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Abstract: Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such
strategy is the inhibition of the integrated stress response—the mechanism through which infected
cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation
initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus
OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of
oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43
and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly
induced in infected cells. However, the upregulation of GADD34 expression induced by OC43
was independent from the activation of the integrated stress response and was not required for the
inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay
between the common cold coronavirus and the integrated stress response, in which efficient viral
protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative
feedback loop is disrupted.
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1. Introduction

Eukaryotic cells can rapidly respond to adverse conditions by activating specific stress
response mechanisms. One of the conserved signaling pathways activated by various types
of stress, including viral infections, is the integrated stress response (ISR) [1]. Its defining
feature is the phosphorylation of the alpha subunit of the eukaryotic translation initiation
factor 2 (eIF2α) on Serine-51, which causes the transient inhibition of bulk protein synthesis
to conserve energy and minimize damage [2]. In mammals, there are four eIF2α kinases
that are activated by different types of stress: heme-regulated inhibitor (HRI) kinase is
activated by oxidative stress and heat shock [3,4], general control nonderepressible 2 (GCN2)
kinase is activated by amino acid starvation or ultraviolet damage [5,6]; double stranded
RNA (dsRNA)-activated protein kinase (PKR) is activated by dsRNA [7]; and PKR-like
endoplasmic reticulum (ER) kinase (PERK) is activated by ER stress [8]. Although PKR is the
kinase primarily dedicated to sensing viral dsRNA replication intermediates, other eIF2α
kinases can also be activated by viral infections that perturb cellular homeostasis [9]. Since
viruses rely on host machinery for their protein synthesis, they must evolve mechanisms to
block or bypass the ISR to ensure efficient replication.

Upon phosphorylation, eIF2α stably binds the guanine exchange factor eIF2B, which
prevents the regeneration of the translation initiation-competent GTP-bound form of
eIF2 [2]. This stalls bulk translation initiation, while simultaneously causing the increased
translation of a subset of messenger RNAs (mRNAs), some of which contain short upstream
open reading frames (uORFs) in front of ORFs that encode stress response factors [10,11].
The depletion of initiation-competent eIF2 complexes increases leaky scanning, or uORF
bypass by the 48S preinitiation complex, which promotes the translation of downstream
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ORFs [2]. Activating transcription factor 4 (ATF4) is one of the important ISR factors
preferentially translated via uORF bypass [12]. This transcriptional activator induces the
expression of additional stress response genes, many of which are also encoded by uORF-
containing mRNAs. They include another transcription factor C/EBP homologous protein
(CHOP) and its downstream target growth arrest and DNA damage-inducible protein
34 (GADD34) [12]. GADD34 (also named protein phosphatase 1 regulatory subunit 15A,
PPP1R15A) complexes with protein phosphatase 1 (PP1) and recruits it to dephosphorylate
eIF2α [13]. Thus, the main function of GADD34 in the ISR is the negative feedback that
terminates phospho-eIF2α mediated translation arrest.

Coronaviruses (CoVs) are a family of enveloped single-stranded positive-sense RNA
viruses. There are seven CoVs known to infect humans, presenting from common colds to
more severe and sometimes fatal respiratory disease [14]. Common cold coronaviruses in-
clude HCoV-OC43 (OC43) and HCoV-229E, which have been circulating in the human pop-
ulation for decades, as well as more recently identified HCoV-NL63 and HCoV-HKU1 [15].
The most recent pathogenic CoV, the severe acute respiratory syndrome coronavirus 2
(CoV2), emerged in 2019 and became the cause of the devastating pandemic of coronavirus
disease 2019 (COVID-19). CoV2, as well as OC43 and HCoV-HKU1, belong to the Beta-
coronavirus genus [14,15]. In recent years, OC43 emerged as the model Betacoronavirus
for studying viral replication and testing the candidate anti-CoV drugs because, unlike
CoV2, it is considered safer and can be handled in a more accessible containment level 2
environment [16–20].

The OC43 virion has five structural proteins. Membrane (M) and envelope (E) proteins
are responsible for viral particle formation. Nucleocapsid (N) is an RNA-binding protein
that coats the viral genome. There are also two surface glycoproteins: hemagglutinin
esterase (HE) and spike (S) [15]. S is a receptor binding protein that binds sialic acid
on the cell surface [21] and mediates viral entry [14]. Once the virus enters a host cell,
its large 30 kb positive sense capped and polyadenylated RNA genome associates with
host translation machinery to initiate the synthesis of viral non-structural proteins (Nsps)
involved in genome replication, subgenomic mRNA production, and the inhibition of host
antiviral responses [14]. The replication of the viral genome in the cytoplasm can generate
double-stranded RNA (dsRNA) intermediates which may activate cytoplasmic sensors,
including retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5
(MDA5), and dsRNA-activated protein kinase (PKR) [7,22]. However, in CoV-infected cells,
dsRNA is largely shielded inside double membrane replication transcription compartments
that exclude and limit the activation of cytosolic sensors [14,23]. These double membrane
compartments are derived from the endoplasmic reticulum (ER) of the host cell by the
concerted action of viral Nsp3, Nsp4, and Nsp6 proteins [24,25]. Newly generated viral
sub-genomic mRNAs that encode structural proteins are released from these compartments
through specific crown-shaped pores and then associate with either free or ER-associated
ribosomes in the cytoplasm to be translated [26].

Genomic RNA and sub-genomic mRNAs of coronaviruses are capped and polyadeny-
lated and therefore resemble host mRNAs in their translation initiation mechanism, which
is sensitive to the disruption of the cap-directed assembly of the translation preinitiation
complex or eIF2α phosphorylation [27,28]. Therefore, coronaviruses must limit ISR to
ensure robust protein synthesis and replication. Our previous work revealed that OC43
infection actively inhibits the phosphorylation of eIF2α [29]. In our cell culture infection
model, very little eIF2α phosphorylation was detected in infected cells, and when they were
treated with a potent inducer of eIF2α phosphorylation sodium arsenite (As), they had
significantly reduced levels of p-eIF2α compared to mock-infected cells [29]. As treatment
induces oxidative stress and activates HRI kinase [4]. This usually causes very strong eIF2α
phosphorylation and the formation of stress granules (SGs), cytoplasmic condensates of
polysome-free messenger ribonucleoprotein complexes that accumulate following the inhi-
bition of translation initiation [9]. OC43 infection also inhibits the formation of As-induced
stress granules (SGs) [29].
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In the present work, we aimed to further characterize the modulation of ISR by OC43.
We demonstrate that the OC43 infection of human embryonic kidney 293A cells strongly
induces GADD34, the negative regulator of ISR. Although OC43 infection causes ER stress
and the activation of PERK, which negatively affects viral protein synthesis and replication,
PERK-mediated ATF4 production is not responsible for GADD34 upregulation in infected
cells. Remarkably, we also show that OC43-induced GADD34 protein does not function in
mediating increased eIF2α dephosphorylation.

2. Materials and Methods
2.1. Cells and Viruses

Human embryonic kidney (HEK) 293A cells and green monkey kidney (Vero) cells
were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA)
and cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with heat-
inactivated 10% fetal bovine serum (FBS) and 2 mM L-glutamine (all purchased from
Thermo Fisher Scientific (Thermo), Waltham, MA, USA). Human betacoronavirus OC43
was purchased from ATCC. Initial virus stocks were generated in Vero cells as described
in [29]. Subsequent OC43 passages for the expansion of stocks were undertaken in 293A
cells. The 293A cells were infected at the multiplicity of infection (MOI) <0.1 for 1 h in
serum-free DMEM, and then the inoculum was replaced with DMEM supplemented with
1% FBS + 0.5% BSA and incubation continued at 37 ◦C. At 48 h post infection (hpi), the
viral supernatant was harvested, cleared by centrifugation at 2500× g for 5 min, and
then aliquoted and stored at −80 ◦C. Virus titers were determined by 50% tissue culture
infectious dose (TCID50) assay in 293A cells in the same infection media as above and
calculated using the Spearman–Kärber method.

2.2. Cell Treatments

For poly(I:C) transfection, 1.5 µL of FuGENE HD reagent (Promega, Madison, WI,
USA) was combined with 0.5 µg of low MW poly(I:C) (InvivoGen, San Diego, CA, USA)
in 50 µL Opti-MEM-I (Gibco, Waltham, MA, USA) for 5 min and then added directly
to media for each 20 mm well of cells. Cells were returned to a 37 ◦C incubator for
2 h. To induce eIF2α phosphorylation, sodium arsenite (As) was added to the media to a
final concentration of 500 µM and cells were returned to the 37 ◦C incubator for 50 min;
thapsigargin (Tg) was added to the media to a final concentration of 1 µM and cells were
returned to the 37 ◦C incubator for 1 h or 4 h, as indicated. The integrated stress response
inhibitor (ISRIB, final concentration 200 nM) or the Inositol-requiring enzyme 1 (IRE1)
inhibitor 4µ8C (concentration range 5–25 µM) was added to the culture media and cells
were returned to the 37 ◦C incubator for 23 h (for infection experiments) or the length of
Tg treatment, as indicated. All compounds and inhibitors were purchased from Millipore
Sigma (Oakville, ON, Canada).

2.3. Virus Infections

The 75–80% confluent monolayers of 293A cells grown on 20 mm wells of 12-well
cluster dishes with or without glass coverslips were washed briefly with PBS and 300 µL
of virus inoculum diluted to the specified MOI in 1% FBS DMEM. Cells were placed at
37 ◦C for 1 h, with manual horizontal shaking every 10–15 min. Then, virus inoculum
was aspirated from cells, cells were washed briefly with PBS, and 1 mL of fresh 1% FBS
DMEM was added to each well and cells were returned to 37 ◦C until the specified time
post-infection.

2.4. Gene Silencing

For GADD34 silencing, 293A cells were transfected with Ambion Silencer Select siR-
NAs (siGADD34#1 (s24269) and siGADD34#2 (s24268)) using Lipofectamine RNAiMAX
(Invitrogen, Waltham, MA, USA) according to manufacturer’s protocol and used in infec-
tion/treatment experiments at 48 h post-transfection. For non-targeting siRNA control, cells
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were transfected with Silencer Select Negative Control #2 siRNA (siNT; Ambion, #4390846).
For ATF4 silencing, shRNA inserts targeting human ATF4 gene (shATF4-1, target sequence
catgatccctcagtgcataaa; shATF4-2, target sequence cctaggtctcttagatgatta) or control human
interleukin 2 (IL2) that is not expressed in epithelial cells (shIL2, target sequence gctacc-
tattgtaactattat) were cloned into pLKO.1-TRC vector (Addgene plasmid #10878, a gift from
David Root, [30]). For PERK silencing, a guide RNA insert targeting human PERK (sgRNA
sequence gaatataccgaagttcaaag) was cloned with the lentiCRISPR-v2 vector (Addgene plas-
mid #52961, a gift from Feng Zhang, [31]). The shRNAs and gRNA were designed using
Broad Institute GPP Web Portal tools (https://portals.broadinstitute.org/gpp/public/).
Then, 293A cells were transduced with lentiviruses generated with the above vectors
at an MOI of 1.0, and stably transduced cells were selected with 1 µg/mL puromycin
for 48 h. Resistant cells were seeded onto 12-well cluster dishes and used in experiments
the following day.

2.5. Western Blotting

Whole-cell lysates were prepared by the direct lysis of PBS-washed cell monolayers
with 1× Laemmli sample buffer (50 mM Tris-HCl pH 6.8, 10% glycerol, 2% sodium dodecyl
sulphate (SDS), 100 mM DTT, 0.005% Bromophenol Blue). Lysates were immediately placed
on ice, homogenized by passing through a 21-gauge needle, and stored at −20 ◦C. Aliquots
of lysates thawed on ice were incubated at 95 ◦C for 3 min, cooled on ice, separated
using denaturing polyacrylamide gel electrophoresis, transferred onto polyvinylidene
fluoride (PVDF) membranes using Trans Blot Turbo Transfer System with RTA Transfer
Packs (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s protocol,
and analyzed by immunoblotting using antibody-specific protocols. Antibodies to the
following targets were used: ATF4 (1:1000; rabbit, Abcam, ab270980); β-actin (1:2000;
HRP-conjugated, mouse, Santa Cruz, sc-47778); eIF2α (1:1000; rabbit, Cell Signaling, #5324);
GADD34 (1:1000; mouse, Proteintech, #10449-1-AP); OC43 N (1:1000; mouse, Millipore,
MAB9012); OC43 Spike (1:1000; rabbit, Cusabio, CSB-PA336163EA-1HIY); PERK (1:1000;
rabbit, Cell Signaling, #5683); phospho-S51-eIF2α (1:1000; rabbit, Cell Signaling, #3398);
phospho-T451-PKR (1:1000; rabbit, Epitomics, 2283-1); PKR (1:1000; mouse, Santa Cruz,
sc-6282); and XBP1s (1:1000; mouse, Cell Signaling, #12782). For band visualization, HRP-
conjugated anti-rabbit IgG (goat, Cell Signaling, #7074) or anti-mouse IgG (horse, Cell
Signaling, #7076) were used with Clarity Western ECL Substrate on the ChemiDoc Touch
Imaging System (Bio-Rad Laboratories). For analyses of phospho-eIF2α band intensities,
Western blot signals were quantified using Bio-Rad Image Lab 5.2.1 software and values
normalized to the total eIF2α bands for each lane.

2.6. Immunofluorescence Microscopy

Cell fixation, methanol permeabilization, and immunofluorescence staining were
performed according to the procedure described in [32]. Primary antibody staining was per-
formed overnight at +4 ◦C with antibodies to OC43 N (1:500; mouse, Millipore, MAB9012)
and/or TIAR (1:1000; rabbit, Cell Signaling, #8509). Alexa Fluor-conjugated secondary anti-
bodies used were donkey anti-mouse IgG AF488 (Invitrogen, Burlington, Canada, A21202)
and donkey anti-rabbit IgG AF555 (Invitrogen, A31572). Where indicated, nuclei were
stained with Hoechst 33342 dye (Invitrogen, H3570). Slides were mounted with ProLong
Gold Antifade Mountant (Thermo Fisher, Burlington, Canada) and imaged using a Zeiss
AxioImager Z2 fluorescence microscope and Zeiss ZEN 2011 software.

2.7. RNA Isolation and RT-QPCR

Total RNA was isolated from cells using an RNeasy Plus Mini kit (Qiagen, Toronto,
Canada) according to the manufacturer’s protocol and 250 ng of RNA was used to synthe-
size cDNA using qScript cDNA SuperMix (Quanta). Quantitative PCR amplification was
performed using PerfeCTa SYBR Green PCR master mix (Quanta) with the specific primers
listed below: 18S–Left: cgttcttagttggtggagcg, Right: ccggacatctaagggcatca; ACTB–Left:
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catccgcaaagacctgtacg, Right: cctgcttgctgatccacatc; GADD34–Left: ctcagcgccca-gaaac, Right:
ggaaatggacagtgaccttc; GAPDH–Left: gagtcaacggatttggtcgt, Right: ttgattttggagggatctcg; and
OC43-nsp15–Left: atggcgtagtggtggacaag, Right: actcccaggctgtcgaattg. Relative target levels
were determined using the ∆∆Ct method with normalization to 18S.

3. Results
3.1. The Targeting Subunit of eIF2α Holophosphatase GADD34 Is Strongly Upregulated in
OC43-Infected Cells

Our previously published analyses of eIF2α phosphorylation in OC43-infected cells
showed that at 24 and 48 h post-infection (hpi), OC43 causes a small but consistent increase
in p-eIF2α levels [29]. Therefore, to begin characterizing the effects of the virus on ISR, we
wanted to test the activation status of host factors upstream and downstream of phospho-
eIF2α in the pathway. Among the eIF2α kinases, we focused on PKR because of its
primary function in recognition of viral dsRNA replication intermediates, and PERK,
because coronaviruses are known to induce ER stress [33,34]. We infected 293A cells with
OC43 at a multiplicity of infection (MOI) = 1.0 and analyzed the phosphorylation statuses
of PKR, PERK, and eIF2α at 24 hpi using Western blotting. For positive controls, we
used transfection with polyinosinic-polycytidylic acid (poly(I:C)) dsRNA mimic for PKR
activation and treatment with the sarcoendoplasmic reticulum calcium ATPase (SERCA)
inhibitor thapsigargin (Tg) for the induction of ER stress and the activation of PERK
(Figure 1A,B). In both mock- and OC43-infected cells, poly(I:C) transfection induced the
activation of PKR (as measured by phosphorylation at Threonine-451) and strong eIF2α
phosphorylation, while no phospho-PKR signal could be detected in untransfected mock-
or OC43-infected cells (Figure 1A). These results indicate that in our infection model,
OC43 successfully blocks the detection of its dsRNA molecules by PKR. By contrast, virus
infection caused the activation of PERK (as indicated by the appearance of an upstream
shifted band corresponding to phosphorylated PERK), similar to the activation observed
in mock-infected cells upon 1 h Tg treatment (Figure 1B, lanes 1–3). As expected, 4 h Tg
treatment led to the induction of ATF4 and GADD34 and decreased phospho-eIF2α in both
mock- and OC43-infected cells (Figure 1B, lanes 5,6). However, even without Tg treatment,
OC43 infection strongly induced GADD34 to levels exceeding those observed after 4 h
Tg treatment in mock cells (Figure 1B, compare lanes 2 and 5). To test if GADD34 protein
accumulation was caused by increased mRNA levels, we isolated total RNA from mock-
and OC43-infected cells and performed a reverse transcription–quantitative polymerase
chain reaction (RT-QPCR) analysis of the GADD34 transcript. This analysis showed that,
similar to 4 h Tg treatment, OC43 infection caused the strong upregulation of GADD34
mRNA levels (Figure 1C). Control GAPDH transcript was not significantly affected by Tg
treatment or infection (Figure 1D). To confirm minimal eIF2α phosphorylation and strong
GADD34 upregulation by OC43 infection in a different cell type, we used Vero cells. Similar
to the infection of 293A cells, OC43 caused a small increase in eIF2α phosphorylation in
Vero cells and decreased the maximal levels of phospho-eIFα upon Tg treatment (Figure 1E).
The virus also caused the significant upregulation of GADD34 mRNA levels in Vero cells
(Figure 1F,G), confirming that this phenotype is not specific to the 293A infection model.
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Figure 1. OC43 strongly induces GADD34 expression. 293A cells were infected with OC43 at
MOI = 1.0. (A) Western blot analysis of lysates from mock- or OC43-infected cells collected at
24 h post-infection (hpi) with or without poly(I:C) transfection at 22 hpi (2 h poly(I:C) treatment).
(B) Western blot analysis of lysates from mock- or OC43-infected cells collected at 24 hpi with or
without Tg treatment for 1 or 4 h prior to harvesting. (C,D) Total RNA was isolated from mock-
and infected cells treated as indicated and levels of GADD34 (C) and GAPDH (D) transcripts were
determined by RT-QPCR. (E–G) Vero cells were infected with OC43 at MOI = 1.0. (E) Western blot
analysis of lysates from mock- or OC43-infected Vero cells collected at 24 hpi with or without Tg
treatment for 1 h prior to harvesting. (F,G) Total RNA was isolated from mock- and infected Vero
cells and levels of GADD34 (F) and ACTB (G) transcripts were determined by RT-QPCR. On all plots,
values were normalized to 18S and expressed as fold changes relative to mock untreated cells. Each
data point represents an independent biological replicate (N ≥ 3). Error bars = standard deviation.
Two-way ANOVA and Dunnett’s multiple comparisons tests were performed in C and D, and
Student’s t-Test in (F,G) to determine statistical significance (****, p-value < 0.0001; ***, p-value < 0.001;
**, p-value < 0.01; *, p-value < 0.05; ns, non-significant).

3.2. The Activation of the Integrated Stress Response Pathway Is Not Responsible for GADD34
Induction in OC43-Infected Cells

Next, we wanted to determine whether ISR activation by OC43 was responsible for
GADD34 upregulation and, consequently, the inhibition of As-induced eIF2α phospho-
rylation. To block phospho-eIF2α-mediated changes in translation initiation, we treated
mock- and OC43-infected cells with ISR inhibitor (ISRIB, [35]). ISRIB does not affect eIF2α
phosphorylation, but blocks its effects on the regeneration of the initiation-competent
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GTP-bound form of eIF2 and prevents translation arrest [36]. In our infection model, IS-
RIB treatment did not alter the inhibition of As-induced SG formation by OC43, while
it significantly decreased As-induced SG formation in mock-infected cells, as expected
(Figure 2A,B). It also did not affect OC43-mediated GADD34 induction (Figure 2C), the
inhibition of As-induced eIF2α phosphorylation by OC43 (Figure 2D,E), or virus replication
(Figure 2F). To test whether the ISR-dependent ATF4 and GADD34 induction pathway
is intact in 293A cells, we verified the effects of ISRIB on Tg-induced ISR in this model.
As expected, the Tg-mediated induction of ATF4 and GADD34 was blocked by ISRIB
(Figure 2G–I). Taken together, these results show that neither GADD34 induction nor the
inhibition of eIF2α phosphorylation by OC43 are due to ISR activation by the virus.

Viruses 2024, 16, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 2. Integrated stress response inhibitor does not prevent GADD34 upregulation or the inhibi-

tion of eIF2α phosphorylation by OC43. The 293A cells were infected with OC43 at MOI = 1.0 and 

treated with ISRIB at 1 hpi or left untreated. At 23 hpi, p-eIF2α phosphorylation and SG formation 

was induced by the sodium arsenite treatment (+As). (A) SG formation in infected and mock-in-

fected cells was analyzed using immunofluorescence staining for SG marker TIAR (magenta). In-

fected cells were identified by staining for nucleoprotein (N(OC43), teal). (B) SG formation was 

quantified from immunofluorescence staining images represented in (A). (C) Total RNA was iso-

lated from mock- and infected cells treated as indicated and levels of GADD34 transcripts were 

determined by RT-QPCR. Values were normalized to 18S and expressed as fold changes relative to 

mock untreated cells. (D) Western blot analysis of lysates from mock- or OC43-infected cells treated 

as indicated. (E) Relative level of eIF2α phosphorylation was quantified from Western blot images 

represented in (D). (F) Production of infectious virions in untreated and ISRIB-treated cells was 

measured in cell supernatants at 24 hpi. (G–I) ISRIB blocks Tg-induced ATF4 and GADD34 expres-

sion in 293A cells. Uninfected cells were treated with Tg with or without the addition of ISRIB as 

indicated. (G,H) Levels of GADD34 (G) and GAPDH (H) transcripts were determined by RT-QPCR. 

Values were normalized to 18S and expressed as fold changes relative to mock untreated cells. (I) 

Western blot analysis of lysates from cells treated as indicated. For all plots, each data point repre-

sents an independent biological replicate (N ≥ 3). Error bars = standard deviation. Two-way ANOVA 

Figure 2. Integrated stress response inhibitor does not prevent GADD34 upregulation or the inhibition
of eIF2α phosphorylation by OC43. The 293A cells were infected with OC43 at MOI = 1.0 and treated



Viruses 2024, 16, 212 8 of 16

with ISRIB at 1 hpi or left untreated. At 23 hpi, p-eIF2α phosphorylation and SG formation was
induced by the sodium arsenite treatment (+As). (A) SG formation in infected and mock-infected
cells was analyzed using immunofluorescence staining for SG marker TIAR (magenta). Infected
cells were identified by staining for nucleoprotein (N(OC43), teal). (B) SG formation was quantified
from immunofluorescence staining images represented in (A). (C) Total RNA was isolated from
mock- and infected cells treated as indicated and levels of GADD34 transcripts were determined by
RT-QPCR. Values were normalized to 18S and expressed as fold changes relative to mock untreated
cells. (D) Western blot analysis of lysates from mock- or OC43-infected cells treated as indicated.
(E) Relative level of eIF2α phosphorylation was quantified from Western blot images represented
in (D). (F) Production of infectious virions in untreated and ISRIB-treated cells was measured in
cell supernatants at 24 hpi. (G–I) ISRIB blocks Tg-induced ATF4 and GADD34 expression in 293A
cells. Uninfected cells were treated with Tg with or without the addition of ISRIB as indicated.
(G,H) Levels of GADD34 (G) and GAPDH (H) transcripts were determined by RT-QPCR. Values
were normalized to 18S and expressed as fold changes relative to mock untreated cells. (I) Western
blot analysis of lysates from cells treated as indicated. For all plots, each data point represents an
independent biological replicate (N ≥ 3). Error bars = standard deviation. Two-way ANOVA and
Tukey multiple comparison tests or an unpaired t-Test (panel F only) were performed to determine
statistical significance (****, p-value < 0.0001; ***, p-value < 0.001; **, p-value < 0.01; ns, non-significant).

The principal upstream transcription factor induced upon eIF2α phosphorylation by
PERK is ATF4. To confirm that ATF4 is not responsible for the transcriptional upregulation
of GADD34 in OC43-infected cells, we silenced its expression using two lentivirus-driven
shRNA constructs. As a non-targeting control, we used shRNA against IL2, the cytokine
that is not expressed in epithelial cells. Both shRNA constructs were effective in decreasing
Tg-induced ATF4 expression to nearly undetectable levels in uninfected cells, as well as
OC43-induced ATF4 expression (Figure 3A). At the same time, neither shRNA affected
the induction of GADD34 protein by OC43 infection or Tg treatment (Figure 3A). ATF4
silencing also did not affect OC43 protein accumulation, virus replication, or GADD34
mRNA induction (Figure 3B–D). In a classical ISR pathway, ATF4 induces the CHOP
transcription factor, which then induces GADD34. However, GADD34 can be induced
by other transcription factors [37–39], and in addition to PERK, Tg and OC43 can acti-
vate other ER stress sensors. One ER stress sensor that is strongly activated by OC43 is
inositol-requiring enzyme 1 (IRE1) [33]. IRE1 activation causes the non-canonical cyto-
plasmic splicing of mRNA-encoding transcription factor X-box binding protein 1 (XBP1),
leading to the synthesis of XBP1s, an activator of transcription produced from spliced
XBP1 mRNA [40]. Although the IRE1/XBP1s pathway has not been shown to upregu-
late GADD34, we tested whether IRE1 inhibition would perturb GADD34 expression in
OC43-infected cells. As reported previously in another model [33], OC43 infection induced
XBP1s in 293A cells (Figure 3E). The addition of specific IRE1 inhibitor 4µ8C inhibited
XBP1s’ induction triggered by OC43 infection or Tg treatment in a concentration-dependent
manner (Figure 3E,F), but did not affect GADD34 induction.

3.3. The PERK Arm of the Unfolded Protein Response Negatively Affects OC43 Protein Synthesis
and Replication

Having determined that OC43 infection activates PERK, we wanted to determine what
role PERK plays in virus replication. First, we silenced PERK expression in 293A cells by
transduction with the lentiviral-vector-encoding CRISPR/Cas9 system with guide RNA
targeting PERK (gRNA-PERK). After 2 days, transduced cells expressed measurably lower
PERK levels compared to parental untransduced cells (Figure 4A). When transduced cells
were infected with OC43, they accumulated more viral proteins and GADD34 compared to
parental cells (Figure 4A, lanes 3,4). Consistent with PERK being an upstream regulator of
ATF4 expression, when transduced cells were treated with Tg, they induced lower levels
of ATF4 protein compared to parental cells (Figure 4A, lanes 5,6). A similar effect was
also observed in OC43-infected cells (Figure 4A, lanes 7,8). This suggests that PERK is not
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required for GADD34 upregulation by OC43 and that PERK-mediated ISR may have an
antiviral role. Indeed, compared to parental cells, gRNA-PERK transduced cells generated
significantly higher infectious virus titers (Figure 4B).
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Figure 3. The upregulation of GADD34 expression by OC43 is ATF4-independent. (A–D) Cells
transduced with lentiviruses encoding shRNAs against ATF4 (shATF4-1 and shATF4-2) or control
IL-2 shRNA (shIL2) were infected with OC43 at multiplicity of infection (MOI) = 1.0 for 24 h or
were treated with Tg for 4 h. (A) Western blot analysis of lysates from cells treated as indicated.
(B) Production of infectious virions was measured in cell supernatants at 24 hpi. (C) Total RNA was
isolated from infected cells and levels of OC43 genomic RNA were determined by RT-QPCR. Values
were normalized to 18S and expressed as fold changes relative to shIL2 cells. (D) Levels of GADD34
transcripts in mock-infected, OC43-infected, and Tg-treated cells were determined by RT-QPCR.
(E,F) IRE1 inhibition does not affect GADD34 upregulation in OC43-infected or Tg-treated cells.
Western blot analysis of cells treated with the indicated concentrations of IRE1 inhibitor 4µ8C.
(E) Mock- or OC43-infected cells analysed at 24 hpi. (F) Untreated (-) and Tg-treated cells. For all
plots, each data point represents an independent biological replicate (N ≥ 3). Error bars = standard
deviation. Two-way ANOVA and Tukey multiple comparisons tests were carried out to determine
statistical significance (****, p-value < 0.0001; *, p-value < 0.05, ns, non-significant).
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Figure 4. The silencing of PERK enhances OC43 protein synthesis and infectious virion production.
The 293A cells transduced with lentivirus encoding Cas9 and guide RNA targeting PERK (gRNA-
PERK) or parental untransduced cells were mock- or OC43-infected at MOI = 1.0. (A) Western blot
analysis of cell lysates collected at 24 hpi. (B) The production of infectious virions was measured in
cell supernatants at 24 hpi. Each data point represents an independent biological replicate (N = 3).
Error bars = standard deviation. Student’s t-Test was performed to determine statistical significance
(*, p-value < 0.05).

3.4. OC43-Induced GADD34 Does Not Contribute to Decreased eIF2α Phosphorylation

To test if GADD34 upregulation is responsible for the inhibition of As-induced eIF2α
phosphorylation in OC43 infected cells, and to determine if GADD34 induction plays
a role in viral replication, we silenced its expression using transfection with two differ-
ent GADD34-targeting siRNAs (siGADD34#1 and siGADD34#2). As a control, we used
non-targeting siRNA (siNT). After 48 h, transfected cells were mock-infected or infected
with OC43 virus. At 24 hpi, GADD34 expression and As-induced eIF2α phosphorylation
were analyzed using Western blotting. Both siRNAs effectively silenced OC43-induced
GADD34 expression without affecting the inhibition of eIF2α phosphorylation triggered
by As (Figure 5A–D). Similarly, both siRNAs decreased GADD34 mRNA levels (Figure 5E).
To determine viral replication kinetics, siRNA-transfected cells were infected with OC43 at
MOI ~0.1 and viral replication was assessed at 12, 16, and 20 hpi using an immunofluores-
cence microscopy analysis of infected cells (Figure 5F), RT-QPCR for genomic RNA levels
(Figure 5G), and the release of infectious virions (Figure 5H). These analyses revealed that
in our infection model, GADD34 is not required for efficient OC43 replication, despite the
strong induction of this host protein by the virus.
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Figure 5. GADD34 is not responsible for the inhibition of eIF2α phosphorylation in OC43-infected
cells. GADD34 expression was silenced in 293A cells using specific siRNAs (siGADD34#1 and
siGADD34#2) or cells were transfected with non-targeting control siRNA (siNT). (A,B) West-
ern blot analysis of untreated or As-treated mock- or OC43 infected cells performed at 24 hpi.
(C,D) Relative level of eIF2α phosphorylation was quantified from Western blot images represented
in (A,B). (E) Levels of GADD34 transcript were determined by RT-QPCR. (F) Immunofluorescence
staining of OC43-infected cells pre-treated with the indicated siRNAs. Infected cells at 12, 16, and
20 hpi were visualised using the antibody to OC43 nucleoprotein (OC43, green). Nuclei were stained
with Hoechst dye (blue). (G) Total RNA was isolated from infected cells at the indicated times post-
infection and levels of OC43 genomic RNA were determined by RT-QPCR. Values were normalized
to 18S. (H) The production of infectious virions was measured in cell supernatants. For all plots, each
data point represents an independent biological replicate. Error bars = standard deviation. Two-way
ANOVA and Tukey multiple comparisons tests were performed to determine statistical significance
(****, p-value < 0.0001; ***, p-value < 0.001; **, p-value < 0.01; *, p-value < 0.05; ns, non-significant).

4. Discussion

In this work, we examined some of the key aspects of the ISR pathway in 293A cells
infected with human common cold virus OC43 (Figure 6). Previously, we used the same
infection model to demonstrate that OC43 infection proceeds efficiently in these cells and
does not trigger strong eIF2α phosphorylation or SG formation [29]. Most importantly,
OC43-infected cells become less responsive to As, a strong ISR inducer that triggers robust
eIF2α phosphorylation and SG formation in mock- but not in OC43-infected cells. Due to
its potency in triggering eIF2α phosphorylation and translation arrest, As is often used in
research labs to induce ISR-dependent SG formation [4]. We probed the response to As in
infected cells for the same reason; however, the level of oxidative stress induced by 50 µM
As is not physiological and only serves as a probe to reveal potential eIF2α phosphorylation
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inhibition. Since coronavirus mRNAs are sensitive to ISR-induced translation arrest [28],
they must evolve mechanisms to suppress ISR to ensure robust viral protein synthesis and
replication. To characterize the upstream activation of eIF2α kinases by OC43, we focused
on PKR and PERK, the two kinases that are often activated by virus infections [9]. For
example, both kinases are activated by severe acute respiratory syndrome coronavirus and
chicken gammacoronavirus infectious bronchitis virus [41,42], and PERK is shown to be
activated by a number of different coronaviruses and can be involved in virus-induced
cell death and inflammation [28,34,43,44]. In our infection model, we did not detect PKR
activation by OC43. Moreover, we did not observe the inhibition of PKR activation by
poly(I:C) transfection in OC43-infected cells compared to mock. This suggests that OC43
is efficient at avoiding the detection of its dsRNA molecules by PKR by shielding them
inside the double membrane replication transcription compartments and/or by the action
of the Nsp15 protein [45], and does not actively block PKR activation. By contrast, OC43
infection caused a detectable activation of PERK, consistent with its ability to trigger ER
stress in infected cells [33,46,47]. Interestingly, PERK activation was previously shown
to either inhibit (transmissible gastroenteritis virus, [28]) or promote (porcine epidemic
diarrhea virus, [44]) coronavirus replication. In our study, we demonstrate that PERK is an
antiviral factor for OC43, as the silencing of PERK expression in 293A cells enhanced viral
protein accumulation and infectious virion release. Interestingly, despite PERK activation,
eIF2α phosphorylation levels in OC43 remained low, confirming that it is inhibited in
virus-infected cells.
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Figure 6. A schematic diagram representing the main findings of this work. Question marks indicate
the main unanswered questions that should be addressed in future studies: How does OC43 inhibit
HRI? What is the mechanism of GADD34 upregulation by OC43? What is the function of GADD34 in
OC43-infected cells?

In our infection model, we demonstrate the robust induction of the downstream ISR
effector GADD34 by OC43. GADD34 is a multifunctional protein involved in cellular stress
responses. Its primary role in ISR is the recovery of protein synthesis after stress by forming
a complex with PP1 to dephosphorylate eIF2α [13]. Beyond its involvement in the ISR,
GADD34 plays a role in the modulation of cell death and cell cycle regulation, contributing
to growth arrest under certain stress conditions [48–50]. The specific functions of GADD34
are context-dependent and vary based on the nature of the stress stimuli and cellular
context [1,48,50]. Given robust GADD34 induction by OC43 infection, the inhibition of
eIF2α phosphorylation by OC43 could be explained by GADD34-mediated recruitment
of PP1 and increased eIF2α dephosphorylation rates. However, we were unable to alter
the inhibition of As-induced eIF2α phosphorylation in OC43-infected cells by silencing
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GADD34. In mock-infected cells, Tg induced lower levels of GADD34 compared to those
induced by OC43 infection, and this induction resulted in the apparent dephosphorylation
of eIF2α at 4 h post-treatment compared to its peak at 1 h post-treatment. These results
indicate that most of the GADD34 induced by the virus is diverted to perform other
functions, but that the ISR negative feedback loop is intact in 293A cells.

The induction of GADD34 by Tg followed eIF2α phosphorylation by PERK and the
production of the ATF4 transcription factor that normally functions upstream of GADD34
induction in the ISR pathway. Our analyses showed that ATF4 is not required for GADD34
induction by ER stress in 293A cells, because GADD34 protein accumulation in response to
Tg or OC43 infection was unaffected by ATF4 silencing. In addition to ATF4, GADD34 can
be induced by transcription factors CHOP and ATF3 [1], as well as the interferon regulatory
factor 3 (IRF3) [37]. Both CHOP and ATF3 are induced by ATF4; however, other stimuli
can upregulate ATF3 [51,52]. IRF3 is the main transcription factor activated by cellular
sensors of viral nucleic acids and an important driver of type I and type III interferon
expression [53]. OC43 was shown to activate IRF3 and induce interferon response genes in
lung fibroblast cell line MRC5 [54], but in another study OC43 was demonstrated to be very
efficient at avoiding type I and type III interferon induction in primary human bronchial
epithelial cells [55]. Future studies will determine if ATF3, IRF3, or other transcription
factors implicated in GADD34 induction [38,39] are responsible for the upregulation of
GADD34 in OC43-infected cells.

To summarize, our work revealed that OC43 infection activates the PERK arm of the
ISR that suppresses viral protein synthesis and replication. At the same time, OC43 robustly
induces GADD34, a multifunctional protein normally involved in eIF2α dephosphorylation.
However, GADD34 silencing had no effect on the viral inhibition of As-induced eIF2α
phosphorylation or virus replication. For our infection model, we used 293A cells, a kidney-
derived cell line that can be productively infected by OC43 [29]. The 293A cells are a clone
of the human embryonic kidney 293 cell line that contains a stably integrated copy of
the adenovirus E1 gene that encodes the E1a and E1b proteins. These viral proteins can
potentially skew the cellular responses to OC43 infection, as they are shown to attenuate
interferon induction [56,57]. Our previous work showed that eIF2α phosphorylation
and SG inhibition by OC43 occurs in multiple cell types, including the untransformed
immortalized human upper airway BEAS2B cells [29]. In this study, we confirmed strong
GADD34 upregulation by OC43 in Vero cells that do not express adenoviral E1 gene
products. However, the use of transformed cell lines deficient in type I interferon responses
represents a limitation of our study, and it is possible that GADD34 may perform an
important proviral or antiviral function in other infection models. Another limitation of
this study is that we only tested PKR and PERK activation by OC43. Importantly, while Tg-
triggered eIF2α phosphorylation by PERK was partially inhibited by OC43, PKR-mediated
phosphorylation of eIF2α in response to poly(I:C) transfection was not. It is possible that
the mechanism of ISR inhibition by OC43 is stress- or kinase-specific. Given the threat of
ISR and eIF2α phosphorylation to coronavirus mRNA translation, future research should
examine the activation of HRI and GCN2 and address whether OC43 directly inhibits
eIF2α phosphorylation by HRI or decreases oxidative stress in infected cells and how these
mechanisms influence virus fitness and pathogenesis.
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