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Abstract: Herpesvirus is a prevalent pathogen that primarily infects human epithelial cells and
has the ability to reside in neurons. In the field of otolaryngology, herpesvirus infection primarily
leads to hearing loss and vestibular neuritis and is considered the primary hypothesis regarding
the pathogenesis of vestibular neuritis. In this review, we provide a summary of the effects of the
herpes virus on cellular processes in both host cells and immune cells, with a focus on HSV-1 as
illustrative examples.
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1. Introduction

Human herpesviruses are large, enveloped, double-stranded DNA viruses that cause a
variety of diseases and establish lifelong latent infections in the majority of the global popu-
lation. The Herpesviridae family comprises nine viruses that are capable of causing human
infections and is divided into three subfamilies: Alphaherpesvirinae; Betaherpesvirinae; and
Gammaherpesvirinae. Alphaherpesvirinae consists of herpes simplex virus I (HSV-1), HSV-
2, and varicella zoster virus (VZV). Betaherpesvirinae includes human cytomegalovirus
(HCMV), human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7. Epstein–Barr virus (EBV)
and Kaposi’s sarcoma herpesvirus (KSHV) belong to Gammaherpesvirinae.

Vestibular neuritis (VN) is a clinical condition in the field of otolaryngology charac-
terized by acute and persistent peripheral vertigo caused by unilateral vestibular afferent
nerve block. The main symptoms include acute/subacute persistent severe vertigo, ac-
companied by spontaneous horizontal nystagmus, unsteady posture, and nausea, but
without associated auditory dysfunction. The cause of VN is still unknown, but the most
common hypothesis is viral infection or reactivation, particularly by HSV (Table 1). Several
researchers have reported herpes virus infection in the vestibular ganglion of patients with
vestibular neuritis [1–5]. Arbusow et al. reported the presence of HSV-1 DNA in both the
human vestibular ganglion and vestibular nuclei [6], suggesting the potential migration
of the virus to the human vestibular labyrinth [4]. Furthermore, HSV-1 DNA or HSV
latency-related transcripts have been detected in the vestibular ganglia removed during
surgery in patients with Meniere’s disease [3,7]. Herpesviruses have a tendency to invade
sensory neurons, establish a latency period, and can be reactivated to cause disease. The
initial infection or reactivation of the herpesvirus can profoundly affect cellular processes
in the host. Mice inoculated with HSV-1 and HSV-2 into the middle ear exhibited hearing
loss and vestibular dysfunction. HSV infection was observed in columnar epithelial cells of
the infected mice in the stria vascularis, leading to apoptosis in a portion of the infected
cells, while many uninfected cells in the spiral organ of Corti also underwent apoptosis.
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While vestibular ganglion cells did not undergo apoptosis, some of the cells experienced
functional loss [8]. Mice inoculated with HSV-1 after auricle also exhibited vestibular
dysfunction along with the death of vestibular ganglion cells [9]. In addition to the damage
caused to cells by virus infection, the killing of host cells by immune cells may also con-
tribute to the pathogenesis of vestibular neuritis. The coexistence of CD8+ cells and HSV-1
has been observed in the vestibular ganglion cells of patients with vestibular neuritis.

Table 1. Viruses associated with VN.

Viruses Associated with VN Family of Viruses

Herpes simplex virus Alphaherpesvirinae
Varicella-zoster virus

Human cytomegalovirus Betaherpesvirinae
Epstein–Barr virus Gammaherpesvirinae
Influenza virus A

Non-herpesvirus family
Influenza virus B

Adenoviruses
Rubella virus

Parainfluenza virus

This article provides a summary of the alterations in cellular processes post-infection,
using HSV-1 as an exemplars, with the aspiration that this knowledge will aid in the
treatment of VN and other diseases instigated by human herpesviruses.

2. The Structure of HSV-1 and the Process of Entry into Cells

HSV-1 has a spherical shape [10]. The complete HSV-1 virus comprises double-
stranded DNA, a nucleocapsid, teguments, envelope proteins, and a lipid envelope
(Figure 1A) [11–13]. The nucleocapsid shell exhibits a symmetrical three-dimensional
icosahedral structure. HSV-1 is primarily transmitted through close contact. The entry
of herpesvirus into human cells for receptor binding and membrane fusion requires the
involvement of multifunctional viral glycoproteins on its surface [14–16]. HSV-1 carries
a minimum of 12 different glycoproteins. There existed four membrane glycoproteins
required for HSV entry into cells: the glycoprotein D (gD)-binding receptor; glycoprotein B
(gB); and glycoprotein H/glycoprotein L (gH/gL) constitute the core fusion mechanism [17].
Briefly, when HSV is adsorbed on the cell membrane surface, the initial non-specific binding
between glycoprotein gC and/or gB and the heparan sulfate mucin (HSPG) on the cell
surface reduces the spatial distance between the viral envelope and the cell membrane. gD
can specifically bind to herpes virus entry mediator (HVEM), nectin-1, nectin-2, or 3-O-
sulfated heparan sulfate (3-OS-HS). This binding further initiates gH and gL. Subsequently,
gH-gL transmits signals to gB [18]. gB undergoes a conformational change, inserts into the
host cell membrane, and then refolds to fuse the cellular and viral membranes together
(Figure 1B). The refolding of multiple gB trimers creates pores in the membrane, initiating
the fusion process between the viral envelope and cell membrane. This process may enable
the viral nucleocapsid and DNA to enter the cytoplasm and translocate to the nucleus [19].
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Figure 1. (A) Schematic diagram of the structure of HSV-1. HSV-1 is composed of double-stranded 
DNA, nucleocapsid, tegument, envelope proteins, and a lipid envelope. (B) Schematic diagram of 
HSV-1 entry into cells via envelope proteins. While the types and composition of envelope proteins 
may vary among different viruses in the sporozoan virus family, the fusion of the viral envelope 
with the host cell membrane and the entry of the nucleocapsid rely on the binding of multiple en-
velope proteins to receptors on the host cell membrane and conformational changes. 

3. The Association between HSV-1 Infection and Vestibular Neuritis 
The vestibular ganglion is one of the important sensory nerve structures in the hu-

man body, which consists of the superior vestibular nerve and the inferior vestibular 
nerve. The upper portion of bipolar neurons forms the anterior vestibular nerve, supply-
ing the anterior semicircular canals, otoliths, and part of the utricle. The lower portion of 
the ganglion cells forms the posterior vestibular nerve, receiving signals from the utricle 
and posterior semicircular canals. Vestibular neuritis is a type of partial rather than com-
plete paralysis, primarily involving the anterior semicircular canal, horizontal semicircu-
lar canal, and utricle [20]. When vestibular neuritis occurs, it can result in complete paral-
ysis of the anterior and horizontal semicircular canals, as well as partial paralysis of the 
otolith and utricle function. Inflammation that affects the entire vestibular ganglion can 
lead to complete loss of vestibular function on one side by ocular tilt reaction and sponta-
neous nystagmus towards the unaffected ear. A case has been reported in which herpes 
zoster oticus caused facial nerve paralysis, vertigo, and hearing loss on the right side. With 

Figure 1. (A) Schematic diagram of the structure of HSV-1. HSV-1 is composed of double-stranded
DNA, nucleocapsid, tegument, envelope proteins, and a lipid envelope. (B) Schematic diagram of
HSV-1 entry into cells via envelope proteins. While the types and composition of envelope proteins
may vary among different viruses in the sporozoan virus family, the fusion of the viral envelope with
the host cell membrane and the entry of the nucleocapsid rely on the binding of multiple envelope
proteins to receptors on the host cell membrane and conformational changes.

3. The Association between HSV-1 Infection and Vestibular Neuritis

The vestibular ganglion is one of the important sensory nerve structures in the human
body, which consists of the superior vestibular nerve and the inferior vestibular nerve.
The upper portion of bipolar neurons forms the anterior vestibular nerve, supplying the
anterior semicircular canals, otoliths, and part of the utricle. The lower portion of the
ganglion cells forms the posterior vestibular nerve, receiving signals from the utricle and
posterior semicircular canals. Vestibular neuritis is a type of partial rather than complete
paralysis, primarily involving the anterior semicircular canal, horizontal semicircular canal,
and utricle [20]. When vestibular neuritis occurs, it can result in complete paralysis of
the anterior and horizontal semicircular canals, as well as partial paralysis of the otolith
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and utricle function. Inflammation that affects the entire vestibular ganglion can lead to
complete loss of vestibular function on one side by ocular tilt reaction and spontaneous
nystagmus towards the unaffected ear. A case has been reported in which herpes zoster
oticus caused facial nerve paralysis, vertigo, and hearing loss on the right side. With the
assistance of MRI, the symptoms of the patient are believed to be associated with viral
inflammation affecting the right vestibular nerve [21]. Hirata et al. inoculated HSV-1 into
the mouse pinna to establish an animal model of vestibular neuritis. Some of the mice
infected with HSV-1 showed vestibular dysfunction, and pathological examination revealed
degeneration of Scarpa’s ganglion [22]. After inoculation of HSV-1 in the middle ear of mice,
all mice showed hearing loss and vestibular dysfunction, suggesting an association between
VN and HSV-1 infection [8]. Furuta et al. examined theular ganglia of autopsied adults,
and HSV-DNA was detected in 6 out of 10 vestibular ganglia specimens [3]. Arbusow
et al. also reported the presence of HSV-1 DNA in human vestibular ganglia and nucleus
vestibularis, suggesting that the virus may migrate to the human vestibular labyrinth and
cause inflammation [23]. The inflammation in VN patients may lead to acute unilateral
vestibular deafferentation and benign paroxysmal positional vertigo. Pollak et al. reported
serological evidence indicating a higher prevalence of HSV-1 exposure in patients with
VN, which can serve as evidence for HSV-1 infection or reactivation as one of the causes
of VN [24]. The vestibular dysfunction observed in the herpes simplex virus labyrinthitis
mouse model and the detection of HSV-1 DNA in human vestibular ganglion specimens
suggest that vestibular neuritis may be caused by HSV-1 infection or reactivation of latent
HSV-1. In fact, it has been demonstrated in vitro that vestibular ganglion neurons can be
infected with HSV1 in both a lytic and latent manner [25]. Rujescu et al. reported that
genome-wide association analysis revealed an association between the polymorphism
rs12979860 and the severity of VN. This rs12979860 locus is associated with the recurrence
of herpes simplex and the clearance and treatment outcomes, as well as the severity of the
hepatitis C virus [26].

When patients are infected with diseases such as herpes simplex virus (HSV-1) caus-
ing herpetic gingivostomatitis, the infected HSV-1 can retrogradely transport along the
trigeminal nerve to the vestibular ganglion. The research conducted by Himmelein and col-
leagues indicates that in 65% of vestibular neuritis, the inferior vestibular nerve was found
to travel through two distinct bony canals, unlike the superior vestibular nerve (SVN).
Additionally, connections between the facial and vestibulocochlear nerves occurred more
frequently with the SVN than with the IVN. This might explain why the superior vestibular
is more commonly impacted than the inferior vestibular nerve [2]. When the reactivation of
latent HSV-1 in neurons occurs, it leads to selective inflammation of the superior vestibular
nerve and typical dysfunction of the vestibular semicircular canals (vestibular paralysis).
Moreover, HSV-1 in VN patients may further trigger herpes encephalitis [27].

4. Transportation of HSV-1 in Vestibular Ganglion

The transportation of viral capsids and vesicles carrying viral glycoproteins in the
cytoplasm is closely linked to microtubules, and their translocation along axons depends
on microtubules [28–31]. HSV-I utilizes microtubules and actin to enter cells retrogradely
along axons and undergoes paracrine transport during viral assembly and efflux [28,30,32].
There are two types of axonal transport—fast and slow. Fast axonal transport occurs in
both cis and retrograde directions, transporting mitochondria, neurotransmitters, channel
proteins, and more [33,34]. In contrast, slow axonal transport occurs in a paracrine direc-
tion, transporting cytoskeletal components, such as neurofilaments, microtubule proteins,
and actin [35,36]. HSV-1 is actively directed to spread from neurons through the axonal
cytoskeleton and molecular motors. Studies using time-lapse microscopy have shown that
HSV-1 undergoes rapid axonal flow in both directions [37,38].
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5. The Replication Process of the Virus within the Cell

After the nucleocapsid is transported to the surrounding area of the nucleus, it can in-
teract with the nuclear pore complex, and then, dsDNA is injected into the nucleus through
the nuclear pore [39]. DNA viruses, such as herpesviruses, replicate in specific inclusions
within the nucleus. These inclusions, referred to as viral replication compartments (VRCs),
are the sites where viral DNA replication, viral transcription, and virion assembly take
place [40–42]. Compartmentalization is an essential feature of living organisms. Cellular
organisms typically utilize cell membranes to partition cells into compartments. More-
over, eukaryotic cells possess membrane-free compartments, such as stress granules and
P-bodies [43,44]. Certain compartments exhibit liquid properties and are formed through
a process known as liquid–liquid phase separation (LLPS), analogous to the formation
of oil droplets in water [45]. There is a hypothesis suggesting that the nuclear VRCs of
DNA viruses, such as HSV-1, are also phase-separated condensates [46,47]. Seyffert et al.
demonstrated that the HSV-1 transcription factor ICP4 has the ability to induce protein
condensation, thereby imparting liquid-like properties to the VRC [48].

After the HSV-1 virus DNA enters the cell nucleus, it is mediated by the host cell RNA
polymerase II complex and initiated by the virus capsid protein VP16 to transcribe the
viral DNA and initiate the process of viral replication [49–51]. VP16, as a capsid protein
and a structure of the virus, plays a role in the structural components of the virus once
HSV-1 enters the cell. Some cell protein molecules, such as host cell factor 1 (HCF-1) and
octamer binding protein-1 (Oct-1), can form multiprotein complexes with viral proteins,
binding to the promoter region of the alpha genes in the herpes virus genome and activate
the transcription of five alpha genes, namely, ICP0, ICP4, ICP22, ICP27, and ICP47, in
a cis-activation manner, thereby initiating the process of linear transcription of the viral
genome [52–55]. Subsequently, beta gene products, such as viral DNA replication, begin to
be produced, and the viral genomic DNA molecules start to replicate [55–58]. When gamma
gene products (mostly structural proteins) are sequentially transcribed and translated, the
complete replicated gene molecules can be used as the viral genome of progeny viruses for
assembly and synthesis [55,59,60].

The process of mature capsids containing viral DNA leaving the nucleus needs the
extracellular output complex formed by pUL31 and pUL34. Subsequently, it crosses the
nuclear membrane and enters the cytoplasm (Figure 2). During this process, the virus is
initially coated with an envelope, which may originate from the inner membrane of the
nuclear envelope. Subsequently, the viruses lose the initial envelope through fusion with
the outer nuclear membrane and are released into the cytoplasm without an envelope. Upon
arrival in the cytoplasm, the capsid is subsequently reenveloped within an intracellular
organelle, where it acquires its mature envelope and completes tegumentation. The capsid
undergoes secondary envelopment before being released from the cell. During this process,
the nucleocapsid, which is now associated with tegument proteins, buds into the membrane
of a cytoplasmic organelle, resulting in the formation of an enveloped virion inside a vesicle.
The synthesized HSV-1 capsid acquires inner tegument proteins in the cytoplasm, and the
outer tegument proteins and viral membrane are obtained through vesicles. The origin of
organelle membranes in the secondary envelope is still controversial, with some suggesting
that they may originate from membrane tubes derived from recycled endosomes or vesicles
from the trans-Golgi network. PUL36 and pUL37 guide the outer shell to move toward
the position of the secondary envelope on the microtubule through interaction with the
microtubule and also play important roles in the transport of HSV from the nucleus to
the periphery by binding to motor proteins. The vesicles contained in gD can effectively
transport through axons. Viruses that have completed the secondary envelopment are
released through exocytosis.
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6. The Latency and Reactivation of HSV-1

HSV often results in either lytic or latent infection. After primary infection, HSV-1
can establish a latent state within the neurons of the human sensory ganglia after initial
infection. The trigeminal ganglia (TG) serve as the site of latency for HSV-1 in the human
body, although the vestibular ganglia, geniculate ganglia, spiral ganglia, and sacral ganglia
can also harbor latent viruses [61,62]. During the latency period, the activity of the HSV-1
virus is restricted, only the latency-associated transcripts (LAT) being abundantly expressed.
LATs are approximately 8.3 kb long non-coding RNAs expressed in the nucleus of latent
infected cells. LAT is involved in establishing latent infection and reactivation processes
while also promoting neuronal survival after HSV-1 infection by silencing immediate early
gene expression and reducing apoptosis [63–67]. Reactivation can occur spontaneously
and be induced by various stimuli. Several viral factors, such as VP16, that may play a role,
have been identified; however, the theories and mechanisms underlying latent infection
and reactivation are still in need of refinement [68]. The low levels of envelope proteins
VP16 and ICP0 may lead to insufficient gene expression, resulting in the latency of HSV-1
in neurons [69]. Infection of neurons by HSV typically results in the production of new
infectious viral particles within the cell, whereas infections on axons rarely lead to the
synthesis of infectious particles, especially when the viral titer of the infected neurons is
low. However, the addition of VP16 to the cell body region of ax infections can result in the
production of infectious viruses, indicating that VP16 plays a critical role in the reactivation
of the virus [70].

HSV-1 mutants without VP16 transcriptional activation characteristics cannot be
effectively reactivated in mice [68,71]. Epigenetic modifications have also been shown
to regulate virus latency and reactivation. The DNA of the herpes simplex virus (HSV)
lacks histones in its original state. Once it enters the host cell, histone modifications occur
on the HSV gene, thereby limiting the expression of important genes [72]. Rujescu et al.
identified genome-wide associations with vestibular neuritis in four regions containing
protein-coding genes that can be grouped into two functional categories, virus hypothesis
and insulin metabolism, through a genome-wide association study [73].

It has been found that certain groups of sensory neurons are more susceptible to
latent infection. All neuronal populations in the mouse trigeminal ganglion can be infected
by HSV-1; however, neurons positive for KH10 are more susceptible to infection; those
expressing the glycosphingolipid-associated embryonic antigen 3 (SSEA3) exhibit a lower
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rate of infection [74,75]. Similarly, the sensitivity to infection is higher in A5-positive
trigeminal and dorsal root ganglion neurons compared to those that are KH10-positive.
Flowerdew et al. utilized in situ hybridization to detect latency-associated transcripts in
neurons expressing each of the marker proteins [75,76]. The study assessed the frequency
of positively labeled neurons and the average size of neurons. Among them, TrkA-positive
neurons had the highest frequency, while Ret-positive neurons had the lowest. RT97-
positive neurons were the largest in size, while peripherin-positive neurons were the
smallest [77].

7. Host Cell Processes Caused by HSV-1 Infection

HSV-1 belongs to the lysogenic family of viruses, and its lytic replication results
in the destruction of host cells. Cell aggregation is observed almost immediately after
cells are infected with HSV-1, and the severity tends to increase with the number of
infections [78]. According to Roizman et al. [78], herpes simplex virus infection can lead
to the production of multinucleated cells, which result from the fusion of functional cells
with different phenotypic characteristics. In HSV-1-infected cells, Avitabile et al. [79]
found that microtubules are partially broken, especially at the cell periphery, where the
connection between the microtubule network and the plasma membrane appears to be
lost. Subsequently, the microtubules form bundles around the nucleus, resulting in a
near-spherical shape of the cells [79]. Heeg et al. observed that infection with high doses of
various strains of HSV-1 for two and a half hours resulted in cell rounding, accompanied
by the breakdown of actin-containing microfilaments and the appearance of knob-like
protuberances containing actin at the cell periphery [80]. Hampar et al. reported that HSV-1
infection of cells causes chromosome breaks, translocations, and fusions [81]. Roizman
et al. reported that protein synthesis must precede viral DNA synthesis in the early
stages of HSV-infected cells [82]. Both functional and structural proteins required for viral
proliferation are produced by the host cell’s translation system. HSV has been observed
to decrease protein synthesis and mRNA levels in host cells, with the expression level
of viral proteins rapidly increasing, accompanied by the rapid degradation of previously
existing polyribosomes and some host cell mRNA [83]. Aubert et al. summarize that
the manifestations of HSV-1 infection include (i) the loss of matrix binding proteins on
the cell surface, leading to detachment; (ii) modifications of membranes; (iii) cytoskeletal
destabilizations; (iv) nucleolar alterations; and (v) chromatin margination and aggregation
or damage, as well as (vi) a decrease in cellular macromolecular synthesis [78–81,83,84].

Cellular autophagy, apoptosis, and necrosis pathways are crucial cellular processes
that are interconnected to restrict the spread of pathogens by eliminating infected cells [85].
Viral proteins can interact with these signaling molecules, disrupting downstream signal
transduction and promoting viral replication and spread. Dufour et al. demonstrated that
the ribonucleotide reductase R1 subunit of HSV inhibits Caspase8, thereby protecting cells
from apoptosis induced by tumor necrosis factor (TNF) α and Fas ligand [86]. Furthermore,
the research group demonstrated that this HSV protein disrupts the structural domain
interactions of the Toll interleukin (IL)-1 receptor, thereby inhibiting poly I:C-induced
apoptosis in HeLa cells [87]. Moreover, in addition to inducing the formation of filopodia
in infected cells to facilitate viral transmission through cell-to-cell contact [88], Us3 proteins
disable Bad by inhibiting its phosphorylation [89], thereby safeguarding the cell against
DNA fragmentation, nuclear disintegration, and apoptosis [88,90].

Autophagy is a crucial cellular process that involves the self-degradation and recycling
of cellular components, including the cell membrane, cytoplasm, and organelles. It plays a
role in eliminating misfolded proteins, damaged organelles, and intracellular pathogens.
However, certain HSV proteins, such as US11 and ICP34.5, interfere with cellular autophagy.
US11 is a ribosome-associated double-stranded RNA-binding protein that directly interacts
with PKR [89]. On the other hand, ICP34.5 consists of a C-terminal structural domain and
an N-terminal structural domain. The C-terminal domain recruits protein phosphatase
1 (PP-1) to inhibit PKR-mediated phosphorylation of eLF2α [91], while the N-terminal
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domain directly interacts with Beclin-1 to block autophagy [92]. In summary, there are
multiple pathways through which the host induces apoptosis and autophagy in infected
cells, and HSV employs its own proteins to interfere with certain steps in these pathways
to protect the survival of infected cells and facilitate its own replication and dissemination.

8. Immune Cell Process Caused by HSV-1 Infection

The intrinsic and innate immune responses serve as the first line of defense against viral
infections, including HSV. They work together to limit the spread of viral replication until
the body develops an adaptive immune response. Intrinsic immunity is directly mediated
by host cell restriction factors such as promyelocytic leukemia nuclear bodies constituent
proteins (PML-NBs) to control viral expression [93]. The innate immune response is
initiated through the cellular expression of pattern recognition receptors (PRRs), which
detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns [94]. This recognition stimulates the secretion of interferon (IFN) α, β, or γ, along
with other cytokines [95–97]. These cytokines can act in an autocrine and paracrine manner
and play a crucial role in controlling HSV infection and coordinating innate and adaptive
immune responses. Among the PRRs, Toll-like receptors (TLRs) are involved in detecting
HSV nucleic acids and proteins (Figure 3). TLR2 interacts with gH/gL on the viral envelope
and signals through myeloid differentiation factor 88 (MyD88) [98,99]. TLR2 activation
promotes the expression of pro-inflammatory cytokines, exerting antiviral effects. However,
studies on TLR2-deficient mice infected with HSV have shown that these mice exhibit
fewer symptoms and longer survival than wild-type mice, suggesting that TLR2 activation
may have harmful effects on the host [100,101]. TLR3 recognizes dsDNA and induces
nuclear factor-kappaB (NF-κB) activation and IFN production to exert antiviral effects [102].
Herpes simplex virus encephalitis can be caused by defects in the TLR 3 pathway [103].
Mouse experiments suggest that astrocytes rely on TLR3 to mediate resistance to HSV
infection [104]. However, another study demonstrated that TLR3-deficient neurons and
oligodendrocytes were more susceptible to HSV-1 infection compared to control cells,
indicating the importance of TLR3 in protecting neuronal cells from HSV infection [105].
TLR9 recognizes HSV DNA and is significant for certain cell types, such as plasmacytoid
dendritic cells (pDC), where the absence of TLR9 results in impaired IFN responses [95,106].
The HSV DNA within the cytoplasm is encapsulated by capsid proteins, thereby being
protected. However, a mechanism observed in macrophages involves the degradation of
the HSV capsid, resulting in the release of HSV DNA into the cytoplasm. Consequently,
there are pathways in the cell for the detection of HSV-1 DNA. Cyclic GMP-AMP synthase
(cGAS) and IFI16 can detect the released HSV DNA in the cell and activate STING, leading
to the recruitment of TBK1, activation of IRF3, and induction of IFN [107–110].

The adaptive immune response plays a crucial role in managing HSV infection and
reactivation. Cell-mediated immunity, particularly involving T cells, is a key component
of the adaptive immune response. After viral infection, cells present antigens to CD8+ T
cells through surface major histocompatibility complex (MHC) class 1 molecules. This
triggers the elimination of infected cells, limiting viral spread. T cells have been found
to play a major role in the adaptive immune response to HSV. Specific T cells have been
identified in the sensory ganglia of infected individuals and in active and latent lesions
of patients [111–114]. Following acute HSV infection, the percentage of blood-specific T
cells is lower in infected individuals [115,116]. HSV-specific CD8+ T cells in the blood
express high levels of cytolytic molecules when re-exposed to viral antigens [117]. CD4+ T
cells recognize HSV-1 proteins and express cytokines associated with helper T cell type 1
(Th1)/Th0-like responses with cytolytic potential [116,118].
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Figure 3. Pattern diagram of immune cell response process triggered by PRR signal triggered by 
HSV-1 infection. Inducing the secretion of inflammatory cytokines or IFN through the TLR signaling 
pathway (left, middle) or RLR signaling pathway (right). In the TLR signaling pathway, TLR2 rec-
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somes. These signals activate IRF-3, IRF-7, and NF-κB, ultimately resulting in increased expression 
of inflammatory cytokines, IFN-1, IFN-III, and interferon-stimulated genes (ISGs). In the RLR sig-
naling pathway, RIG-I and MDA5, which contain N-terminal caspase activation and recruitment 
domains, recruit and activate the mitochondrial antiviral signaling (MAVS) protein to mediate sig-
nal transduction. The activated MAVS protein further activates downstream signaling, promoting 
the expression of inflammatory cytokines and IFN. Both pathways contribute to the immune re-
sponse against HSV-1 infection by triggering the production of inflammatory cytokines and inter-
ferons, which play crucial roles in controlling viral replication and coordinating innate and adaptive 
immune responses. 
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Figure 3. Pattern diagram of immune cell response process triggered by PRR signal triggered
by HSV-1 infection. Inducing the secretion of inflammatory cytokines or IFN through the TLR
signaling pathway (left, middle) or RLR signaling pathway (right). In the TLR signaling pathway,
TLR2 recognizes signals induced by HSV-1 envelope proteins, such as gB or gD. The signal is
transmitted to the cytoplasm, where MyD88 binds to the cytoplasmic domain of TLR2, leading to the
activation of transcription factors like NF-κB. This activation promotes the translocation of P50/P65
into the nucleus and increases the expression of inflammatory cytokines and IFN-1. Additionally,
TLR3, TLR7/8, and TLR9 signaling are activated by dsRNA, ssRNA, or CpG DNA, respectively,
in endosomes. These signals activate IRF-3, IRF-7, and NF-κB, ultimately resulting in increased
expression of inflammatory cytokines, IFN-1, IFN-III, and interferon-stimulated genes (ISGs). In
the RLR signaling pathway, RIG-I and MDA5, which contain N-terminal caspase activation and
recruitment domains, recruit and activate the mitochondrial antiviral signaling (MAVS) protein to
mediate signal transduction. The activated MAVS protein further activates downstream signaling,
promoting the expression of inflammatory cytokines and IFN. Both pathways contribute to the
immune response against HSV-1 infection by triggering the production of inflammatory cytokines
and interferons, which play crucial roles in controlling viral replication and coordinating innate and
adaptive immune responses.

HSV-1 is capable of establishing a latency period in the dorsal root ganglia (DRG)
of severely combined immunodeficient mice, even when CD8+ memory T cells are trans-
planted prior to infection. However, the presence of T cells reduces the number of infected
DRG neurons, potentially limiting HSV-1 reactivation [119,120]. In mouse models, the rate
of in vitro reactivation of trigeminal ganglia (TG) is directly correlated with viral ganglionic
load rather than the number of specific CD8+ T cells [121]. Specific CD8+ and CD4+ T cells
are also present in the TG following human HSV-1 infection [111,112]. The infiltrating T
cells in human-infected TGs are characterized as memory effector T cells and surround
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the cell bodies and axons of neurons [111,122]. In mouse models, memory CD8+ T cells
express interferon-gamma (IFN-γ), which prevents HSV replication in neurons and inhibits
neuronal apoptosis, potentially promoting the survival of neurons and HSV-1 silencing
and latency [123–125]. The mechanism of CD4+ and CD8+ T cell recognition of latently
infected neurons is not fully understood. It is possible that there may be limited viral gene
expression that can be recognized by T cells, allowing for the CD8+ T cell recognition and
reactivation, along with potentially low levels of neuronal MHC class I molecule expres-
sion [126]. Additionally, satellite cells can act as antigen-presenting cells and express T-cell
suppressor molecules to control HSV-1 latency without damaging neurons [127]. HSV also
employs various strategies to inhibit antigen presentation and modulate adaptive immune
responses. For example, the viral protein ICP47 blocks antigen presentation, and ICP34.5
inhibits autophagy, which is involved in antigen presentation [128]. Furthermore, HSV can
inhibit antibody responses by interacting with antibodies and complement components,
inhibiting antibody-dependent cell-mediated cytotoxicity [129]. These mechanisms suggest
that HSV can modulate the adaptive immune response and influence the pathogenesis of
the infection.

9. Conclusions

The presence of herpesviruses has been detected in surgically removed tissues from
patients with Meniere’s disease, and viral infection is considered a leading hypothesis for
the development of vestibular neuritis. However, the exact role of herpesviruses in the
pathogenesis of vestibular neuritis is still not fully understood. In this paper, we aimed
to summarize the effects of herpesvirus infections, particularly HSV-1, on host cells and
immune system processes. This information can be valuable in predicting neuronal cell
damage, as well as the infiltration and killing of immune cells following viral infection. We
hope that this review will stimulate further work and efforts to advance the prevention and
treatment of diseases like vestibular neuritis that are potentially caused by viral infections.
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