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Abstract: In 2007, an outbreak of African swine fever (ASF), a deadly disease of domestic swine and
wild boar caused by the African swine fever virus (ASFV), occurred in Georgia and has since spread
globally. Historically, ASFV was classified into 25 different genotypes. However, a newly proposed
system recategorized all ASFV isolates into 6 genotypes exclusively using the predicted protein
sequences of p72. However, ASFV has a large genome that encodes between 150–200 genes, and
classifications using a single gene are insufficient and misleading, as strains encoding an identical p72
often have significant mutations in other areas of the genome. We present here a new classification of
ASFV based on comparisons performed considering the entire encoded proteome. A curated database
consisting of the protein sequences predicted to be encoded by 220 reannotated ASFV genomes was
analyzed for similarity between homologous protein sequences. Weights were applied to the protein
identity matrices and averaged to generate a genome-genome identity matrix that was then analyzed
by an unsupervised machine learning algorithm, DBSCAN, to separate the genomes into distinct
clusters. We conclude that all available ASFV genomes can be classified into 7 distinct biotypes.

Keywords: African swine fever; ASFV; biotype; genotype; classification

1. Introduction

The only member of the Asfarviridae family is the African swine fever virus (ASFV),
which contains a large double-stranded DNA genome consisting of 150–200 genes. ASFV
causes a severe disease in domestic swine and wild boar, African swine fever (ASF),
resulting in economic losses in areas where ASF remains endemic or is causing outbreaks.
Historically, ASFV has been characterized into 25 genotypes based on the partial sequencing
of the B646L gene that encodes the major capsid protein p72. Although ASFV has been
around for over 100 years [1], before 2007 the disease only sporadically left Africa. However,
currently ASFV is causing a global pandemic, that started after ASFV was discovered in
the Republic of Georgia in 2007 [2]. This outbreak has persistently spread across Europe,
and Asia and, in 2021, reached the island of Hispaniola (Dominican Republic and Haiti) [3].
Just recently, in 2023, ASF made its first appearance in Sweden [4]. In the current pandemic,
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only genotype 2 has been detected outside of Africa, with the exception of China which has
also detected a low virulent genotype 1 (that closely matches a historical vaccine strain) and
a hybrid virus of these two strains [5]. Numerous reports have documented the existence
of variations stemming from the genotype 2 strain whose origin can be traced back to
Georgia. Genotype 2 variants have been identified in various regions across the globe,
including Europe, Asia, Hispaniola, and Africa [3,6–10]. Indeed, some of these strains have
mutations across the genome, genetic rearrangements, and deletions. To further complicate
research efforts even more, recent reports indicate that, in Africa, ASFV isolates in domestic
or smallholder farms have been restricted to only p72 genotypes 1, 2, 9, and 23 [2,7,11–14].

Subsequently, the significance and accuracy of the delimitations of genotypes have
become a concern for the ASFV research community. Recently, during the Global African
swine fever Research Alliance (GARA) meeting held in the Dominican Republic in May
of 2022 and again at the GARA Gap analysis held in Uganda in February of 2023, the
significance of p72 genotyping was discussed. ASFV genotyping based on the sequence
of p72 was created with the purpose of the epidemiological tracking of the appearance of
different field isolates, but its significance has been erroneously applied to other purposes,
including prediction of cross-protection. Recently we analyzed all publicly available
sequences for p72 and established criteria for genotyping, as this methodology is still in use
in endemic and outbreak areas where the technologies for whole genome sequencing are
likely to be unavailable [14]. We discovered that there were not 25 genotypes as previously
reported, and after correcting some sequence analysis errors, we established a new criterion
for p72 genotyping, demonstrating the existence of only 6 genotypes.

With the recently approved vaccines in Vietnam for ASF against the current genotype
2 field strain, the question that arises is how many distinct ASFV genomes exist, and how
many different vaccines will be needed to cover all current and future emerging strains
of ASFV. With limited information about cross-protection of ASF vaccines, and since the
only certain way to test cross-protection experimental evaluation in animal experiments,
it is important as a starting point to group field isolates into distinct groups. This would
facilitate the design of cross-protection studies and give a clear understanding of the
landscape of circulating and historical ASFV strains. This methodology must also be
implemented as evolutionary changes will create potential new field strains of ASFV which
would need to be identified to determine as are true new emerging strains or if they fall
within a cluster of previously identified ASFV strains.

As reviewed by Qu et al. [15], efforts have been made to enhance the resolution of the
p72 categorization of ASFV through the utilization of other genes, specifically p54 (E183L)
and the central variable region (CVR) of B602L [15]. Still, due to the complexities inherent
to the ASFV genome (large size, gain, and loss of genes, and hundreds of open reading
frames—ORFs), the classification of ASFV based on small subsets of genes is inadequate.

Attempts to classify ASFV through whole genome analysis began in the 1980s utilizing
restriction fragment length polymorphism [15–17]. This method facilitated the categoriza-
tion of 23 isolates collected from Africa, Europe, and the Americas into five groups [15,17].
The recent advent of next generation sequencing (NGS) technologies has led to the assem-
bly of whole ASFVs genomes, facilitating the phylogenetic analyses of ASFV by several
research groups [18–22]. These analyses have resulted in the proposition that ASFV can be
categorized into five distinct clades: alpha, beta, gamma, delta, and epsilon [20]. Still, cate-
gorization by whole genome analysis has its disadvantages: (1) Mutations in untranslated
regions (UTR) are weighted the same as mutations that occur in ORFs, (2) synonymous
mutations are weighted the same as nonsynonymous and nonsense mutations, and finally
(3) mutations and deletions that occur in the highly variable genes within the MGF families
are weighted the same as mutations that occur in conserved “core” proteins. Theoretically,
one could partition and align each ORF, UTR, and the highly variable region (HVR) of the
ASFV genome using a different evolutionary model for each region, however, this approach
necessitates significant computational resources [15]. More recently, 41 ASFV genomes
were analyzed using the chewBBACA pipeline [23,24]. In short, coding sequences (CDSs)
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over 250 nts long were extracted and binned by allele designation. Nucleotide sequences of
alleles were then aligned, and a phylogenetic analysis was performed. While this methodol-
ogy only examines mutations that occur in ORFs, the remaining disadvantages/challenges
of whole genome nucleotide analysis remain. Finally, it should be noted that although
phylogenetic analysis yields a visual representation of differences, the criteria employed to
define clades may still be ambiguous.

In this study, we collected 220 non-duplicate whole genomes of ASFV isolated from
NCBI. Genomes were annotated using ASFV Georgia 2007/1 as a reference and uniden-
tified ORFs were annotated using CLC Genomics Workbench 23.0.2 (QIAGEN, Aarhus,
Denmark). Annotations were manually curated, and translated to their predicted amino
acid sequences, and homologous amino acid sequences encoded by the different genomes
were aligned using MUSCLE [25] to create gene-level percent identity matrices via BioPy-
thon [26]. Gene-level percent identity matrices were weighted using an in-house developed
algorithm and averaged to create a genome-genome percent identity matrix that was ana-
lyzed using the density-based clustering algorithm DBSCAN [27,28] to cluster the genomes
based on similarity. Based on this research we propose that ASFV can be classified into
seven biotypes.

2. Materials and Methods

The overall methodology used in this paper is documented in Figure 1 and further
described in the sections that follow.
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Figure 1. Summary of the analysis pipeline described in Materials and Methods.

2.1. Description of the Dataset

The full-length genomes of 261 ASFV isolates were retrieved from the Nucleotide
collection of NCBI on 1 June 2023 using the search term “African swine fever virus” and
the following parameters: [porgn:_txid10497], Sequence length > 166,000 and Molecule
types filter set to “genomic DNA/RNA”. Genomes from the following isolates SPEC_57,
LIV_5_40, RSA_2_2008, Zaire, RSA_2_2004, and RSA_W1_1999 (GenBank accessions
MN394630, MN318203, MN336500, MN630494, MN641877, and MN641876, respectively)
were corrected of numerous SNPs using their raw sequencing data (Sequence Read Archive
accessions SRR10282408, SRR10282646, SRR10282409, SRR10418876, SRR10418782, and
SRR10418853, respectively).

2.2. Annotation of the Dataset

Using the isolate ASFV Georgia 2007/1 (GenBank accession: FR682468.2) as a reference,
all genomes were annotated using the default parameters of Genome Annotation Transfer
Utility (GATU) [29]. Overlapping annotations were manually corrected. In addition,
the “Find Open Reading Frames” function of CLC Genomics Workbench 23.0 (Qiagen,
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Aarhus, Denmark) was used to detect ORFs that were not identified by GATU (minimum
length = 110 codons). The identified ORFs were subsequently translated, compared to
the NCBI database using the default parameters of BLASTP, and were assigned names
based on their best match [30–33]. Any ORFs that matched a hypothetical protein that
was not annotated in the Georgia 2007/1 genome were excluded from further analyses. In
some instances, Georgia 2007/1 encodes a shortened version of a gene within one of the
five multigene families (MGF) (MGF-100, MGF-110, MGF-300, MGF-360, and MGF-505).
Accordingly, MGF annotations were manually extended to an earlier start codon if the
start codon was over 100 nucleotides upstream and in-frame. The letters, starting with “a”,
were added to gene names if a gene was split into multiple ORFs. Duplicate genes were
indicated by the suffix “_1”.

2.3. Curation of the Dataset

Annotations were translated to generate the predicted protein-coding sequences using
CLC Genomic Workbench 23.0. To decrease computational time, 29 duplicate proteomes,
(e.g., Pretoriuskop/96/4 (AY26136) and Pretoriuskop/96/4 (NC_044952)), were removed
(Table S1). Next, to correct for potential sequencing errors, multiple proteomes were
removed: ASFV/Kyiv/2016/131 (MN194591) was excluded from further analysis as it
contained numerous insertions and deletions (indels) resulting in frameshifts and early trun-
cations in multiple well-conserved proteins, Arm/07/CBM/c4 (LR881473) was excluded
since it originated from a mixed stocked [34] and finally 10 proteomes with more than
50 ambiguous nucleotides (MH910495, MH910496, MW788405, MW788407, MW788408,
MW788409, MW788410, MW788411, OK236383, ON402789) were removed. To further
refine the dataset, corrections were applied to individual proteins; 545 proteins with am-
biguous amino acids or less than 5 homologues of the same length (excluding genes of the
MGF families) were removed. After curation, the final dataset consisted of 220 genomes
encoding a total of 242 unique genes (Table S2).

2.4. Protein Alignment

The 242 homologues were aligned using MUSCLE v 3.8.31 [35] using a gap extension
penalty of −1.0, and a gap opening penalty of −10.0. The protein alignments were then
converted to gene-level percent identity distance matrices using Biopython [26].

2.5. Genome Level Analysis and Clustering

Weights were designed to give more weight to “core” genes (non-MGF, non-ACD, and
non-hypothetical genes) (Table S4) as well as genes present in more genomes. Genes were
assigned a weight using the following equation:

WGene = C ×
√

# o f genomes encoding gene
C = 1 if core, 1

4 if not core

It should be noted that genomes that did not encode a gene would not have their
average impacted by the absence of said gene. Using the weighted average, gene-level
percent identity distance matrices were then averaged into a single cumulative genome-
genome percent identity matrix. This final percent identity matrix was run through the
spatial clustering machine learning algorithm DBSCAN from scikit-learn 1.3.0 [27,36],
100 times using an Epsilon (eps) value of 0.01 to 1 at intervals of 0.01 and the following
constant parameters: min_samples = 1, metric = ‘euclidean’, metric_params = None,
algorithm = ‘auto’, leaf_size = 30, and p = None. The process is summarized in Figure 2.
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(A) Gene-level identity matrices are multiplied by their weights and averaged resulting in the
(B) genome-genome identity matrix. The average genome-genome identity matrix is then analyzed
via DBSCAN to identify clusters based on similarity. The weight equation is described in Section 2.4.

3. Results
3.1. Full-Length Genomes on NCBI

All 261 full-length ASFV genome sequences were downloaded from NCBI and pro-
cessed as described in the Materials and Methods Section 2 (Tables S1 and S3) resulting
in a database of 220 curated genomes. ASFV annotation and gene nomenclature have not
been standardized and have resulted in some genes having multiple alternative names [37],
reviewed on https://asfvgenomics.com/proteindatabase (accessed on 1 December 2023).
To avoid potential conflicts in nomenclature, all genomes were re-annotated using Georgia
2007/1 (GenBank accession: FR682468.2) as a reference, resulting in 220 non-redundant
genomes encoding an average of 175.9 genes (±15.1).

3.2. Clustering of ASFV

Pairwise percent identities were calculated for each gene. Evaluating virus proteins
encoded in the central region of the genome, the following proteins had the lowest percent
identities (considering at least 100 genomes): A118R (0.73 ± 0.292), EP153R (0.77 ± 0.22),
EP402R (0.79 ± 0.212), A238L (0.83 ± 0.155), L60L (0.84 ± 0.171), DP71L (0.89 ± 0.264),
A240L (0.91 ± 0.1), I10L (0.92 ± 0.08), I196L (0.92 ± 0.093), L11L (0.93 ± 0.094) (Table S5).
Following their calculation, all pairwise percent identity matrices were averaged into a
single identity matrix using an algorithm developed in-house as described in the Materials
and Methods section. Our weighting matrix increased the value of (1) genes that were
consistently encoded and (2) 123 conserved “core” proteins (Table S4). Genes annotated as
“ACD ####” were given less weight because they are hypothetical proteins with no known
function. Genes within the five MGF families (MGF100, MGF110, MGF300, MGF360,
and MGF505) were given less weight since they are highly variable and often contain
homopolymer stretches of G/C or A/T that can result in indels that lead to deletions,

https://asfvgenomics.com/proteindatabase
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truncations, and fusions [10,22] and reviewed in [37]. The weighted gene-level percent
identity distance matrices were then averaged into a single genome-genome percent identity
matrix, and clustered based on similarity using DBSCAN. Clustering refers to the process
of dividing a dataset into subsets of points. The aim is to group similar points together in
the same cluster while separating dissimilar points into different clusters. The utilization
of DBSCAN as a clustering technique offers an extra level of dependability, as DBSCAN
identifies clusters of arbitrary shape and does not require a specific number of clusters to
be specified [36]. Accordingly, it is more powerful than other clustering methods such as
k-means which place data in clusters based on their proximity to a central point and require
a specific number of clusters to be identified before analysis. The DBSCAN algorithm
produces an output whereby each genome is assigned a numerical value ranging from
0 to n, where n + 1 = the total number of clusters at a given epsilon (
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10 of which (TAN/08/Mazimbu (ON409981), Malawi Lil-20/1 (AY261361), Ken05/Tk1
(KM111294), Uvira B53 (MT956648), BUR/18/Rutana (MW856067), Uganda (Unpublished),
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(MN318203) were composed of only a single genome. The remaining eight groups were
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Recombinant, and Georgia) and were composed of 8, 2, 3, 4, 66, 2, 3, and 122 genomes,
respectively (Table S7).
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similarity within each group decreases and the total number of amino acid differences
increases. Compared to the previous standard of ASFV classification, genotyping by p72
(B646L), the weighted similarity metric exhibits significantly lower values compared to p72
similarity at each
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the weighted similarity metric are more responsive and discerning in terms of classification
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Example Isolate Weighted Similarity p72 Similarity

0.05 NHV (KM262845) 0.99313 (412) 1.00000 (0)

0.07 K49 (MZ202520) 0.98256 (1046) 1.00000 (0)

0.14 Warmbaths (AY261365) 0.96428 (2143) 0.99536 (3)

0.21 ASFV Georgia 2007/1 (FR682468) 0.95485 (2709) 0.99536 (3)

0.53 Malawi Lil-20/1 (AY261361) 0.92482 (4511) 0.98297 (11)
Parenthetical numbers indicate the estimated number of amino acid changes compared to the reference.

3.3. ASFV Can Be Classified as 7 Biotypes

At three epsilon values between 0.05 and 0.10 (0.06, 0.07, and 0.09) the 18 clusters
merge based on similarity until forming 7 clusters at epsilon = 0.10 (Figure 3). Larger
epsilon values (0.12, 0.13, 0.14, 0.21, and 0.32) continued to group the isolates, decreasing
the total number of clusters (6, 5, 4, 3, and 2, respectively) until all genomes converged
into a single cluster at an epsilon value of 0.53. Accordingly, for our new classification,
we chose a cutoff value of epsilon = 0.10 as it was large enough to combine all historic
genotype I isolates, yet small enough that genotype I isolates remained separated from the
recently described recombinants which are composed of genetic sequences derived from
NHV (genotype 1) and ASFV-G (genotype 2) [5]. We propose that this new grouping be
referred to as biotypes.

The 7 biotypes present when epsilon = 0.10 have some similarities to the traditional
classification of ASFV based on p72 sequencing (Table 2 and Table S7) [38]. Biotype 1 is
composed of 69 isolates that would traditionally be considered part of Genotype I (Group
Benin, Group K, and isolate LIV 5/40,). However, Mkuzi 1979 (AY261362), whose genotype
has been ambiguous, historically classified as genotype I, VII, or XII, was also included
in this biotype [14,18,39]). Interestingly, isolates within biotype 1 have been collected
from outbreaks that occurred in many different regions including eastern Africa (Group K),
southern Africa (LIV 5/40 and Mkuzi 1979), western Africa (Benin 97/1 and Ghana2021-95),
Europe (NHV, L60, E75, OURT 88/3, E75, and the Sardinia strains), Asia (Pig/HeN/ZZ-
P1/2021 and Pig/SD/DY-I/2021) and the island of Hispaniola (DR-1980) and that have
spanned multiple decades (1949 to 2021) (Table 3).

Table 2. Comparison of biotypes, p72 genotypes, historic genotype, and clades by group.

Group Biotype Updated Genotype 1 Historic Genotype 2 Clade 2

Group Benin 1 1 I Alpha

Mkuzi 1979 (AY261362) 1 1 I/VII 3 Alpha

LIV 5/40 (MN318203) 1 1 I/VII Epsilon 4

Group K 1 1 I N/A

Group Recombinant 1–2 R 2 II N/A

Group Georgia 2 2 II Beta

RSA/2/2004 (MN641877) 3 2 XX N/A

Group Warmbaths 3 2 III Epsilon
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Table 2. Cont.

Group Biotype Updated Genotype 1 Historic Genotype 2 Clade 2

Group Warthog 3 2 IV Epsilon

Tengani 62 (NC_044951) 3 2 V Delta

Ken05/Tk1 (KM111294) 4 9 X 5 Gamma

Uvira B53 (MT956648) 4 9 X N/A

BUR/18/Rutana (MW856067) 4 9 X N/A

Uganda (UnPub002) 4 9 X N/A

Group Kenya 1950 4 9 X Gamma

Group Kenya 06 5 9 IX Gamma

Malawi Lil-20/1 (1983)
(NC_044954) 6 8 VIII Gamma

TAN/08/Mazimbu (ON409981) 6 15 XV N/A
1 Referenced from [14]. 2 Referenced from [20]. 3 Categorized as I or VII [20]. 4 For this manuscript, Liv5/40 was
reassembled, possibly explaining a difference in groups. 5 Ken05/Tk1 was classified as genotype X, however its
p72 protein sequence is identical to IX genotypes. N/A represents there was no Clade information available.

Table 3. Biotype classification of ASFV isolates.

Biotype Isolate

1

15998, 22649, 23221, 30322, 31208, 34403, 44076, 46830, 47039, 51268, 53706, 56140, 74377, 98039, 103917/18,
139/Nu/1981, 140/Or/1985, 141/Nu/1990, 142/Nu/1995, 19155_WB, 2019 WB, 22653/Ca/2014, 22943_2008,

26/Ss/2004, 26544/OG10, 28784WB, 33262WB, 33747 WB, 47/Ss/2008, 49179 WB, 4996 WB, 55234/18,
56/Ca/1978, 57/Ca/1979, 60/Nu/1997, 63525 WB, 7212WB, 72398 WB, 72407/Ss/2005, 72912 WB, 85/Ca/1985,
97/Ot/2012, BA71, BA71V, Benin 97/1, Ca1978_2, DR-1980, E75, Ghana2021-95, K49, KK262, L60, LIV/5/40,

LO2018 major, LO2018 minor, Mkuzi 1979, NHV, Nu1979, Nu1986, Nu1990_1, Nu1991_2, Nu1991_3, Nu1991_7,
Nu1993_2, Nu1995_3, Or_1984, Or1993_1, OURT 88/3, Pig/HeN/ZZ-P1/2021, Pig/SD/DY-I/2021

1–2
Recombinant Pig/Henan/123014/2022, Pig/Inner Mongolia/DQDM/2022, Pig/Jiangsu/LG/2021

2

2020ASP01832, 2020ASP02103, 2020ASP02805, 2020ASP02894, 2021ASP00484, 2021ASP00703, 2021ASP00902,
2021ASP00921, 2021ASP01917, 2021ASP01919, 2021ASP01957, 2021ASP02148, 2021ASP02207, 2021ASP02665,
2021ASP03144, 2021ASP03251, 2021ASP03380, 2021ASP03384, 2021ASP03643, 2021ASP03658, 2021ASP03711,
2021ASP03740, 20355/RM/2022_Italy, 2802/AL/2022 Italy, A4, ABTCVSCK_ASF001, ABTCVSCK_ASF007,
AQS-C-1-21, AQS-C-1-22, AQS-P-201202, AQS-P-20901-1, Arm/07/CBM/c2, ASF-MNG19, ASFV Belgium

2018/1, ASFV CzechRepublic 2017/1, ASFV Georgia 2007/1, ASFV Germany 2020/1, ASFV
Korea/pig/Yeoncheon1/2019, ASFV Wuhan 2019-1, ASFV/Amur 19/WB-6905, ASFV/ARRIAH/CV-1/30,

ASFV/ARRIAH/CV-1/50, ASFV/Kabardino-Balkaria 19/WB-964, ASFV/Kaliningrad_17/WB-13869,
ASFV/Kaliningrad_18/WB-12516, ASFV/Kaliningrad_18/WB-12523, ASFV/Kaliningrad_18/WB-12524,

ASFV/Kaliningrad_18/WB-9734, ASFV/Kaliningrad_18/WB-9735, ASFV/Kaliningrad_19/WB-10168,
ASFV/Korea/pig/PaJu1/2019, ASFV/LT14/1490, ASFV/pig/China/CAS19-01/2019,

ASFV/POL/2015/Podlaskie, ASFV/Primorsky 19/WB-6723, ASFV/Primorsky_19/DP-8235,
ASFV/Timor-Leste/2019/1, ASFV/Ulyanovsk 19/WB-5699, ASFV/Zabaykali/WB-5314/2020,

ASFV/Zabaykali_20/DP-4905, ASFV_Hanoi_2019, ASFV_NgheAn_2019, ASFV-SY18, ASFV-wbBS01,
ASFV-wbShX01, Belgium/Etalle/wb/2018, CADC_HN09, China/GD/2019, China/LN/2018/1,

CN/2019/InnerMongolia-AES01, Estonia 2014, Ghana2022-35, GZ201801, GZ201801_2, HB03A, HB31A, HuB20,
IND/AR/SD-61/2020, IND/AS/SD-02/2020, JX21, Kashino 04/13, Korea/HC224/2020, Korea/YC1/2019,

LYG18, MAL/19/Karonga, Nigeria-RV502, Odintsovo_02/14, OP823268, OP823269,
Pig/Heilongjiang/HRB1/2020, Pig/HLJ/2018, Pol16_20186_o7, Pol16_20538_o9, Pol16_20540_o10,

Pol16_29413_o23, Pol17_03029_C201, Pol17_04461_C210, Pol17_05838_C220, Pol17_31177_O81,
Pol17_55892_C754, Pol18_28298_O111, Pol19_53050_C1959/19, SY-1, SY-2, TAN/17/Kibaha, TAN/17/Mbagala,

TAN/20/Morogoro, Tanzania/Rukwa/2017/1, Vietnam/Pig/RG-1/01, Vietnam/Pig/RG-2/01,
Vietnam/Pig/RG-3/01, Vietnam/Pig/RG-4/01, Vietnam/Pig/RG-5/01, Vietnam/Pig/RG-6/01,

Vietnam/Pig/RG-7/01, VN/HY-ASFV1(2019), VN/QP-ASFV1(2019), VNUA-ASFV-05L1/HaNam/VN/2020,
VNUA-LAVL2, wild boar/SNJ/2020, Yangzhou, YNFN202103,
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Table 3. Cont.

Biotype Isolate

3 Pretoriuskop/96/4, RSA/2/2004, RSA/2/2008, RSA/W1/1999, SPEC_57, Tengani 62, Warmbaths, Warthog, Zaire

4 ASFV Ken.rie1, BUR/18/Rutana, Ken05/Tk1, Kenya 1950, Uganda, Uvira B53,

5 Ken06.Bus, Ken1033, N10, R25, R35, R7, R8, TAN/16/Magu,

6 Malawi Lil-20/1, TAN/08/Mazimbu

Biotype 3 consists of 9 unique genomes that were all isolated from southern Africa
between 1962 and 2008. Recent reanalysis of the p72 genotypes grouped these isolates into
genotype 2 with the derivatives of Georgia 2007/1 [14]. However, full genome analysis
clearly indicates that the genomes are different when compared to Georgia 2007/1. Further,
large epsilon values (
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= 0.21). Interestingly, four isolates (Warmbaths (AY261365), RSA/2/2008 (MN336500),
SPEC 57 (MN394630), and Pretorisuskop/96/4 (AY261363)) were collected from a tick, three
isolates were collected from a warthog or wild boar (RSA_2_2004 (MN641877), Warthog
(AY261366), and RSA/W1/1999 (MN641876)), while only two isolates (Zaire (MN630494)
and Tengani 62 (AY261364)) were collected from domesticated pigs. Taken together, the
metadata suggests the genetic adaption of ASFV to ticks or different host species [40,41].
Still, care must be taken not to overanalyze the results as other strains isolated from ticks in
South Africa (LIV 5/40 (MN318203), Mkuzi (AY261362), and Malawi Lil-20/1 (ON409981))
did not group into biotype 3.

Biotype 2 is composed of 122 genotype II isolates that are derivatives of the current
pandemic strain ASFV Georgia 2007/1. It also included the recent isolates YNFN202103
(ON400500), Nigeria-RV502 (OP672342), and Ghana2022-35 (OP479889), which all contain
a nearly 6.5 kilobase pair deletion which resulted in the loss of 14 ORFs (MGF 110-8L,
MGF 100-1R, ACD 00190, MGF 110-9L, ACD 00210, MGF 110-10L-14 L, ACD 00240, MGF
110-12L, MGF 110-13La, MGF 110-13Lb, ACD 00270, MGF 360-4L, ACD 00300 and ACD
00350) [10]. Since all the lost ORFs are annotated as an MGF family or hypothetical proteins,
which are given less weight by the algorithm, and because the algorithm does not punish
genomes for not encoding genes, YNFN202103, Nigeria-RV502, and Ghana2022-35 grouped
within biotype 2.

Biotype 1–2 Recombinant consists of 3 recently isolated genomes from China. The
genomes consist of biotype 1 and biotype 2 sequences and were believed to be the result of
a recombination between NHV (also known as ASFV/NH/P68) (KM262845) and Georgia
2007/1 [5,39].

The three remaining biotypes are exclusively made up of isolates collected from East
Africa. Biotype 4 is composed of 6 unique genomes (Ken05/Tk1 (KM111294), Kenya
1950 (AY261360), ASFV Ken.rie1 (LR899131), Uvira B53 (MT956648), BUR/18/Rutana
(MW856067), Uganda (unpublished)) which were historically categorized as genotype X.
Interestingly, although Ken05/Tk1 was historically characterized as genotype X based on
its nucleotide sequences, its predicted p72 protein sequence is identical to the protein se-
quence of a genotype IX. Biotype 5 is composed of Ken06.Bus (KM111295), R8 (MH025916),
R7 (MH025917), R25 (MH025918), N10 (MH025919), R35 (MH025920), TAN/16/Magu
(ON409980), Ken1033 (unpublished) which were historically categorized as genotype
IX. Biotype 6 consists of Malawi Lil-20/1 (1983) (AY261361) and TAN/08/Mazimbu
(ON409981) which were historically classified as genotype VIII and XV.

3.4. Webportal for Automatic ASFV Biotyping and Genotyping

A tool has been provided on the Center of Excellence for Swine Fever Genomics web-
site (https://asfvgenomics.com/upload) (Accessed on 1 December 2023) that analyzes a
novel ASFV genome uploaded by the user and returns the most likely biotype (manuscript
in submission). Moreover, as genotyping is still widely recognized and as a method to

https://asfvgenomics.com/upload
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connect contemporary variants with past samples the closest p72 match will be predicted
Additionally, the tool will issue warnings for highly unlikely genomes (indicating a poten-
tial need for reassembly). In the future, a function will be implemented that will detect
new potential biotypes or groups—if a new potential biotype or group is detected, an email
address will be given so that we can correspond about results and aid in the classification
of your genome.

4. Discussion

Historically, p72 (B646L) genotyping was conducted for the purpose of disease tracking
and, because of the lack of next-generation sequencing technologies in many regions
impacted by ASF [14], continues to be used to classify ASFV isolates. While a novel
p72 classification scheme has reduced the number of genotypes from 25 to 6 and set clear
parameters to define groupings within a genotype [14], it is clear that classification based on
a single gene is insufficient for categorizing a virus as complex as ASFV. Any classification
that is exclusively based on p72 is ultimately dependent on a handful of amino acid changes
and accordingly, is easily prone to error as even a single sequencing error can result in a
severe misclassification or the generation of a new genotype. As indicated in Table 1, using
a method that considers more than just p72, the classification of ASFV can instead be based
on hundreds or thousands of amino acid changes, avoiding the problems associated with
genotyping by p72 alone. For example, while Warmbaths, Tengani 62, Pretorsuskop/96/4
and ASFV Georgia 2007/1 encode an identical p72 protein sequence, examination of the
rest of the proteome reveals that ASFV Georgia 2007/1 is the outlier and far less similar.
Conversely, while Ken05/Tk1 and Kenya 1950 encode a different p72, examination of the
rest of the proteome reveals they are more similar.

Other groups have attempted to classify 60 full-length ASFV genomes into clades
based on the longest common sequence (LCS) methodology [20]. While this method is
better than classifying ASFV solely based on the partial sequencing of p72, we believe our
strategy is superior as it instead relies on a gene-level comparison that ignores non-coding
regions, examines amino acid changes rather than nucleotide changes, weighs the results
based on the number of times a gene is represented and whether the gene is a “core” protein,
and was able to analyze the genomes of 220 ASFV isolates.

A comparison of results based on historical genotyping, our corrected p72 genotyp-
ing [14], clades [20], and our biotyping are shown in Table 2. Note, that as a result of
the incomplete sequencing of their genomes, it was not possible to conduct biotyping
analysis on the genotype 23 isolates. All the latter three methods reduce the number of
groups from over twenty to less than eight. Further, both biotypes and clades suggest that
typing by p72 alone is insufficient—both historical and corrected p72 genotypes contain
multiple biotypes/clades. For example, genotype 2 includes biotypes 1–2R, 2, and 3; it also
includes clades Beta, Epsilon, and Delta. Lastly, biotypes and clades were also similar in
that genotype 1 isolates collected from outbreaks in Europe and Africa grouped together
(biotype 1 and alpha clade) and all genotype 2 isolates grouped within the same biotype
and clade (biotype 2 and beta clade).

Differences between groups created from the biotype and clades methodology were
observed for certain isolates: (1) Tengani 62; our biotyping method groups it with the other
strains originating from southern Africa (Warmbaths and Warthog), while it is the sole
member of the delta clade. (2) The Eastern African groups (biotypes 4–6) were grouped
into a single clade (gamma). (3) Liv 5/40 is classified along with Warmbaths and Warthog
in the clades manuscript; however, for this analysis Liv 5/40 was reassembled and grouped
with Mkuzi1979 within the biotype 1 group. Of course, at the time of publication certain
genomes, such as those within biotype 1–2 Recombinant and TAN/08/Mazimbu, had yet
to be sequenced and/or isolated and could not be analyzed.

Care should be taken when interpreting the biotypes since it was not the intention of
this manuscript to separate isolates based on virulence. Previous studies have analyzed
ASFV virulence by examining the presence or absence of functional domains encoded by
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attenuated and virulence strains [42]. In its current iteration, both an attenuated and the
virulent parental strain could be clustered together in the same biotype as was observed for
BA71 and BA71V, K49 and KK262, L60 and OURT 88/3, and L60 and NHV.

In the future, as the assessment of potential coverage induced by various vaccines
would necessitate cross-protection studies, we propose utilizing biotypes as a means to
determine what strains are more closely related, since biotyping is based on the analysis of
the entire genome, rather than on a single ASFV protein. As these studies are performed
there will be a better understanding of the serotype or biotype that specifically correlates
with protection against ASFV. Accordingly, the utilization of a clustering algorithm-based
methodology, as opposed to a phylogenetic tree, for the classification of ASFV, enables
the biotyping classification to be modified in response to future data. In addition, as ASF
continues to have prolonged outbreaks and with the increasing number of ASFV isolates
being fully sequenced by next-generation sequencing, it is possible that novel and highly
heterogeneous variants of ASF could be found, where it may be necessary to adjust the
epsilon value to classify ASFV into a greater or lesser number of biotypes. Further, as
many ASFV strains, such as the isolates that make up genotype 23, ETH/AA (KT795353),
ETH/017 (KT795355), ETH/1 (KT795354), ETH/004 (KT795356), ETH/2a (KT795358), and
ETH/1a (KT795359), have only been partially sequenced and could not be analyzed, the
number of biotypes may expand as more historic isolates are fully sequenced. Moreover,
with our current knowledge along with the development of a web-based tool to easily
identify the biotype of ASFV, we believe standardization of ASFV isolates by biotypes is
possible and constitutes the most accurate classification for ASFV.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/v16010067/s1, Table S1: GenomeDuplicates; Table S2:
FinalGenomeGenePairs; Table S3: IsolatesAndMetadata; Table S4: ListofCoreProteins; Table S5:
GeneMatrixStats; Table S6: OriginalEpsilonData; Table S7: AssignedBiotypeAndGenotype.

Author Contributions: Conceptualization, M.D., E.S., M.V.B. and D.P.G.; data curation M.D. and E.S.;
formal analysis, M.D. and E.S.; methodology, M.D., E.S., N.T. and H.B.; writing—original draft, M.D.,
E.S., M.V.B. and D.P.G.; writing—review and editing, M.D., E.S., C.M., N.T., H.B., A.A., A.S., M.V.B.
and D.P.G. All authors have read and agreed to the published version of the manuscript.

Funding: USDA internal funding (CRIS 301-3022-505-63) and NBAF partnership funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data is publicly available as referenced in the manuscript.

Acknowledgments: This work was supported in part by an appointment to the Plum Island Animal
Disease Center (PIADC) Research Participation Program administered by the Oak Ridge Institute for
Science and Education (ORISE) through an inter-agency agreement between the U.S. Department of
Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under
DOE contract number DE-SC0014664.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Penrith, M.L.; Kivaria, F.M.; Masembe, C. One hundred years of African swine fever: A tribute to R. Eustace Montgomery.

Transbound. Emerg. Dis. 2021, 68, 2640–2642. [CrossRef] [PubMed]
2. Chapman, D.A.; Darby, A.C.; Da Silva, M.; Upton, C.; Radford, A.D.; Dixon, L.K. Genomic analysis of highly virulent Georgia

2007/1 isolate of African swine fever virus. Emerg. Infect. Dis. 2011, 17, 599–605. [CrossRef] [PubMed]
3. Gonzales, W.; Moreno, C.; Duran, U.; Henao, N.; Bencosme, M.; Lora, P.; Reyes, R.; Nunez, R.; De Gracia, A.; Perez, A.M. African

swine fever in the Dominican Republic. Transbound. Emerg. Dis. 2021, 68, 3018–3019. [CrossRef] [PubMed]
4. Flach, B. United States Department of Agriculture (2023). First Case of African Swine Fever Found in Wild Boars in Sweden.

Sweden. 2023. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=
First%20Case%20of%20African%20Swine%20Fever%20Found%20in%20Wild%20Boars%20in%20Sweden%20_The%20Hague_
Sweden_SW2023-0002.pdf (accessed on 1 December 2023).

https://www.mdpi.com/article/10.3390/v16010067/s1
https://doi.org/10.1111/tbed.14183
https://www.ncbi.nlm.nih.gov/pubmed/34102005
https://doi.org/10.3201/eid1704.101283
https://www.ncbi.nlm.nih.gov/pubmed/21470447
https://doi.org/10.1111/tbed.14341
https://www.ncbi.nlm.nih.gov/pubmed/34609795
https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=First%20Case%20of%20African%20Swine%20Fever%20Found%20in%20Wild%20Boars%20in%20Sweden%20_The%20Hague_Sweden_SW2023-0002.pdf
https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=First%20Case%20of%20African%20Swine%20Fever%20Found%20in%20Wild%20Boars%20in%20Sweden%20_The%20Hague_Sweden_SW2023-0002.pdf
https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=First%20Case%20of%20African%20Swine%20Fever%20Found%20in%20Wild%20Boars%20in%20Sweden%20_The%20Hague_Sweden_SW2023-0002.pdf


Viruses 2024, 16, 67 12 of 13

5. Zhao, D.; Sun, E.; Huang, L.; Ding, L.; Zhu, Y.; Zhang, J.; Shen, D.; Zhang, X.; Zhang, Z.; Ren, T.; et al. Highly lethal genotype I
and II recombinant African swine fever viruses detected in pigs. Nat. Commun. 2023, 14, 3096. [CrossRef] [PubMed]

6. Ramirez-Medina, E.; O’Donnell, V.; Silva, E.; Espinoza, N.; Velazquez-Salinas, L.; Moran, K.; Daite, D.A.; Barrette, R.; Faburay, B.;
Holland, R.; et al. Experimental Infection of Domestic Pigs with an African Swine Fever Virus Field Strain Isolated in 2021 from
the Dominican Republic. Viruses 2022, 14, 1090. [CrossRef] [PubMed]

7. Adeola, A.C.; Luka, P.D.; Jiang, X.X.; Cai, Z.F.; Oluwole, O.O.; Shi, X.; Oladele, B.M.; Olorungbounmi, T.O.; Boladuro, B.;
Omotosho, O.; et al. Target capture sequencing for the first Nigerian genotype I ASFV genome. Microb. Genom. 2023, 9, 001069.
[CrossRef] [PubMed]

8. Zani, L.; Forth, J.H.; Forth, L.; Nurmoja, I.; Leidenberger, S.; Henke, J.; Carlson, J.; Breidenstein, C.; Viltrop, A.; Hoper, D.; et al.
Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Sci. Rep. 2018, 8, 6510. [CrossRef]

9. Spinard, E.; Rai, A.; Osei-Bonsu, J.; O’Donnell, V.; Ababio, P.T.; Tawiah-Yingar, D.; Arthur, D.; Baah, D.; Ramirez-Medina, E.;
Espinoza, N.; et al. The 2022 Outbreaks of African Swine Fever Virus Demonstrate the First Report of Genotype II in Ghana.
Viruses 2023, 15, 1722. [CrossRef]

10. Ambagala, A.; Goonewardene, K.; Lamboo, L.; Goolia, M.; Erdelyan, C.; Fisher, M.; Handel, K.; Lung, O.; Blome, S.; King, J.; et al.
Characterization of a Novel African Swine Fever Virus p72 Genotype II from Nigeria. Viruses 2023, 15, 915. [CrossRef]

11. Okwasiimire, R.; Flint, J.F.; Kayaga, E.B.; Lakin, S.; Pierce, J.; Barrette, R.W.; Faburay, B.; Ndoboli, D.; Ekakoro, J.E.;
Wampande, E.M.; et al. Whole Genome Sequencing Shows that African Swine Fever Virus Genotype IX Is Still Circulating in
Domestic Pigs in All Regions of Uganda. Pathogens 2023, 12, 912. [CrossRef]

12. Bisimwa, P.N.; Ongus, J.R.; Tiambo, C.K.; Machuka, E.M.; Bisimwa, E.B.; Steinaa, L.; Pelle, R. First detection of African swine
fever (ASF) virus genotype X and serogroup 7 in symptomatic pigs in the Democratic Republic of Congo. Virol. J. 2020, 17, 135.
[CrossRef] [PubMed]

13. Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrin, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw,
D.; Gelaye, E.; et al. Identification of a New Genotype of African Swine Fever Virus in Domestic Pigs from Ethiopia. Transbound.
Emerg. Dis. 2017, 64, 1393–1404. [CrossRef] [PubMed]

14. Spinard, E.; Dinhobl, M.; Tesler, N.; Birtley, H.; Signore, A.V.; Ambagala, A.; Masembe, C.; Borca, M.V.; Gladue, D.P. A Re-
Evaluation of African Swine Fever Genotypes Based on p72 Sequences Reveals the Existence of Only Six Distinct p72 Groups.
Viruses 2023, 15, 2246. [CrossRef] [PubMed]

15. Qu, H.; Ge, S.; Zhang, Y.; Wu, X.; Wang, Z. A systematic review of genotypes and serogroups of African swine fever virus. Virus
Genes 2022, 58, 77–87. [CrossRef] [PubMed]

16. Wesley, R.D.; Tuthill, A.E. Genome Relatedness among African Swine Fever Virus Field Isolates by Restriction Endonuclease
Analysis. Prev. Vet. Med. 1984, 2, 53–62. [CrossRef]

17. Blasco, R.; Aguero, M.; Almendral, J.M.; Vinuela, E. Variable and Constant Regions in African Swine Fever Virus-DNA. Virology
1989, 168, 330–338. [CrossRef] [PubMed]

18. de Villiers, E.P.; Gallardo, C.; Arias, M.; da Silva, M.; Upton, C.; Martin, R.; Bishop, R.P. Phylogenomic analysis of 11 complete
African swine fever virus genome sequences. Virology 2010, 400, 128–136. [CrossRef]

19. Bao, J.; Zhang, Y.; Shi, C.; Wang, Q.; Wang, S.; Wu, X.; Cao, S.; Xu, F.; Wang, Z. Genome-Wide Diversity Analysis of African Swine
Fever Virus Based on a Curated Dataset. Animals 2022, 12, 2446. [CrossRef]

20. Aslanyan, L.; Avagyan, H.; Karalyan, Z. Whole-genome-based phylogeny of African swine fever virus. Vet. World 2020, 13,
2118–2125. [CrossRef]

21. Shen, Z.J.; Jia, H.; Xie, C.D.; Shagainar, J.; Feng, Z.; Zhang, X.; Li, K.; Zhou, R. Bayesian Phylodynamic Analysis Reveals the
Dispersal Patterns of African Swine Fever Virus. Viruses 2022, 14, 889. [CrossRef]

22. Forth, J.H.; Forth, L.F.; King, J.; Groza, O.; Hubner, A.; Olesen, A.S.; Hoper, D.; Dixon, L.K.; Netherton, C.L.; Rasmussen, T.B.; et al.
A Deep-Sequencing Workflow for the Fast and Efficient Generation of High-Quality African Swine Fever Virus Whole-Genome
Sequences. Viruses 2019, 11, 846. [CrossRef] [PubMed]

23. Xiong, D.; Zhang, X.; Xiong, J.; Yu, J.; Wei, H. Rapid genome-wide sequence typing of African swine fever virus based on alleles.
Virus Res. 2021, 297, 198357. [CrossRef] [PubMed]

24. Silva, M.; Machado, M.P.; Silva, D.N.; Rossi, M.; Moran-Gilad, J.; Santos, S.; Ramirez, M.; Carrico, J.A. chewBBACA: A complete
suite for gene-by-gene schema creation and strain identification. Microb. Genom. 2018, 4, e000166. [CrossRef] [PubMed]

25. Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32,
1792–1797. [CrossRef] [PubMed]

26. Cock, P.J.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al.
Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25,
1422–1423. [CrossRef] [PubMed]

27. Hao, J.G.; Ho, T.K. Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language. J. Educ.
Behav. Stat. 2019, 44, 348–361. [CrossRef]

28. Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X.W. Density-based clustering in spatial databases: The algorithm GDBSCAN and its
applications. Data Min. Knowl. Discov. 1998, 2, 169–194. [CrossRef]

29. Tcherepanov, V.; Ehlers, A.; Upton, C. Genome Annotation Transfer Utility (GATU): Rapid annotation of viral genomes using a
closely related reference genome. BMC Genom. 2006, 7, 150. [CrossRef]

https://doi.org/10.1038/s41467-023-38868-w
https://www.ncbi.nlm.nih.gov/pubmed/37248233
https://doi.org/10.3390/v14051090
https://www.ncbi.nlm.nih.gov/pubmed/35632831
https://doi.org/10.1099/mgen.0.001069
https://www.ncbi.nlm.nih.gov/pubmed/37489884
https://doi.org/10.1038/s41598-018-24740-1
https://doi.org/10.3390/v15081722
https://doi.org/10.3390/v15040915
https://doi.org/10.3390/pathogens12070912
https://doi.org/10.1186/s12985-020-01398-8
https://www.ncbi.nlm.nih.gov/pubmed/32883295
https://doi.org/10.1111/tbed.12511
https://www.ncbi.nlm.nih.gov/pubmed/27211823
https://doi.org/10.3390/v15112246
https://www.ncbi.nlm.nih.gov/pubmed/38005923
https://doi.org/10.1007/s11262-021-01879-0
https://www.ncbi.nlm.nih.gov/pubmed/35061204
https://doi.org/10.1016/0167-5877(84)90048-5
https://doi.org/10.1016/0042-6822(89)90273-0
https://www.ncbi.nlm.nih.gov/pubmed/2464873
https://doi.org/10.1016/j.virol.2010.01.019
https://doi.org/10.3390/ani12182446
https://doi.org/10.14202/vetworld.2020.2118-2125
https://doi.org/10.3390/v14050889
https://doi.org/10.3390/v11090846
https://www.ncbi.nlm.nih.gov/pubmed/31514438
https://doi.org/10.1016/j.virusres.2021.198357
https://www.ncbi.nlm.nih.gov/pubmed/33667625
https://doi.org/10.1099/mgen.0.000166
https://www.ncbi.nlm.nih.gov/pubmed/29543149
https://doi.org/10.1093/nar/gkh340
https://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1093/bioinformatics/btp163
https://www.ncbi.nlm.nih.gov/pubmed/19304878
https://doi.org/10.3102/1076998619832248
https://doi.org/10.1023/A:1009745219419
https://doi.org/10.1186/1471-2164-7-150


Viruses 2024, 16, 67 13 of 13

30. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and
applications. BMC Bioinform. 2009, 10, 421. [CrossRef]

31. Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214.
[CrossRef]

32. Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [CrossRef] [PubMed]

33. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.
[CrossRef] [PubMed]

34. Perez-Nunez, D.; Castillo-Rosa, E.; Vigara-Astillero, G.; Garcia-Belmonte, R.; Gallardo, C.; Revilla, Y. Identification and Isolation
of Two Different Subpopulations Within African Swine Fever Virus Arm/07 Stock. Vaccines 2020, 8, 625. [CrossRef] [PubMed]

35. Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004,
5, 113. [CrossRef] [PubMed]

36. Martin Ester, H.-P.K.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clustersin Large Spatial Databases with Noise. In
Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996.

37. Dixon, L.K.; Chapman, D.A.; Netherton, C.L.; Upton, C. African swine fever virus replication and genomics. Virus Res. 2013,
173, 3–14. [CrossRef] [PubMed]

38. Bastos, A.D.; Penrith, M.L.; Cruciere, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, G.R. Genotyping
field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 2003, 148, 693–706. [CrossRef] [PubMed]

39. Sun, Y.K.; Xu, Z.Y.; Gao, H.; Xu, S.J.; Liu, J.; Xing, J.B.; Kuang, Q.Y.; Chen, Y.; Wang, H.; Zhang, G.H. Detection of a Novel African
Swine Fever Virus with Three Large-Fragment Deletions in Genome, China. Microbiol. Spectr. 2022, 10, e0215522. [CrossRef]

40. Forth, J.H.; Forth, L.F.; Lycett, S.; Bell-Sakyi, L.; Keil, G.M.; Blome, S.; Calvignac-Spencer, S.; Wissgott, A.; Krause, J.; Hoper, D.; et al.
Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus’ evolution.
BMC Biol. 2020, 18, 136. [CrossRef]

41. Quembo, C.J.; Jori, F.; Vosloo, W.; Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the
wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound. Emerg. Dis. 2018, 65, 420–431.
[CrossRef]

42. Masembe, C.; Phan, M.V.T.; Robertson, D.L.; Cotten, M. Increased resolution of African swine fever virus genome patterns based
on profile HMMs of protein domains. Virus Evol. 2020, 6, veaa044. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1093/nar/25.17.3389
https://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1016/S0022-2836(05)80360-2
https://www.ncbi.nlm.nih.gov/pubmed/2231712
https://doi.org/10.3390/vaccines8040625
https://www.ncbi.nlm.nih.gov/pubmed/33113838
https://doi.org/10.1186/1471-2105-5-113
https://www.ncbi.nlm.nih.gov/pubmed/15318951
https://doi.org/10.1016/j.virusres.2012.10.020
https://www.ncbi.nlm.nih.gov/pubmed/23142553
https://doi.org/10.1007/s00705-002-0946-8
https://www.ncbi.nlm.nih.gov/pubmed/12664294
https://doi.org/10.1128/spectrum.02155-22
https://doi.org/10.1186/s12915-020-00865-6
https://doi.org/10.1111/tbed.12700
https://doi.org/10.1093/ve/veaa044

	Introduction 
	Materials and Methods 
	Description of the Dataset 
	Annotation of the Dataset 
	Curation of the Dataset 
	Protein Alignment 
	Genome Level Analysis and Clustering 

	Results 
	Full-Length Genomes on NCBI 
	Clustering of ASFV 
	ASFV Can Be Classified as 7 Biotypes 
	Webportal for Automatic ASFV Biotyping and Genotyping 

	Discussion 
	References

