farms were less than 10 weeks of age, with
a high percentage of positive results in the 6–10 weeks age group. This finding is in
agreement with previous studies which have reported that while aMPV subtype B infects
both turkey and chicken with up to 100% morbidity in all ages, birds in the age group from
4 to 9 weeks are the most susceptible to infection [18,19]. Moreover, although some positive
aMPV/B PCR results were observed in tracheas, tracheal swabs, cloacal and tracheal
swabs, oropharyngeal swabs, and oviducts, most of the positive results were from choanal
cleft/choanal swabs. It has been reported that the upper respiratory tracts of both turkey
and chickens are the predilection sites for aMPV replication. Therefore, the virus can be
detected in the nasal discharge, choanal swabs, and scraping or swabbing of the turbinate
and choanal clefts, but within the first 5 to 6 days from the onset of infection [38].

Previously, aMPV subtype C was the only documented subtype circulating in the US,
primarily confined to sporadic outbreaks on specific commercial turkey farms within a
limited geographical area of Upper Midwest, including Minnesota, Wisconsin, Iowa, and
Colorado. Additionally, the reported spread and severity of infection were low, particularly
in breeder flocks [39]. Consequently, the economic impact of aMPV/C in the US was
considered minimal, and control measures primarily focused on implementing robust
biosecurity practices, with limited vaccine use in breeder flocks. In contrast to aMPV/C,
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which historically exhibited limited geographic distribution, aMPV/B has demonstrated a
significant increase in prevalence and broader geographic spread across Europe, Asia, the
Middle East, and South America. This geographical expansion has resulted in substantial
economic losses to both turkey and chicken farms. However, the factors driving this rapid
and widespread emergence of aMPV/B remain unclear. While epidemiological data are
currently insufficient to fully explain this phenomenon, ongoing research to elucidate the
potential mechanisms and contributing factors is important [10].

aMPV subtype B was detected in both chicken and turkeys in the eastern United
States, mainly in NC, PA, and VA, which is a different geographical area from the Upper
Midwest where aMPV subtype C has been reported. These outbreaks were reported mainly
from densely populated areas with both chicken and turkey farms. These states are on the
Atlantic flyway, which may indicate the involvement of migratory birds in the introduction
of subtype B into US poultry. However, there is no documented record of subtype B being
detected in wild birds. A molecular epidemiology study from Italy reported that all wild
bird samples were negative for subtypes A and B [40].

Remarkably, a high proportion of positive samples with low Ct values were observed
in the eastern states, where both turkey and chicken farms are in the same proximity. On
the other hand, most of negative samples or very high Ct suspected samples originated
from farms in upper Midwestern states such as WI, MO, MN, IA, and IL where there
is no close coexistence of turkey and chicken farms. This finding is in agreement with
Tucciarone et al. [20], who stated that chickens have a significant role in the maintenance of
aMPV/B infection by increasing virus circulation and diffusion without any evidence of
host specificity between turkey and chicken. However, further challenge studies should be
conducted to confirm the role of chickens in maintaining and spreading aMPV/B.

The 99.29 to 99.98% nucleotide identity in the study sequences indicates clonal expan-
sion of a single strain. However, one unique AA change from T (Threonine) to I (Isoleucine)
at 153 was reported only in the chicken aMPV sequence, which differentiated it from the
aMPV subtype B sequences from turkey samples. The significance of this AA change is
not known currently. Based on WGS analysis, the ADRDL 1–6 sequences reported in this
study were 97.74 to 98.58% identical with previously reported subtype B sequences. This is
interesting for the first introduction of this subtype B in US poultry with ~2% difference in
the genome from previously reported sequences. However, based on G protein, which is
the major antigenic protein, study sequences showed only 95% identity with previously
reported sequences. The twelve unique AA changes with change in polarity in G protein of
the study sequences may highlight that these unique changes played a role in the adap-
tation of this virus in US poultry. These data will be helpful in the development of new
vaccines against these strains, as they are genetically different from currently available
commercial vaccines.

There are contradictory reports on the evolution of aMPV, with some studies reporting
that aMPV is a relatively slow-evolving virus when compared to other avian RNA viruses
and others estimating that its rate of viral evolution is within the normal range [41–43].
However, viral evolution is based on both the pressure exerted by vaccine programs and
on the type of host and environment; therefore multiple strains of the same subtype can
phenotypically circulate in different portions of the world [5]. The genetic diversity in the
study sequences highlights the urgent need to carry out more whole genome sequencing
of this virus in order to better understand the variants circulating in the field as well as to
understand the evolution of this virus over time.

The observed high degree of sequence identity (>99%) among the six newly detected
aMPV strains, including one from a chicken farm, aligns with reports of aMPV/B infections
in Europe, where the same strain has been isolated from both turkey and chicken farms.
This suggests a lack of strict host specificity for the identified aMPV/B strain [10,20].
However, it is important to acknowledge that the current analysis is based on a limited
number of sequences (n = 6). Further investigation with a broader set of samples from
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diverse geographical and host origins is necessary to definitively assess the host range and
potential host-specific adaptations of this aMPV/B strain.

Franzo et al. [2] carried out phylodynamic analysis of subtype B around Europe and
reported a high evolutionary rate of this virus, leading to the establishment of genetically
and phenotypically different clusters among eastern and western countries. Hence, these
clusters could affect the efficacy of natural or vaccine-induced immunity, and should be
accounted for when planning control measure implementation. In addition, it is important
to continue whole genome sequencing of positive samples from chicken and turkey at
regular intervals to keep track of virus evolution in US poultry. Franzo et al. [2] reported
significant strain exchange among turkey, guinea fowl, and chicken without any evidence
of differential selective pressure or specific amino-acid mutations, suggesting that no host
adaptation is occurring. This finding correlates with our results, where the WGS of subtype
B from chicken and turkey samples were >99% identical.

Cecchinato et al. [10] studied fourteen sequences of aMPV subtype B isolates collected
in Europe from the Veneto region of Italy between 1986 (eight strains from 1986–1994) and
2007 (six strains from 2001–2007), mainly to determine the effect of the commercial subtype
B vaccine widely used in Italy. A single spray vaccination of one-day-old turkey poults with
live attenuated vaccine was standard for commercial turkeys. This study reported eighteen
and three AA substitutions in the 2004 and 1987 strains, respectively, in comparison with
the vaccine. The emergence of new variants was attributed to selection pressure from
vaccine-induced immunity. The same study reported changes in the charged amino acids
K, R, D, E, and H and the glycosylation AAs S and T. This correlates with findings from
the current study, where the maximum AA changes were detected in G protein, with most
of the AA changes in charged AAs. Catelli et al. [44] performed a challenge experiment
and concluded that vaccination was only effective in protecting against challenge by the
1987 strain; poor protection was observed in birds challenged with the 2004 strain. This
indicates that these AAs in G proteins play a role in pathogenicity and antibody response.

Further investigation into these specific changes and their impact on G protein function
and vaccine efficacy is crucial. This initial analysis highlights intriguing genomic variations
in our aMPV-B isolates, particularly within the attachment G protein. Delving deeper
into these findings through functional studies is essential to understanding their potential
biological significance and impact on vaccine effectiveness.

5. Conclusions

This study has highlighted the first detection and molecular characterization of aMPV
subtype B infection in US poultry, affecting both commercial turkeys and chickens across
various age groups. The use of NGS was useful for early detection and whole genome
sequencing of emerging subtype B strains in US poultry. Although the study sequences are
closely related to previously reported sequences from Europe, unique AA changes were
detected in the study sequences. Real-time RT-PCR is helpful in screening samples from
the affected areas. However, further investigations remain important in order to better
understand the virus’s host range, transmission dynamics, and potential adaptations in
US poultry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v16040508/s1, Supplementary File S1: Virus reads and genome
coverage statistics; Supplementary File S2: Missense mutations in assembled genomes compared to
VCO3/60616 strain; Supplementary File S3: Missense mutations in assembled genomes compared to
BR/1890/E1/19 strain.
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