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Abstract: Uncaria tomentosa (UT) is a medicinal plant popularly known as cat’s claw belonging to
the Rubiaceae family that has been reported to display antiviral and anti-inflammatory activities.
The chikungunya virus (CHIKV) outbreaks constitute a Brazilian public health concern. CHIKV
infection develops an abrupt onset of fever, usually accompanied by a skin rash, besides incapacitating
polyarthralgia. There is no vaccine available or treatment for CHIKV infection. The present study
evaluates the hydroalcoholic extract of UT bark as a potential antiviral against CHIKV. The in vitro
antiviral activity of the UT extract against the Brazilian CHIKV strain was assessed using quantitative
reverse transcription polymerase chain reaction, flow cytometry, and plaque assay. Results obtained
demonstrated that UT inhibits CHIKV infection in a dose-dependent manner. At the non-cytotoxic
concentration of 100 µg/mL, UT exhibited antiviral activity above 90% as determined by plaque
reduction assay, and it reduced the viral cytopathic effect. Similarly, a significant virucidal effect of
100 µg/mL UT was observed after 24 and 48 h post-infection. This is the first report on the antiviral
activity of UT against CHIKV infection, and the data presented here suggests UT as a potential
antiviral to treat CHIKV infection.

Keywords: Chikungunya; Uncaria tomentosa; antiviral and virucidal effects; cat’s claw

1. Introduction

Chikungunya virus (CHIKV) is an arthropod-borne arthritogenic virus belonging to
the Togaviridae family, Alphavirus genus [1], and the etiologic agent of chikungunya fever [2].
CHIKV is an enveloped virus with icosahedral symmetry and approximately 70 nm in
diameter. Its genome is composed of single-stranded RNA of positive polarity, which
contains approximately 11.8 kb [3].

Initially, chikungunya cases were limited to outbreaks in Africa and Asia; how-
ever, in 2005, an intense epidemic reached the Indian Ocean islands, affecting more than
300,000 people [4,5]. In 2013, the virus was introduced in the Americas and has caused
more than 3.5 million cases ever since. More specifically, in Brazil, annual epidemics
have been reported since then [6]. The co-circulation of different arboviruses hinders
clinical-epidemiological diagnosis due to the non-specificity of most symptoms, which
makes laboratory diagnosis important for correct patient management and epidemiological
surveillance [7,8].
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About 80 to 90% of CHIKV infections are symptomatic [9,10], although recent studies
indicate that the percentage of asymptomatic patients may be higher [11]. Chikungunya
fever is an acute illness with a sudden onset. In typical symptomatic cases, the common
symptoms are high fever (>39 ◦C), headaches, myalgia, skin rash, and intense polyarthral-
gia, the most characteristic feature of chikungunya cases [12]. The disease tends to be
self-limiting, evolving to cure in approximately two weeks; however, in 48 to 80% of
arthritogenic patients, the symptoms persist for months or years, evolving into a chronic
phase. Outbreaks from different regions showed a similar clinical outcome, compromising
the joints in the long term [5,13–16]. Atypical manifestations such as skin pigmentation,
ulcers, chest pain, and ocular and neurological symptoms are described during the acute
phase [17–19], and lethal complications such as myocarditis, hepatitis, and encephalitis
have also been reported [20,21]. Children, who tend to be more vulnerable to central
nervous system infections [8], present more neurologic manifestations when compared to
adults [22]. Hemorrhagic and dermatological manifestations are also more common in this
age group [22,23].

In its urban cycle, CHIKV is transmitted by female mosquitoes Aedes aegypti and Ae.
albopictus [24]. The virus is inoculated into the skin during blood meal and infects the local
cells, such as epithelial cells, fibroblasts, and macrophages. This initial replication generates
an intense immune response that induces the expression of antiviral and inflammatory
genes [25]. Still, the initial response is not sufficient to contain the virus, which interacts
with other cells, such as Langerhans cells, that migrate to the lymph nodes and then
spread to organs such as the liver and spleen, considered primary sites of replication,
and then to muscle, brain, and articulation [26]. It may also be inoculated directly in the
blood circulation [26]. It is commonly accepted that persistent arthralgia in chikungunya
disease is the result of the host’s inflammatory response, among other factors. We and
others have shown increased concentrations of cytokines and chemokines such as Tumor
Necrosis Factor-α (TNF-α), Interferon-γ (IFN-γ), Interleukin-6 (IL-6), IL-10, Chemokine
(C-X-C motif) ligand 9 (CXCL9/MIG), Monocyte chemoattractant protein 1 (CCL2/MCP-1),
Interferon gamma-induced protein 10 (CXCL10/IP10) and C-X-C Motif Chemokine Ligand
8 (CXCL8/IL-8) in chikungunya infected patients. In addition, higher levels of CCL2/MCP-
1, IL-6, and Macrophage inflammatory protein-1 (CCL4/MIP-1β) and decreased levels of
Regulated upon Activation, Normal T-cell Expressed and Secreted (CCL5/RANTES) are
observed in the chronic phase of infection and arthritic cases [27–31].

Uncaria tomentosa (Willd.) D.C (UT), also known as cat’s claw, uña-de-gato or unha-
de-gato, is a medicinal plant endemic to the tropical forests of Central and South America,
used by Peruvian and Brazilian tribes such as Asháninka, Boras, and Kaíapor [32], being
included in the third volume of World Health Organization (WHO) monographs on selected
medicinal plants, a guideline with specifications for the most widely used medicinal
plants [33]. Although used in the treatment of many conditions such as abscess, arthritis,
asthma, and cancer, its anti-inflammatory activities are the most widely reported [32].
Indeed, we reported the antiviral and immunomodulatory properties of UT and Uncaria
guianensis (UG) in dengue-infected cells in vitro [34–36]. The immunomodulatory effects
were observed by the low production of TNF-α [34], macrophage migration inhibitory factor
(MIF), IL-6, and CXCL8/IL-8 production [36]. Furthermore, treatment with UT alkaloid
fraction reduced significantly the vascular permeability in endothelial cells infected with
dengue [35].

There is no specific antiviral medication. Currently, chikungunya fever is treated
with medications to alleviate symptoms, for example, pain and fever. The use of cor-
ticosteroids and immunosuppressants is indicated in patients with moderate to severe
pain after the acute and chronic phases, but nonetheless, a range of severe side effects
are reported [12]. There is a need for alternative therapies, especially for chronic patients,
and natural products are a potential source of antivirals against vector-borne viruses in
risk areas. Finally, here we investigated the antiviral effects of the hydroalcoholic extract
of UT bark against CHIKV infection in vitro. Our results revealed for the first time that
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UT exhibited antiviral and virucidal activity against CHIKV infection, suggesting UT as a
potential anti-CHIKV agent.

2. Materials and Methods
2.1. Plant Extract

The hydroalcoholic ethanol/water 1:1 extract was previously obtained [37] from the
stem barks of UT wild specimens collected in Cruzeiro do Sul, Acre, Brazil (donated by
Biosapiens Co., Brazil—voucher data in Miranda and collaborators) [38]. Legal access
to the Brazilian genetic heritage component is registered in the SisGen platform under
number AE8FE55.

2.2. Preparation of the Hydroalcoholic Extract Solution of Uncaria tomentosa

A stock solution of 75 mg of extract per mL (mg/mL) was prepared using dimethyl-
sulfoxide (DMSO, Nova Biotecnologia, Cotia, SP, Brazil), followed by the preparation of
an intermediate solution of 1 mg/mL in culture-supplemented medium 199 (Life Tech-
nologies, Carlsbad, CA, USA). Working solutions were prepared with serial dilutions of
the intermediate one in a medium supplemented with 2% fetal bovine serum (FBS, Life
Technologies) in a 1:1 ratio starting at 200 µg/mL.

2.3. Cell Line

Vero cells (African green monkey kidney cells, CCL-81) were cultured in 199 medium
containing L-glutamine (Thermo Fisher Scientific, Waltham, MA, USA) and supplemented
with 2% FBS, 1% penicillin/streptomycin (Life Technologies), and 0.1% fungizone (Life
Technologies). Cells were maintained in the incubator at 37 ◦C and 5% CO2 in 75 cm2 flasks
until seeding time.

2.4. Virus Stock and Infection

The viral stock was produced using a CHIKV isolate from a serum sample collected
from a patient during the 2016 chikungunya fever epidemic in Rio de Janeiro, Brazil.
CHIKV diagnosis was confirmed using RT-qPCR, and its genome was sequenced and
identified as East-Central-South African (ECSA) genotype (EJS20/BR/RJ/2016, Genbank
accession number PP049070). The diluted viral isolate was inoculated in Vero cell culture
and incubated for 1 h at 37 ◦C and 5% CO2 for viral adsorption. Subsequently, 2% FBS-
supplemented 199 cell medium was added, and cells were incubated for 2 days in the same
conditions. The supernatant was collected and stored at −80 ◦C, and the titer of viral stock
was determined by plaque assay.

2.5. Cell Viability Assay

The viability of Vero cells in the presence of the hydroalcoholic extract of UT was
assessed using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay
(Invitrogen, Waltham, MA, USA) as per the manufacturer’s instructions. Briefly, cells
were seeded at the density of 105 cells/mL in 96 well plates and incubated at 37 ◦C and
5% CO2 for 24 h. After the formation of the confluent monolayer, the 199 medium was
removed, and distinct concentrations of extracts were added in 6 replicates and incubated
for 24, 48, and 72 h. As positive and negative controls, cells were treated with 3% Tween
and culture medium, respectively. In addition, to assess the DMSO cytotoxicity used in
the extract preparation, the highest DMSO concentration found in the dilutions (0.4%)
was tested (vehicle control). Optical densities (OD) were determined by the EZ Read 400
Microplate Reader (Biochrom, Holliston, MA, USA) at 570 nm. The viability was calculated
considering the control of untreated cells as 100% viability.
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2.6. Antiviral Assay

To investigate the antiviral activity of the hydroalcoholic extract of UT against CHIKV,
Vero cells were seeded at the density of 1 × 105 cell/mL in 96 well plates and incubated
at 37 ◦C and 5% CO2 for 24 h until the formation of the confluent monolayer. Cells
were infected with a multiplicity of infection (MOI) of 0.01, and following infection, the
inoculum was removed from wells and replaced by 200 µL of the maximum non-cytotoxic
concentrations of the extract and its dilutions in duplicates. In addition, CHIKV-infected
cells were treated with vehicle control at 0.4% (DMSO). Supernatants and cell lysates were
collected 24, 48, and 72 h post-infection for viral quantification. CHIKV infection was
evaluated using plaque assay, reverse transcription-quantitative polymerase chain reaction
method (RT-qPCR), and flow cytometry.

2.7. Virucidal Assay

To investigate the direct action of the extract on the viral particle, we performed the
virucidal assay, according to Santos et al. (2021) [39]. Vero cells were seeded at the density of
1 × 105 cell/mL in 96 well plates and incubated at 37 ◦C and 5% CO2 for 24 h. The CHIKV
inoculum at an MOI of 0.01 was treated with non-toxic concentrations of extracts and
vehicle control at 0.4% (DMSO) in polypropylene tubes for 1 h at 37 ◦C. Medium-treated
viruses were used as a viral replication control. Subsequently, the treated inoculums were
added to cell monolayers and incubated at 37 ◦C and 5% CO2. After 1 h of adsorption, the
inoculum was removed and replaced by 200 µL of 2% FBS-supplemented 199 medium. The
culture supernatants were collected after 24, 48, and 72 h and stored at −80 ◦C for RNA
quantification and virus titration using real-time RT-qPCR and plaque assay.

2.8. RNA Extraction

Intracellular RNA was extracted using an RNeasy mini kit (Qiagen, Hilden, North
Rhine-Westphalia, Germany). After the time points mentioned, supernatant was collected,
cells were washed with PBS (phosphate-buffered saline), and 50 µL of trypsin with 2%
EDTA (ethylenediaminetetraacetic acid) was added to each well to detach them. After
3 min incubation at 37 ◦C and 5% CO2, trypsin was inactivated using 150 µL of 199 culture
medium supplemented with 10% FBS, cells were washed and lysed, and RNA extraction
was performed according to the manufacturer’s instructions. Culture supernatant RNA
was extracted using a QIAamp® Viral RNA kit (Qiagen).

2.9. RT-qPCR Quantification of Viral RNA

After extraction, RNA from culture supernatants and cell lysate were submitted to
RT-qPCR for CHIKV RNA quantification. Primers and probes described by Lanciotti et al.
(2007), with an analytical sensitivity of 0.3 PFU [40], and GoTaq® Probe 1-Step RT-qPCR
System (Promega, Madison, WI, USA) were used. Reverse transcription was set at 45 ◦C for
15 min, and the polymerase enzyme was activated in one cycle at 95 ◦C for 2 min, followed
by 45 amplification cycles at 95 ◦C for 15 s and 60 ◦C for 1 min. Viral RNA was quantified
using a standard curve with an already-known viral titer. The reaction was performed in
QIAquant 96 with a 5plex detection system thermal cycler (Qiagen) and analyzed with
QIAquant 96 Software 1.0.3.0. (Qiagen).

2.10. Flow Cytometry Analysis for CHIKV Antigen Detection

Vero cells were CHIKV infected (MOI 0.01) and treated with 50 and 100 µg/mL of
UT at 24 h or vehicle control at 0.4% (DMSO). Cells were detached with trypsin–EDTA
solution, centrifuged at 450× g for 5 min, and resuspended in 200 µL of cold buffer (PBS,
2% FBS, and 1 mM EDTA). For viability assessment, the cells were stained with viability
Dye FITC (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
recommendations. Before antigen labeling, cells were incubated in Cytofix/Cytoperm
solution (Cytofix/Cytoperm Kit, BD Biosciences, Franklin Lakes, NJ, USA) at 4 ◦C for 20 min
and then were washed with Perm/Wash Buffer (Cytofix/Cytoperm Kit). Intracellular



Viruses 2024, 16, 369 5 of 17

staining was performed during the permeabilization step using Alexa 647-conjugated
anti-CHIKV antibody or isotype (1:50 dilution, MyBiosource, San Diego, CA, USA) for
45 min at 4 ◦C. Cells were analyzed using a Cytoflex cytometer (BD Biosciences). FlowJo
software version 10 (FlowJo, LLC, Ashland, OR, USA) was used in the flow cytometry data.

2.11. Viral Quantification by Plaque Assay

Culture supernatants collected during antiviral and virucidal assays were tittered
using plaque assay. Briefly, 2 × 105 Vero cells were seeded in 12-well plates and incubated
at 37 ◦C and 5% CO2 for 24 h. Ten-fold serial dilutions of the supernatants collected in
the previously described assays were performed in 2% FBS-supplemented 199 medium.
Subsequently, 100 µL of inoculum was added to the Vero monolayers in duplicates and
incubated at 37 ◦C and 5% CO2 for 1 h for adsorption. After the incubation, a semi-solid
medium (0.3% agarose in 199 medium) was added to each well, and cells were incubated at
37 ◦C and 5% CO2. After 30 h, cells were fixed with formaldehyde 8% overnight, washed
in running water, and then stained with 1 mL of crystal violet for 2 h. The dye was washed
off and the plaques were counted after the plates dried.

2.12. Statistical Analysis

Data are presented as the mean ±standard deviation (SD) and were analyzed using
one-way ANOVA with Turkey’s multiple comparisons linear regression analysis, directly
or after conversion to the logarithm of the doses. The half maximal effective concentration
(EC50) was calculated using non-linear regression analysis. All data and statistical analyses
were carried out using the GraphPad Prism 6.0 software (La Jolla, CA, USA). Results were
considered statistically significant if p < 0.05.

3. Results
3.1. Alkaloid Content and Profile of the Hydroalcoholic Extract of Uncaria tomentosa

The alkaloid content and profile of the hydroalcoholic extract batch used in this work
have been previously reported [41]. Applying previously described methods [34,41], UT-
derived samples were obtained from stem barks. The total alkaloid content in the crude
extract was calculated as 29.1 mg/g (±1%), and the six pentacyclic oxindole alkaloids
considered as the UT marker have been found (Figure 1).
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3.2. Vero Cell Viability in the Presence of Uncaria tomentosa Hydroalcoholic Extract

The cytotoxicity of different concentrations of UT extract was assessed by treating
Vero cells for up to 72 h through the MTT assay. Untreated cells were used as a reference
for 100% viability, and concentrations that maintained viability lower than 80% in all
three time points were considered cytotoxic. After 24 h, cells treated with 200 µg/mL
had 75.3% viability, indicating cytotoxic properties of the extract in this concentration.
In 48 h treatment, cell viability was higher than 90% in all tested concentrations, while
72 h treatment with 200 µg/mL decreased viability to 75% once again. Tween at 3% was
included as cytotoxicity control. The tested concentrations of 6 to 100 µg, as well as 0.4% of
DMSO (vehicle control), kept cell viability above 80% in all time points (Figure 2) and were,
therefore, used in the antiviral activity investigation assays. Cell viability was reduced
when Vero cells were treated with higher amounts (200 µg/mL) of extract at 24 h and 72 h
as well.
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Figure 2. Cytotoxicity of Uncaria tomentosa extract in Vero cell line cultures. Vero cell viability was
assessed by MTT assay after 24 h, 48 h, and 72 h treatment with UT hydroalcoholic extract at different
concentrations. The highest DMSO concentration (0.4%) was included as vehicle cytotoxicity control,
and Tween at a concentration of 3% was included as cytotoxicity control. Untreated cells were used
as negative control and considered as a reference of 100% viability. Three independent experiments
were tested with 3–6 replicates each.

3.3. The Brazilian CHIKV Isolate

Several in vitro studies have successfully used the Vero cell lineage since they are very
susceptible to CHIKV infection even at low MOI at 48 h post-infection (p.i) [42–44]. Initially,
we determined the ECSA strain cytotoxicity profile after 48 h p.i. Vero cells were infected
at increasing MOI (1, 0.1, and 0.01) and then tested for cell viability. As demonstrated
in Figure S1, infected Vero cells at MOI 1 resulted in lower viable cells, and the in vitro
experiments were conducted at low MOI (0.01). The growth kinetics of the ECSA CHIKV
strain was analyzed by quantitation of intra- and extracellular viral RNA load at different
time points (24, 48, and 72 h p.i) using RT-qPCR. The intracellular levels of viral RNA are
already high in the first 24 h, increasing over 48 h and declining within 72 h of infection.
Nonetheless, viral RNA in the cell supernatant increased with time after infection and
remained practically constant.
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3.4. Antiviral Activity of Uncaria tomentosa against CHIKV Determined by RT-qPCR and
Flow Cytometry

To assess the UT antiviral effect on CHIKV infection, Vero cells were CHIKV infected
at low MOI (0.01) and then treated with different non-cytotoxic extract concentrations ob-
served through MTT testing and 0.4% of vehicle control (DMSO). After 24 h p.i, RNA levels
detected in cell supernatant showed a significant decrease, and UT induced a reduction of
93% at 100 µg/mL as compared to CHIKV-positive control and UT-treated cells at 6 µg/mL.
Indeed, a decrease in viral RNA was observed in UT-treated Vero cells as we observed a
significant negative linear trend at 24 h (p < 0.0001) and 48 h p.i (p = 0.0025), respectively. At
72 h p.i, UT treatment caused no significant reduction in CHIKV RNA copies (Figure 3A).

Similarly, 100 µg/mL of UT was effective (approximately90%) in reducing intracel-
lular viral RNA at 24 h as compared to CHIKV-infected cells treated with vehicle control.
Additionally, a significant negative linear trend was observed during 24 h p.i (p = 0.0054)
(Figure 3B). The CHIKV has a characteristic of producing cytopathic effect (CPE) in suscep-
tible vertebrate cells, and we observed that a dose of 100 µg/mL of UT was able to inhibit
the CPE at 48 h p.i (Figure 3C).

Finally, the EC50 calculated for the extract by RT-qPCR after 24 h of treatment was
19.85 µg/mL (CI95% interval of 9.6 to 32.5 µg/mL).

After demonstrating the antiviral effect of UT extract against CHIKV infection, espe-
cially with 50 µg/mL and 100 µg/mL at 24 h p.i, we evaluated the intracellular expression
of CHIKV antigen in infected and treated Vero cells at 24 h p.i to confirm this finding. For
this, we performed flow cytometric analysis for quantification of treated and untreated
CHIKV-infected cells (Figure 4A). Strategy for the CHIKV-infected cells in flow cytometric
experiments is shown in Supplementary Figure S2. As demonstrated in Figure 4B,C, the
percentage of CHIKV-positive cells was significantly reduced when infected cells were
treated with 50 µg/mL and 100 µg/mL of UT as compared to CHIKV-positive control
and CHIKV-infected cells treated with DMSO (vehicle control). Also, Vero cells treated
at 100 µg/mL showed a statistically significant decrease in the percentage of positive
cells compared to those treated at 50 µg/mL. The data showed a statistically significant
difference in mock-treated cells compared to CHIKV-positive and vehicle control as well.

3.5. Antiviral Effect of Uncaria tomentosa Extract Determined by Plaque Assay

Given the results obtained in the antiviral activity investigation determined by RT-
qPCR and flow cytometry, concentrations of 50 µg/mL and 100 µg/mL were selected to
evaluate the reduction in CHIKV infectivity by plaque reduction assay after 24 h and 48 h of
treatment. In the first 24 h of incubation, treatment at 50 and 100 µg/mL reduced viral load
to 7.16 × 105 PFU/mL and 1.93 × 105, respectively, which represent 89% and 97% inhibition
(Figure 5A), as positive control showed 6.69 × 106 PFU/mL. Indeed, a significant negative
linear trend at 24 h p.i (p = 0.0317) was observed (Figure 5B). Despite no statistical signifi-
cance, after 48 h of incubation, a concentration of 100 µg/mL showed an inhibitory effect,
reducing the viral load from 1.49 × 107 PFU/mL of positive control to 4.69 × 106 PFU/mL
in treated cells supernatant, representing 68% reduction (Figure 5C). The plaque reduction
assay findings confirmed the viral RNA quantification in cell supernatants, indicating that
100 µg/mL induces a better inhibitory effect than 50 µg/mL, and it is more effective in the
24 h p.i.
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Figure 3. Antiviral activity of Uncaria tomentosa against CHIKV infection. (A) Extracellular and
(B) Intracellular CHIKV RNA quantification by RT-qPCR of CHIKV-infected Vero cells at an MOI of
0.01 and treated with different concentrations (6–100 µg/mL) of hydroalcoholic extract of UT for 24,
48 h, and 72 h. The data represent the means and standard deviation (±SD) of three independent
experiments in duplicates. * p < 0.05, one-way ANOVA followed by Turkey test. Linear regression
analysis after conversion to logarithm of the doses, significant ++ p < 0.01, ++++ p < 0.0001 indicated.
(C) Cell morphology of Vero cells at 24 and 48 h p.i. Representative images of negative control (Mock),
positive control (CHIKV infected), and CHIKV-infected cells after treatment with 100 µg/mL.
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Figure 4. Flow cytometric analysis for quantification of treated and untreated CHIKV-infected
cells. (A) Representative dot plot analysis (FSC × CHIKV-Alexa-647). The CHIKV-positive cells are
represented in the gates. From left to right, mock (negative control), CHIKV (positive control), DMSO
(vehicle control), 50 µg/mL, and 100 µg/mL of UT are represented. (B) Histogram analyses showing
the percentage of positive cells for each condition: negative control (Mock, dashed line), CHIKV
(positive control, blue), and UT at 50 µg/mL (red) and 100 µg/mL (gray), respectively. (C) Percentage
of positive cells determined by flow cytometry. Two independent experiments in duplicates. Data are
expressed as mean (±SD). **** p < 0.0001, one-way ANOVA followed by Turkey test.



Viruses 2024, 16, 369 10 of 17

Viruses 2024, 16, x FOR PEER REVIEW  11  of  19 
 

 

load to 7.16 × 105 PFU/mL and 1.93 × 105, respectively, which represent 89% and 97% inhi-

bition  (Figure 5A), as positive control showed 6.69 × 106 PFU/mL.  Indeed, a significant 

negative linear trend at 24 h p.i (p = 0.0317) was observed (Figure 5B). Despite no statistical 

significance, after 48 h of incubation, a concentration of 100 µg/mL showed an inhibitory 

effect,  reducing  the viral  load  from 1.49 × 107 PFU/mL of positive control  to 4.69 × 106 

PFU/mL in treated cells supernatant, representing 68% reduction (Figure 5C). The plaque 

reduction assay findings confirmed the viral RNA quantification in cell supernatants, in-

dicating that 100 µg/mL induces a better inhibitory effect than 50 µg/mL, and it is more 

effective in the 24 h p.i. 

 

Figure 5. Antiviral effect of Uncaria tomentosa extract determined by plaque assay. (A) Representa-

tive image showing plaques of the antiviral activity of the UT extract against CHIKV infection. (B) 

Quantification of Viral titer (PFU/mL) in the supernatants of infected Vero cells after treatment with 

UT extract (50 and 100 µg/mL) by plaque assay (24 h p.i). (C) Quantification of viral titer (PFU/mL) 

in  the supernatants of  infected Vero cells after  treatment with UT extract (50 and 100 µg/mL) by 

plaque assay (48 h p.i). Linear regression analysis after conversion to logarithm of the doses, signif-

icant + p < 0.05 indicated. 

3.6. Virucidal Effect of Uncaria tomentosa Extract Determined by RT‐qPCR 

In addition to the antiviral effect, we also explored the possibility of the UT extract 

inactivating CHIKV particles (virucidal effect). As described in the material and methods, 

CHIKV was incubated for 1 h at 37 °C and 5% CO2 at 50 and 100 µg/mL of UT extract. 

Subsequently, Vero cells were infected with the treated virus, and the cell supernatant was 

tested for RNA virus quantification. As represented in Figure 6A, the CPE on Vero cells 

after 48 h p.i is apparent, and no CPE was detected in CHIKV-infected Vero cells treated 

at 100 µg/mL of UT. Although no statistically significant changes were observed after 24 

h p.i, treatment at 50 µg/mL and 100 µg/mL reduced CHIKV RNA copies/mL by 95% and 

98%, respectively. In addition, a statistically significant decrease in RNA copies was ob-

served after 48 h p.i in the treated virus at 100 µg/mL as compared to the CHIKV-positive 

control. Furthermore, a statistically significant negative linear trend was observed, indi-

cating a decrease  in RNA  copies after 48 h p.i  (p = 0.0071). No  statistically  significant 

changes were observed after 72 h p.i (Figure 6B). 

Figure 5. Antiviral effect of Uncaria tomentosa extract determined by plaque assay. (A) Representative
image showing plaques of the antiviral activity of the UT extract against CHIKV infection. (B) Quan-
tification of Viral titer (PFU/mL) in the supernatants of infected Vero cells after treatment with UT
extract (50 and 100 µg/mL) by plaque assay (24 h p.i). (C) Quantification of viral titer (PFU/mL) in
the supernatants of infected Vero cells after treatment with UT extract (50 and 100 µg/mL) by plaque
assay (48 h p.i). Linear regression analysis after conversion to logarithm of the doses, significant +
p < 0.05 indicated.

3.6. Virucidal Effect of Uncaria tomentosa Extract Determined by RT-qPCR

In addition to the antiviral effect, we also explored the possibility of the UT extract
inactivating CHIKV particles (virucidal effect). As described in the material and methods,
CHIKV was incubated for 1 h at 37 ◦C and 5% CO2 at 50 and 100 µg/mL of UT extract.
Subsequently, Vero cells were infected with the treated virus, and the cell supernatant was
tested for RNA virus quantification. As represented in Figure 6A, the CPE on Vero cells
after 48 h p.i is apparent, and no CPE was detected in CHIKV-infected Vero cells treated at
100 µg/mL of UT. Although no statistically significant changes were observed after 24 h p.i,
treatment at 50 µg/mL and 100 µg/mL reduced CHIKV RNA copies/mL by 95% and 98%,
respectively. In addition, a statistically significant decrease in RNA copies was observed
after 48 h p.i in the treated virus at 100 µg/mL as compared to the CHIKV-positive control.
Furthermore, a statistically significant negative linear trend was observed, indicating a
decrease in RNA copies after 48 h p.i (p = 0.0071). No statistically significant changes were
observed after 72 h p.i (Figure 6B).

3.7. Virucidal Effect of Uncaria tomentosa Extract Determined by Plaque Assay

Since we detected the UT virucidal effects against CHIKV, the 100 and 50 µg/mL
concentrations were tested using plaque reduction assay. Supernatants were collected
at 24 h and 48 h p.i, and the viral load was titrated. Confirming the RT-qPCR findings,
treatment with 100 µg/mL caused a significant reduction in viral infectivity at 24 h p.i with
a 98% decrease in viral load (Figure 6C,D). The difference between CHIKV-positive control
and UT treatment was not statistically significant after 48 p.i. However, there was a 75%
reduction in viral load (Figure 6E). These results revealed that hydroalcoholic extract of UT
at a concentration of 100 µg/mL also showed virucidal activity against CHIKV-infected
Vero cells in vitro.
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Figure 6. Virucidal effect of Uncaria tomentosa against CHIKV infection. (A) Virucidal effect of UT
showing cell morphology at 48 h post-infection. Representative images of negative control (Mock),
positive control (CHIKV infected), and CHIKV-infected cells after treatment with 50 and 100 µg/mL,
respectively. (B) Quantification of viral titer (RNA copies/mL) in the supernatants of infected Vero
cells treated at 50 and 100 µg/mL by RT-qPCR after 24 h, 48 h, and 72 h p.i. (C) The virucidal effect of
Uncaria tomentosa determined by plaque assay. Representative image showing plaques of UT virucidal
activity against CHIKV-infected cells. Quantification of viral titer (PFU/mL) in the supernatants of
infected cells treated at 50 and 100 µg/mL, (D) after 24 h and (E) 48 h p.i by plaque assay. * p < 0.05,
ANOVA followed by Tukey. Linear regression analysis after conversion to logarithm of the doses,
significant ++ p < 0.01 indicated.

4. Discussion

The simultaneous circulation of emerging and re-emerging viruses such as the new
coronavirus, Severe Acute Respiratory Syndrome (SARS-CoV-2), and arboviruses is a major
concern in Brazil [45]. Notably, CHIKV quickly spread to new geographic regions, causing
outbreaks and explosive epidemics in Brazil [46]. The evolution and spread of CHIKV were
marked by mutations in the viral envelope glycoproteins E1 and E2, making these proteins
key determinants of infectivity and pathogenesis essential for viral adaptation [17,47].
According to the Ministry of Health, in the first semester of 2023, 143.739 cases of the
disease were reported in Brazil, with an incidence rate of 67.4 cases per 100 thousand
inhabitants in the country [48]. Studies aimed at solutions such as the development of
vaccines and antiviral treatments are urgent, but unfortunately, research in these areas is
still scarce. The Valneva VLA1553 chikungunya vaccine induces an immune response in
98.8% of those vaccinated, according to the American data from the phase 3 clinical trial
published recently [49]. However, there is still no expected release date for use in Brazil. In
this sense, we highlight the urgency of studies that aim to provide emergency responses
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to CHIKV infection and that will contribute to moving towards alternative therapeutic
methods, such as the use of natural products.

Chikungunya fever is an acute febrile illness that causes fever, myalgia, headache, and
other unspecific symptoms, but it is characterized mostly by its intense joint pain [15,16].
Post-chikungunya arthritis is the most common clinical manifestation after infection, and it
is estimated that 40 to 60% of cases have significantly impaired long-term quality of life after
infection. A systematic review of post-chikungunya chronic inflammatory rheumatism
estimates a pooled prevalence of 40% or 25%, depending on the selected parameters [50].
Beyond arthritogenic manifestations, whether due to improvements in diagnosis and case
reporting or to mutations in the viral genome, neonatal and children infection has been
reported more frequently since its re-emergence in 2005. Regardless of the reason, CHIKV
infection in this age group causes cardiac defects such as myocardial hypertrophy, ventricu-
lar dysfunction, and pericarditis [51]. In the central nervous system, meningoencephalitis,
microcephaly, and developmental delay were reported in children, too [51,52].

Despite the serious and debilitating symptoms, up to now, no antiviral drug against
CHIKV has been approved, and treatment is based on symptom relief. WHO guide-
lines recommend acetaminophen or paracetamol to relieve fever and non-steroidal anti-
inflammatory drugs (NSAIDs) to reduce joint pain during the acute phase. Regarding the
chronic phase, there is a lack of consensus depending on the source, as reviewed by Webb
et al. [53]. Disease-modifying anti-rheumatic drugs (DMARDs) such as NSAIDs, corticos-
teroids, methotrexate, and hydroxychloroquine are prescribed, depending on pain intensity
and response to treatment. However, hydroxychloroquine efficacy in chikungunya cases
is questioned by several studies [54–56]. Methotrexate, an antifolate, is a promising drug
for chronic chikungunya arthritis, but more studies are necessary since the treatment is
not always effective and the methodology and posology vary [57–59]. In this scenario, it is
essential to discover therapeutic alternatives for disease control and better quality of life
for acute and chronic patients.

Medicinal plants and natural compounds have been investigated for the treatment of
arboviruses [60–62]. In addition to the results already reported for the Uncaria genus [34–36],
recently, we showed the potential of the species Miconia albicans as a chikungunya fever
treatment. This species is consumed all over the Brazilian territory as a remedy to treat
rheumatoid arthritis and has already been increasingly used to alleviate the deleterious
symptoms caused by CHIKV [63].

Antiviral properties of the Uncaria genus have been previously communicated [34–36,64].
The hydroalcoholic extract of UT bark was able to reduce herpes simplex virus-1 (HSV-1)
infection in Vero cells. Possibly, its effect is related to the simultaneous action of compounds
present in the extract since the purified fraction of quinovic acid glycosides and oxindole
alkaloids did not show an antiherpetic effect [64]. Regarding the in vivo effect, the extract
containing 5% mitraphylline has been suggested as a treatment for cold sores, but due
to the anti-inflammatory effect, characteristic of the species [65]. UT also showed an
intense inhibitory effect in SARS-CoV-2 plaque formation and cytopathic effect in Vero cells,
reaching 92.7% and 98.6% reduction, respectively, when cells were treated with 25 µg/mL
for 48 h [66].

In the search for natural products that could have therapeutic properties against
dengue, we obtained promising results with UT and UG extracts on viral clearance and
immunomodulation with the reduction of cytokines related to the poor prognosis of
dengue [34–36]. Our previous study demonstrated that in human monocytes infected with
DENV-2, intracellular viral antigen detection was reduced after 10 µg/mL of hydroalcoholic
extract treatment at 48 h p.i. and its alkaloidal fraction showed an inhibitory effect against
DENV-2 infection [34]. Alkaloidal fraction also inhibited DENV-2 infection in a model
of human lineage of dermal microvascular endothelial cells (HMEC-1), reducing NS1
detection in cell supernatant after 24 h treatment with 1 µg/mL and 48 h treatment with
1 and 10 µg/mL [35]. We confirmed the antiviral effect of UT hydroalcoholic extract
previously found against DENV infection. UT hydroalcoholic extract effectively reduced
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intracellular CHIKV RNA and the release of extracellular CHIKV particles at 24 and 48 h p.i.
An intense decrease in CHIKV RNA was detected in cell supernatant after 24 and 48 h p.i
treatment with 50 and 100 µg/mL as well. Indeed, at an early point, the intracellular CHIKV
antigen was reduced at 50 and 100 µg/mL, confirming the RT-qPCR results. Importantly,
UT treatment was able to protect Vero cells from CHIKV-induced CPE. At 72 h p.i, no
antiviral effect was detected. This observation might be related to the reduction in the
number of viable cells over the three days evaluated, considering the intense cytopathic
effect of CHIKV in mammal cells [42,67].

RT-qPCR is a widely used technique in antiviral research, given its high sensitivity
and specificity to quantitate virus RNA. Our study uses a previously described protocol
with sensitivity to detect 0.3 PFU [40] as a tool to detect CHIKV RNA. Simultaneously, we
tested the virus infectivity using plaque assay, the gold standard for quantification of lytic
virus [68] that confirmed CHIKV infectivity reduction after 24 h and 48 h treatment with
100 µg/mL.

Once the antiviral activity was observed, we investigated the capacity of the extract to
inactivate the viral particle, in other words, a direct effect on the viral particle, the virucidal
effect. After pretreatment of CHIKV with UT at 100 µg/mL, we observed greater inhibition
capacity, reducing viral RNA detection by around 90% after 24 and 48 h p.i. In addition, the
plaque assay demonstrated virucidal activity with UT CHIKV treated at 100 µg/mL after
24 h p.i. To the best of our knowledge, this is the first report of UT antiviral and virucidal
effects against CHIKV infection.

The susceptibility of Vero cells to the chikungunya virus is widely known, and the fast
kinetics and intense growth observed here are confirmed by other authors. Vero, HuH-7,
and A549 cells have been used as models to investigate the action of broad-spectrum
antivirals on CHIKV. The replication pattern, which authors evaluated using the plaque
assay, was similar to that observed in our study, increasing over the 3 days of infection [69].
A previous study reported crescent viral loads measured by TCID50 in Vero E6 cells, too,
with a maximum viral load of 8 logs on day three [70]. This phenomenon can also be
explained by the ability of the virus itself to produce high viral loads, either in patients [71]
or in vitro models, such as in epithelial cell lines HeLa, 293T, BEAS-2B, and in primary
fibroblasts MCR5 [44].

Maneuvering different approaches, we demonstrated that the UT-hydroalcoholic ex-
tract has antiviral and virucidal activity against CHIKV in an in vitro infection model using
Vero cells. The exact mechanism by which UT inhibits viral infection in cells is unknown. In
SARS-CoV2 studies, it was demonstrated, in silico, that three different compounds present
in the hydroalcoholic extract are capable of interacting with the CLpro protein [72]. In
addition to the interaction with the viral protein, the authors discovered a good therapeutic
behavior of these compounds by measuring their absorption, distribution, metabolism, and
excretion (ADME-score), indicating the therapeutic potential of the plant [72]. Maceration
extract of pure UT and that combined with UG had an antiherpetic effect in the Vero cell
model, possibly inhibiting viral attachment, in a simultaneous action of compounds present
in the extract since the purified fractions did not show an antiherpetic effect [64]. Our
results indicate that UT may act directly in viral particles or at the beginning of CHIKV
infection, too, but more studies are necessary to elucidate the mechanism.

It is also important to acknowledge that our study has certain limitations. Although
it is a widely used model in studies with arboviruses, Vero cells do not produce inter-
feron [73,74]. More studies using in vitro models of human cells are needed for a better
representation of human infection and a better understanding of the antiviral activity
of the extract. In addition, new models of infection will also allow evaluation of the
immunomodulatory activity during CHIKV infection. Indeed, we demonstrated the in-
hibitory properties of UT in human monocytes infected with CHIKV (Unpublished data).
Our results indicate that the extract is effective in the first 48 h of infection. Other assays at
shorter intervals of infection, such as 6 h or 8 h might show more intense inhibitory effects,
as well as treatments in sequence, to reset the biologically active substances present in the
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extract. It is also important to highlight that the effects obtained in vitro are not always
reflected in vivo, which reinforces the need for more studies to confirm the potential of UT
as a treatment for chikungunya fever.

Chikungunya remains a public health problem, causing epidemics around the world.
Despite causing intense and debilitating pain, there is still no antiviral drug or unified
treatment protocol for chronic cases, which makes it essential to search for new alternatives
to fight infection and the chronicity of the disease. Here, we show that the medicinal plant
Uncaria tomentosa exhibits potential antiviral and virucidal activity against CHIKV, reducing
the number of viral RNA copies, percentages of CHIKV antigen, and infective particles in
CHIKV-infected Vero cells in vitro. Collectively, the data presented in this study provide
further evidence as a potential therapeutic option against alfaviruses.
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