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Abstract: As the most abundant biological entities, viruses are the major players in marine ecosystems.
However, our knowledge on virus diversity and virus–host interactions in the deep sea remains very
limited. In this study, vB_BteM-A9Y, a novel bacteriophage infecting Bacillus tequilensis, was isolated
from deep-sea sediments in the South China Sea. vB_BteM-A9Y has a hexametric head and a long,
complex contractile tail, which are typical features of myophages. vB_BteM-A9Y initiated host lysis
at 60 min post infection with a burst size of 75 PFU/cell. The phage genome comprises 38,634 base
pairs and encodes 54 predicted open reading frames (ORFs), of which 27 ORFs can be functionally
annotated by homology analysis. Interestingly, abundant ORFs involved in DNA damage repair
were identified in the phage genome, suggesting that vB_BteM-A9Y encodes multiple pathways for
DNA damage repair, which may help to maintain the stability of the host/phage genome. A BLASTn
search of the whole genome sequence of vB_BteM-A9Y against the GenBank revealed no existing
homolog. Consistently, a phylogenomic tree and proteome-based phylogenetic tree analysis showed
that vB_BteM-A9Y formed a unique branch. Further comparative analysis of genomic nucleotide
similarity and ORF homology of vB_BteM-A9Y with its mostly related phages showed that the
intergenomic similarity between vB_BteM-A9Y and these phages was 0–33.2%. Collectively, based
on the comprehensive morphological, phylogenetic, and comparative genomic analysis, we propose
that vB_BteM-A9Y belongs to a novel genus under Caudoviricetes. Therefore, our study will increase
our knowledge on deep-sea virus diversity and virus–host interactions, as well as expanding our
knowledge on phage taxonomy.
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1. Introduction

Viruses are the most abundant biological entities in the ocean. They are virtually
present in all marine ecosystems. As estimated, there are an average of 107 virus-like
particles per milliliter of surface seawater, which makes viruses approximately an order
of magnitude more abundant than prokaryotes. Despite their small size, viruses make
up the second largest relative biomass in the ocean, exceeded only by the total biomass
of prokaryotes [1]. The majority of marine viruses are phages that infect prokaryotes.
Because of their enormous abundance and genetic diversity, viruses play a pivotal role in
marine ecosystems. Viruses control host abundance and affect host community structures
by lysing their hosts. Viruses also influence host diversity and evolution through horizontal
gene transfer. Moreover, viruses affect local and global biogeochemical cycles not only
by releasing substantial amounts of organic carbon and nutrients from host cells but also
by assisting microbes in driving biogeochemical cycles with auxiliary metabolic genes
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(AMGs) [2–5]. For example, approximately 1028 viral infections are estimated to occur in
the ocean each day, killing 20–40% of prokaryotes and releasing up to 109 tons of carbon
from biological cells, significantly influencing ocean biogeochemical cycles [6]. Additionally,
approximately 1014–1017 Gbp of DNA is estimated to be transduced by marine viruses
daily, affecting host diversity and function [7]. Marine viruses have vast uncharacterized
genetic diversity [8,9]. Although recent metagenomics studies have provided a huge
amount of viral genetic information, most of them are considered as “dark matter” due
to the lack of similarity with known sequences in the database. It is suggested that this
problem could be partially addressed through the isolation and genetic characterization
of novel culturable viruses, especially those isolated from deep-sea environments [10,11].
Thus, the isolation and characterization of novel viruses from the deep sea will help
interpret the overwhelmingly unknown sequences of viral metagenomic data and improve
our understanding of viral diversity and virus–host interactions in the deep sea.

Bacillus tequilensis, a gram-positive Bacillus first isolated from a sample taken from a
roughly 2000-year-old shaft tomb near the city of Tequila, Jalisco, Mexico, was identified
as a new subgroup of Bacillus subtilis, and is currently understudied [12]. Unlike some
of their Bacillus relatives (e.g., Bacillus anthracis, Bacillus cereus), no pathogenic report of
B. tequilensis has been published yet. B. tequilensis may have potential applications in
biobleaching, exogenous bioremediation, food industry, textile dye decolorization, and
plastic degradation, since several studies identified some industrial important enzymes
from them, including alkaline protease [13], 1,3-1,4-β-glucanase [14], novel extracellular ac-
tive thermo-alkali-stable laccase [15], alkaline pectate lyase [16], solvent-stable amylase and
novel cellulases [17,18]. Moreover, B. tequilensis can use a carbon source to produce micro-
bial exopolysaccharides, which have potential antioxidant activity [19]. Some B. tequilensis
strains can produce biosurfactant lipopeptide, which has antibacterial and insecticidal
activities [20,21]. So far, a total of 125 complete genomes of Bacillus phages have been
deposited in the GenBank Database on NCBI (National Center for Biotechnology Informa-
tion, https://www.ncbi.nlm.nih.gov/ (accessed on 22 February 2023)), with genome sizes
ranging from 18 to 251 kb. These Bacillus phages infect a variety of Bacillus hosts; however,
no phage infecting B. tequilensis has been reported yet. Since the potential importance of
B. tequilensis in industrial applications, the isolation and characterization of novel phages
infecting B. tequilensis is of great significance both for industry and phage biology. In this
study, we isolated and characterized a novel B. tequilensis-infecting phage (designated
as vB_BteM-A9Y) from deep-sea sediments in the South China Sea. To the best of our
knowledge, vB_BteM-A9Y is the first phage reported to infect B. tequilensis.

2. Materials and Methods
2.1. Phage Isolation and Purification

Bacillus tequilensis KCTC 13622 strain was isolated from deep-sea sediments in the
South China Sea. Phage plaques were observed during the culturing of Bacillus tequilensis
KCTC 13622, which was grown at 25 ◦C in 2216E solid medium (0.01% ferric phosphate,
0.1% yeast extract, 0.5% tryptone, and 1.5% agar in seawater; pH 7.6). vB_BteM-A9Y phage
particles were purified from phage-infected B. tequilensis KCTC 13622 using polyethylene
glycol precipitation methods. In brief, a sterile loop was used to scrape a single plaque
into 5 mL of liquid 2216E medium for overnight culturing at 25 ◦C, and then 5 mL of the
overnight culture was inoculated into 400 mL fresh 2216E medium for expansion. After
incubation, the culture was treated with 1.5 µg/mL DNase and RNase for 1 h at 25 ◦C; then
35 g sodium chloride was added, and the culture was placed on ice for more than 2 h. The
phage-containing supernatant was collected after the culture was centrifuged at 15,000× g
at 4 ◦C for 15 min. Subsequently, polyethylene glycol 8000 at a final concentration of 10%
(w/v) was added to the supernatant and it was incubated at 4 ◦C for more than 12 h. The
precipitated phages were collected by centrifugation at 15,000× g for 30 min at 4 ◦C and
were resuspended in SM buffer (100 mM NaCl, 8 mM MgSO4, and 50 mM Tris-HCl; pH 7.5).

https://www.ncbi.nlm.nih.gov/
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The resulting phage concentrate was filtrated through a 0.22 µm filter and subjected to
morphologic observation and DNA extraction.

2.2. Transmission Electron Microscopy (TEM) Observation

For TEM observation, one drop of purified phage particle solution was adsorbed
onto the 200-mesh carbon-coated copper grid. After staining with 2% uranyl acetate for
1 min, samples were examined at 120 kV voltage with a JEOL JEM2100F TEM (JEOL,
Tokyo, Japan).

2.3. One-Step Growth Curve

One-step growth curve analysis was conducted to characterize the infectivity and repli-
cation ability of vB_BteM-A9Y. Phages were mixed with exponentially growing B. tequilensis
KCTC 13622 with a multiplicity of infection (MOI) of 0.01 and incubated at room tempera-
ture in the dark for 30 min to promote phage infections. Then, the cells were pelleted by
centrifugation, re-suspended in 2216E medium, and diluted with fresh 2216E medium for
100 times to avoid a possible secondary infection. Thereafter, the cells were cultured at
25 ◦C with continuous shaking. Samples were collected at different time points between
0 h and 10 h post phage infection, and phage abundance in the supernatant was quantified
using the double agar overlay plaque assay [22]. After the latent period, vB_BteM-A9Y
underwent a single phage burst. The burst size, which indicates the average number of
phage particles released per infected host cell, was calculated as the ratio between the
number of plaque-forming units (PFUs) after and before the phage burst.

2.4. Phage Genomic DNA Extraction and Genome Sequencing

Prior to phage DNA extraction, the purified phage particles were treated with DNase
I (Sangon Biotech, China) at 37 ◦C for 2 h to remove exogenous DNA fragments. Then, the
phage particles were lysed with a combination of proteinase K (30 mg/mL, final concentra-
tion), SDS (1% w/v, final concentration), and EDTA (5 µM, final concentration) at 55 ◦C
for 3 h. The lysate was then mixed with an equal volume of phenol/chloroform/isoamyl
alcohol (v/v 25:24:1). The supernatant was collected by centrifugation at 15,000 g for 5 min
and then sequentially purified by adding chloroform/isoamyl alcohol (v/v 24:1) and cen-
trifugated at 15,000× g for 10 min. Subsequently, the supernatant was mixed with isoamyl
alcohol to precipitate the DNA. The precipitate was then washed with cold 70% ethanol
twice and then air-dried. Finally, the purified DNA was resuspended in TE buffer (10 mM
Tris-HCl, 1 mM EDTA, pH 8.0) and stored at −20 ◦C until further analysis. The purified
genomic DNA was sent to Hanyu Biotechnology Co., Ltd. (Shanghai, China) for whole-
genome sequencing. A DNA library with an insert size of 300 bp was constructed using
the NEBNext® UltraTM DNA Library Prep Kit for Illumina (NEB, Ipswich, Massachusetts,
USA). The phage genome DNA was sequenced by the Illumina Nova platform using the
PE 2 × 150 bp strategy.

2.5. Phage Genome Assembly, Annotation, and Analysis

After high-throughput sequencing, Trimmomatic v0.32 [23] was used to remove low-
quality reads and adapters. The obtained high-quality reads were assembled to phage
genome sequence via velvet v1.2.03 [24], Newbler v2.8 [25], and SOAPdenovo2 v2.04 [26].
The PhageTerm software [27] was used to predict the termini of phage genome and DNA
packaging mechanisms based on Next Generation Sequencing (NGS) data. Glimmer3
v3.02 [28], GeneMarkS v4.28 [29], and Prodigal v2.60 [30] were used for the prediction
of open reading frames (ORFs). The ORF-encoded proteins were functionally annotated
by searching against the NCBI NR, UniProt, and Pfam databases by using BLASTp and
HHpred server [31,32]. The Virfam server was used to the recognition of head-neck-tail
modules in phage genomes [33]. tRNA sequences were predicted using the tRNAscan-SE
server [34]. The Viral Spacer database of the IMG/VR database was used to search for any
putative protospacer in the genome of vB_BteM-A9Y (E-value < 10−5) [35].
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For phage taxonomy, vConTACT2 v0.9.19 was used to compare the genome of vB_BteM-
A9Y against the ProkaryoticViralRefSeq94 (v94) database with default parameters, and
the phages predicted to be related with vB_BteM-A9Y were determined by similarity
score > 1 [36]. Complete amino acid profiles of vB_BteM-A9Y and its related phages
were submitted to the virus classification and tree building online resource (VICTOR)
(https://ggdc.dsmz.de/victor.php, accessed on 16 February 2023) for phylogenetic anal-
ysis, and the recommended settings of the genome BLAST distance phylogeny (GBDP)
method were used [37]. The proteomic tree of vB_BteM-A9Y and its related phages was
generated using the ViPTree server [38] based on genome-wide sequence similarities com-
puted by tBLASTx. The linear comparison of the genomes of vB_BteM-A9Y and its related
phages was generated using the ViPTree server. Intergenomic nucleotide sequence similar-
ity and aligned genome fractions within the imported phages were plotted with the Virus
Intergenomic Distance Calculator (VIRIDIC) under recommended configurations [39]. The
complete genome sequence of vB_BteM-A9Y is deposited in the GenBank database under
the accession number ON528935.

3. Results and Discussion
3.1. Phage Isolation and Characterization

Plaques were found when the suspended deep-sea sediment from the South China
Sea was spread over the 2216E culture plates. We purified the plaques and isolated phage
particles by polyethylene glycol precipitation. The host shares 99.93% 16S rRNA similarity
with B. tequilensis, and was further identified as B. tequilensis based on the genomic and
biochemical characterizations. TEM observation showed that phage particles (designated
as vB_BteM-A9Y) have the typical morphology of myophages. vB_BteM-A9Y has a long,
complex, contractile tail consisting of a central tube surrounded by a contractile sheath
and auxiliary structures, approximately 202.44 ± 3.95 nm in length and 23.34 ± 1.97 nm in
diameter, and a hexamer head of an estimated diameter of 51.44 ± 2.58 nm (Figure 1).
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Figure 1. Morphology of vB_BteM-A9Y. Purified phage particles were negatively stained with 2%
uranyl acetate on carbon-coated copper grids and observed using a JEM-1230 TEM at an accelerating
voltage of 120 kV.

To investigate the life cycle of phage vB_BteM-A9Y, one-step growth curve analysis
was conducted (Figure 2). Purified phage particles were used to infect the logarithmic
growing host cells (OD600 = 0.2) at a MOI of 0.01. The result showed that vB_BteM-A9Y
initiated host lysis at about 30 min post infection, and the titer of produced phage progenies
reached a plateau at 60 min post infection. vB_BteM-A9Y exhibited a relatively small burst
size of about 75 PFU per host cell.

https://ggdc.dsmz.de/victor.php
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Figure 2. One-step growth curve of phage vB_BteM-A9Y. Each data point is shown as the mean ± SD
of three independent replicates.

3.2. Genomic Analysis of vB_BteM-A9Y

vB_BteM-A9Y has a linear double-stranded DNA genome with a size of 38,634 bp and
a GC content of 41.05% (Table 1). The phage genome was predicted to encode a total of
54 ORFs with an average length of 656 bp. Similar to most bacteriophages, the genome
of vB_BteM-A9Y is tightly arranged, with an average gene density of 1.397 genes/kb.
Eight ORFs were transcribed leftward, and the remaining 46 ORFs were transcribed right-
ward (Figure 3). The translation products of all predicted ORFs were queried against
the NCBI non-redundant RefSeq, UniProt, and Pfam databases by using BLASTp and
HHrepd [31,32,40] (E-value cutoff = 10−6) to identify their putative functions. Only 27 of
the ORFs were functionally annotated. No tRNA was found in the phage genome, implying
that vB_BteM-A9Y is highly dependent on the host’s translation machinery. Moreover,
no putative CRISPR protospacer was found in the genome. The genome termini were
predicted based on NSG data using the software PhageTerm and the result indicated that
vB_BteM-A9Y has unique obvious termini at both ends (R1 = 464 > 100, R2 = 57 > 3, and
R3 = 73 > 3), suggesting that vB_BteM-A9Y employs a COS strategy for DNA packaging.

Table 1. Genomic characteristics of phage vB_BteM-A9Y.

vB_BteM-A9Y

Genome length (bp) 38,634
GC content (%) 41.05%

Predicted ORF number 54
ORF total length (bp) 35,436

ORF length maximum (bp) 3777
ORF length minimum (bp) 111
ORF average length (bp) 656

ORF density (number/kb) 1.397
ORF/genome (%) 91.72

Predicted tRNA number 0
Predicted CRISPR protospacer number 0
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In the genomes of bacteriophages, ORFs encoding related biological functions tend
to cluster, forming modules that can be co-regulated and co-inherited [41]. In the case of
vB_BteM-A9Y, seven functional modules were identified in the genome, including modules
involved in DNA packaging, structure morphogenesis, host lysis, DNA replication and
repair, transcriptional regulation, lysogenic control, and auxiliary metabolism (Figure 3).

In the left arm (ORF1-ORF23) of the vB_BteM-A9Y genome, functionally related ORFs
are dispersed and include ORFs predicted to be involved in DNA replication and repair,
lysogenic control, transcriptional regulation, and auxiliary metabolism. A total of six ORFs
in the vB_BteM-A9Y genome are predicted to participate in DNA replication and repair,
including ImmA/IrrE family metallo-endopeptidase (ORF2), host nuclease inhibitor Gam
family protein (ORF8), AAA family ATPase (ORF9), DNA primase (ORF12), ERCC4 type
nuclease (ORF14), and HNH endonuclease (ORF22). ORF2 encodes a putative ImmA/IrrE
family metallo-endopeptidase. IrrE is an important DNA repair regulatory protein that
recognizes a wide range of DNA damage. It acts as a “universal switch” for DNA repair
and protection pathways by regulating the expression of recA and pprA. The enhanced
expression of recA and pprA stimulated by IrrE in response to ionizing radiation and UV
light has been previously observed in Deinococcus radiodurans [42–45]. The putative host
nuclease inhibitor Gam family protein (ORF8), first discovered and characterized from
bacteriophage Mu, protects linear double-stranded DNA from exonuclease degradation
in vitro and in vivo [46]. The putative DNA primase (ORF12) belongs to the P4 phage
DNA primase family. This priming activity is similar to the enzymatic activity of DNA
primases encoded by conjugative plasmids in terms of template utilization and the abil-
ity to synthesize primers [47]. ORF14 and 22 were predicted to encode the ERCC4-type
nuclease and the HNH endonuclease, respectively. ERCC4-type DNA nuclease is a DNA
repair nuclease; such enzymes are often part of the cellular response to UV-induced DNA
damage [48,49]. HNH endonucleases have been identified in a number of bacteriophages
and have been shown to play a variety of roles in the phage life cycle [50]; they comprise
restriction, homing, and structure-specific endonucleases, as well as DNA repair-associated
enzymes [51,52]. ORF9 encodes a putative AAA family ATPase. Phage-encoded AAA
family ATPases are essentially the terminases that aid in the packaging of dsDNA in the pro-
capsid during viral assembly, using ATP as an energy source [53]. However, AAA ATPases
were also reported to have a putative role in the DNA recombination/repair/maintenance
machinery in mycobacteriophages [54]. Given that ORF9 is clustered with ORFs involved
in DNA repair and recombination, and both terminase large and small subunit genes
have been identified in the vB_BteM-A9Y genome, it is likely that ORF9 participates in
DNA repair and recombination. Collectively, the presence of ORF8, 9, 14, and 22 in the
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vB_BteM-A9Y genome suggests that vB_BteM-A9Y encodes multiple pathways for DNA
damage repair, which may help to maintain the stability of the host/phage genome.

Several apparent gene clusters were identified in the middle and right arm (ORF24-
ORF55) of the vB_BteM-A9Y genome, forming several functional modules involved in DNA
packaging, structure morphogenesis, and host lysis. The DNA packaging module includes
two genes, one coding for a terminase small subunit (ORF24) and the other encoding for a
terminase large subunit (ORF25). ORFs encoding for capsid and tail morphogenesis were
identified in the structure morphogenesis module. The capsid genes of bacteriophages
are usually clustered in the order (in terms of transcription direction) of portal protein,
proteases, scaffold proteins, and major capsid proteins [55]. Consistently, the capsid genes
(ORF27-29) of vB_BteM-A9Y also follow this order, except that no separate scaffold protein
was identified. The absence of a separate scaffold protein has also been observed in
phage HK97. However, the N-terminal segment of the capsid protein (gp5) of phage HK97
contains a delta domain, which functions as a scaffold-like protein [56]. Given that the major
capsid protein (ORF29) of vB_BteM-A9Y shares a low protein sequence similarity (27.78%)
with its counterpart of HK97, it is unknown whether the capsid protein of vB_BteM-A9Y
could have scaffold-like functions like its counterpart of phage HK97. Abundant ORFs
encoding tail/neck structural proteins were identified (ORF31-43). The predicted gene
product of ORF31 is highly homologous to the head-to-tail adaptor proteins of phage HK97
and phage SPP1, which serve as the interface for tail attachment and the point of egress
for DNA from the head during infection [57–59]. Further Virfam server analysis showed
that the neck module of vB_BteM-A9Y is classified into Neck Type 1-Cluster 2, which
adopts the structural organization of the siphovirus SPP1 neck [33]. ORFs encoding for holin
(ORF46) and endolysin (ORF47) were identified in the host lysis module, indicating that
vB_BteM-A9Y achieves host lysis using a holin–endolysin system that is typical in dsDNA
phages [60]. The predicted vB_BteM-A9Y endolysin contains a lysM peptidoglycan-binding
motif, which shows the highest similarity with N-acetylmuramoyl-L-alanine amidase XlyA
according to the results of HHpred server analysis and BLASTp analysis. LysM motif
has been shown to be present in over 27,000 proteins and can bind to various types of
peptidoglycan and chitin, in particular the N-acetylglucosamine moiety [61]; thus, it is
likely that the endolysin of vB_BteM-A9Y degrades the host cell wall by recognizing
N-acetylglucosamine moiety.

Four ORFs (ORF3, ORF4, ORF17, and ORF52) in the vB_BteM-A9Y genome were
predicted to encode different types of transcriptional regulators. ORF48 is predicted to
encode the ArpU family autolysin regulatory protein. It was previously reported that ArpU
family transcriptional regulators act as transcriptional activators of late operons in Gram-
positive bacteriophages, which could regulate phage DNA cleavage and packaging [62].

3.3. vB_BteM-A9Y Belongs to a Novel Genus under Caudoviricetes

The BLASTn search of whole genome sequence of vB_BteM-A9Y against the GenBank
revealed no existing homolog. Only two phage genomes show similarity to the vB_BteM-
A9Y genome over low query coverage, i.e., Bacillus phage rho14 (GenBank accession
number OM236514.1, 87.44% identity over 26% coverage) and Bacillus phage phi 105
(GenBank accession number NC_048631.1, 87.30% identity over 34% coverage). In addition,
a total of 31 phages were predicted to be related with vB_BteM-A9Y (pairing-similarity
score >1) by vConTACT2 analysis based on the protein-sharing network (Figure 4).

A phylogenomic GBDP tree was constructed based on the whole-genome sequence of
vB_BteM-A9Y and 31 related phages using the D6 formulas and yielding an average support
of 30%. The results showed that vB_BteM-A9Y was clustered with Bacillus phage rho14 and
Bacillus phage phi105 of the Spizizenvirus genus, with reliable bootstrap values but formed
two deep branches (Figure 5). Consistently, the whole proteome-based phylogenetic tree
showed the clustering of A9Y, rho14, and phi105 into two clades (Figure 6).
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Figure 5. Phylogenomic tree of vB_BteM-A9Y and its related phages. This tree was generated using
the Genome-BLAST distance phylogeny (GBDP) method, and the number near each node is the GBDP
pseudo-bootstrap support value from 100 replications (only values > 50% are shown). Bacteriophage
genus assignments according to the official ICTV classification (March 2023) are provided with different
color frames. The GC content and sequence length of each phage genome is indicated on the right.
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Figure 6. Phylogenetic analysis of vB_BteM-A9Y, Bacillus phage phi105, Bacillus phage rho14, and
their most closely related phages based on whole-genome-wide sequence similarities calculated
using tBLASTx.

A linear comparison of multiple loci between vB_BteM-A9Y and its most related
phages (Bacillus phage phi105 and Bacillus phage rho14) was conducted. The results
showed that the right arm of three phage genomes shows low homology, while the left arm
of these genomes shows relatively high homology (Figure 7). Further comparative analysis
of genomic nucleotide similarity and ORF homology of vB_BteM-A9Y with Bacillus phage
rho14, Bacillus phage phi105, and 29 other related phages showed that the intergenomic
similarity between vB_BteM-A9Y and these phages was 0–33.2% (Figure 8). According
to the recognized virus classification standards published by ICTV, viruses in the same
genus should share >50% similarity in nucleotide sequence or > 40% ORF homologs [63,64].
Collectively, based on the comprehensive morphological, phylogenetic, and compara-
tive genomic analysis, we propose that vB_BteM-A9Y belongs to a novel genus under
Caudoviricetes.
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4. Conclusions

In this study, vB_BteM-A9Y, the first phage to infect B. tequilensis, was isolated from
the deep-sea sediment of the South China Sea. Based on comprehensive morphological,
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one-step growth curve, phylogenetic, and comparative genomic analysis, we propose that
vB_BteM-A9Y belongs to a novel genus under Caudoviricetes. Therefore, this study will
increase our knowledge on deep-sea virus diversity and virus–host interactions, as well as
expanding our knowledges on Bacillus phages.
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