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Abstract: Dolutegravir (DTG) use in combination with tenofovir and lamivudine (TLD) is scaling up
in Africa. However, HIV drug resistance (HIVDR) data to DTG remain scarce in Zimbabwe. We as-
sessed the prevalence and genetic mechanisms of DTG resistance in people living with HIV initiating
on TLD. A prospective cohort study was conducted between October 2021 and April 2023 among
antiretroviral therapy (ART) naïve adults (≥18 years) attending care at an HIV clinic in Zimbabwe.
Pre-treatment drug resistance (PDR) was assessed prior to TLD initiation and viral load (VL) out-
come and acquired drug resistance (ADR) to TLD were described after 24 weeks follow-up. In total,
172 participants were enrolled in the study. The median (IQR) age and log10 VL were 39 (29–48)
years and 5.41 (4.80–5.74) copies/mL, respectively. At baseline, no PDR to DTG was found. How-
ever, as previously reported, PDR to non-nucleotide reverse transcriptase inhibitor (NNRTI) was
high (15%) whilst PDR to NRTI was low (4%). After a median duration of 27 (25–30) weeks on
TLD, virological suppression (VL < 1000 copies/mL) was 98% and among the 2 participants with
VL ≥ 1000 copies/mL, no ADR was found. HIVDR to DTG is rare among ART naïve individuals.
DTG is more likely to address the problems of HIVDR in Africa.

Keywords: dolutegravir; HIV drug resistance; virological suppression; Zimbabwe; Africa

1. Introduction

Despite the great achievements reported since the introduction of antiretroviral therapy
(ART) and the efforts galvanized towards HIV/AIDS control and eradication by 2030, HIV
drug resistance (HIVDR) may still pose an obstacle to the success of ART. Previously
reported high levels of pre-treatment drug resistance (PDR) [1] to nucleotide reverse
transcriptase inhibitors (NRTIs) and non-NRTIs (NNRTIs) prompted the World Health
Organization (WHO) to recommend dolutegravir (DTG)-based regimens as the preferred
first-, second- and third-line ART regimens for all people living with HIV (PLHIV) [2].
Reports from large clinical trials have well established that DTG, with its high potency
and high genetic barrier to resistance, is likely to reduce the incidence of virological
failure (VF) and the emergence of HIVDR among ART naïve individuals receiving DTG
plus two NRTIs [3–5]. Furthermore, Ndashimye et al. (2021) showed that initiating
patients on a DTG-containing regimen may encourage better clinical outcomes among ART
naïve individuals in low- and middle-income countries (LMICs) [6]. In line with this, we
recently reported high (95%) viral suppression (defined as a viral load greater or above
1000 copies/mL) among children and adolescents switching to a DTG-based regimen in
rural Zimbabwe [7].

The WHO recommends that surveillance of drug resistance mutations (SDRMs) should
accompany the scale-up of DTG-containing ART in HIV programmes and emphasizes the
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importance of estimating the extent to which acquired drug resistance (ADR) to DTG
emerges in populations receiving DTG. Although cases of PLHIV developing VF and inte-
grase strand transfer inhibitor (INSTI)-associated resistance mutation while on DTG-based
regimens have been extremely rare [3–5], DTG is not impregnable to resistance [8,9] and
may succumb to this phenomenon in many LMICs given its large scale-up and the limited
viral load (VL) monitoring and genotypic resistance testing (GRT) [10].

Zimbabwe has adopted the use of DTG in combination with tenofovir and lamivudine
(TLD) as the preferred first-line regimen for HIV treatment [11]. However, knowledge of
major INSTI-DRMs and polymorphisms remains very limited in this geographical setting.
Therefore, we assessed the prevalence and genetic mechanisms of DTG resistance among
ART naïve individuals initiating DTG in a real-world setting.

2. Materials and Methods
2.1. Study Design, Setting and Population

This was a prospective cohort study investigating the prevalence and genetic mecha-
nisms of DTG resistance among PLHIV in Zimbabwe. Participants were PLHIV initiating
DTG-based ART between October 2021 and April 2023. Consenting participants were
ART-naive adults (aged ≥18 years) initiating TLD or patients re-initiating first-line TLD
after defaulting for at least 3 months. Participants were attending care at the Parirenyatwa
Hospital Family Care Centre (PHFCC), a tertiary level setting, in Harare, Zimbabwe.

2.2. Participant Enrolment Procedure and Follow-up Visit

We consecutively invited individuals to participate in the study and obtained written
informed consent prior to recruitment. Through an interview-based questionnaire, we
extracted socio-demographic and clinical data (sex, age, marital status, occupation and
education) as well as ART data (ART naïve or prior ART exposure). Upon enrolment,
whole blood was collected in two ethylenediamine tetra acetic acid (EDTA) tubes; one
tube for VL measurement and the other one for baseline GRT, respectively. These par-
ticipants were followed up to or after 24 weeks when, besides routine laboratory tests,
whole blood was collected for VL quantification and GRT for those with virological failure
(VL ≥ 1000 copies/mL).

2.3. Viral Load Quantification

Prior to HIV-1 VL quantification, the frozen plasma samples were allowed to thaw at
room temperature for 30 min and then centrifuged. Plasma VLs were measured using the
Xpert HIV-1 VL assay with a linear range of 40–10,000,000 HIV-1 ribonucleic acid (RNA)
copies/mL at the Biomedical Research Training Institute (BRTI), Harare, Zimbabwe. The
Xpert HIV-1 VL in vitro diagnostic assay is based on reverse transcriptase polymerase
chain reaction (RT-PCR) technology. The Xpert HIV-1 VL automates the test process
including RNA extraction, purification, reverse transcription and complementary deoxyri-
bonucleic acid (cDNA) real-time quantitation in one fully integrated cartridge. Following
the manufacturer’s instructions, in brief, 1000 µL of plasma sample was added to the
cartridge, which was loaded into the instrument. This was followed by the automated
process of nucleic acid purification and the simultaneous amplification and detection
with the GeneXpert machine (Cepheid, Gauteng, South Africa). Some plasma samples
were also measured at the Infectious Diseases Research Laboratory (IDRL), University
of Zimbabwe with the Cobas Ampliprep/TaqMan48 HIV-1 Test quantification system,
V2.0 (Roche, Indianapolis, IN, USA) with the detection limit of 20 copies/mL. Following
the manufacturer’s instructions, in brief, 1050 µL of plasma was centrifuged and loaded
onto the machine with the high and low positive controls and the negative control. This
was followed by the automated process of extraction on the COBAS Ampliprep and real-
time amplification and detection on the Taqman48 analyser. All tests were conducted in
accordance with the manufacturer’s instructions.
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2.4. Isolation of HIV Viral Ribonucleic Acid from Plasma Samples

In preparation for HIV pol gene genotyping, HIV viral ribonucleic acid (RNA) was
extracted from stored plasma samples using a column-based extraction kit, the QIAamp
Viral RNA Mini kit protocol (Qiagen, Hilden, Germany). Following the manufacturer’s
instructions, plasma samples were thawed, allowed to equilibrate to room temperature
(15–25 ◦C) and thoroughly mixed by vortexing for 20 s. Lysis buffer AVL (560 µL) containing
carrier RNA (1 ng/µL) was added to 140 µL of the plasma sample. The reaction was mixed
by pulse-vortexing for 15 s and incubated at room temperature for 10 min. Absolute
ethanol (560 µL at 96%) was added to the reaction and mixed by pulse-vortexing for 15 s in
preparation for binding of the viral RNA onto the QIAamp mini-column membrane. The
lysate obtained was transferred to a QIAamp mini-column membrane and centrifuged at
8000× g rpm for 1 min. The column was then washed twice with 500 µL each of buffer
1 and 2 respectively, followed by a centrifugation at full speed (15,000× g rpm) for 1 min
in order to discard the flow through. Finally, 60 µL of elution buffer was added to the
column and placed into a clean 1.5 mL microcentrifuge tube, which was incubated at room
temperature for 1 min and centrifuged at 8000× g rpm for 1 min. The eluted viral RNA
was immediately stored at −80 ◦C prior to RT-PCR. All tests were conducted in accordance
with the manufacturer’s instructions.

2.5. Reverse Transcription, Amplification and Sequencing of the Extracted Viral RNA

The extracted viral RNA was reverse-transcribed and amplified using the Applied
BiosystemsTM TaqPathTM Seq HIV-1 Genotyping Assay Kit (ThermoFisher Scientific,
Waltham, MA, USA). The assay is a Sanger sequencing based-assay that enables the detec-
tion of genomic mutations in the protease (PR), reverse transcriptase (RT) and integrase
(IN) regions of the HIV-1 pol gene. Briefly, for RT-PCR, 10 µL of RNA was denatured in a
thermocycler for 10 min at 65 ◦C and added to a 40 µL Master reaction comprised of 39 µL
of RT-PCR Master Mix, PR/RT or IN and 1 µL of enzyme (SuperScriptTM III One-Step
RT-PCR with PlatinumTM Taq High Fidelity Enzyme). The mixture was then loaded onto
the MIniamp thermal cycler (ThermoFisher Scientific, Waltham, MA, USA) under the
following conditions: 1 cycle of 45 min at 50 ◦C for reverse transcription, 1 cycle of 2 min at
94 ◦C for enzyme inactivation, 40 cycles of 15 s, 20 s and 2 min at 94 ◦C, 50 ◦C and 72 ◦C for
denaturation, annealing and extension, respectively and 1 cycle of 10 min at 72 ◦C for the
final extension. Then, 2 µL of the resultant RT-PCR product was amplified immediately by
nested PCR. For PR/RT and IN regions, nested PCR conditions were: 1 cycle of 4 min at
94 ◦C for enzyme inactivation, 40 cycles of 15 s, 20 s and 2 min at 94 ◦C, 53 ◦C and 72 ◦C for
denaturation, annealing and extension, respectively, and 1 cycle of 10 min at 72 ◦C for the
final extension. The resultant RT-PCR product was amplified immediately by nested PCR.
All tests were conducted in accordance with the manufacturer’s instructions. The quality of
the nested PCR product was assessed on a 1% agarose gel. The PR/RT and IN nested PCR
product was purified using the Purelink Pro 96 viral RNA purification kit (Thermofisher
Scientific, Waltham, MA,) per the manufacturer’s instructions. The purified product was
sent to MCLAB, Molecular Cloning Lab, CA, USA for Sanger sequencing.

2.6. Bioinformatics Analysis of the Sequences

The AB1 files were exported from the instrument into a working folder on Geneious
software version 11.0 [12], which allocated a percentage quality score (sequences with
quality score >70% indicated a good sequence). Each of the 6 and 7 sequences for RT/PR
and IN regions, respectively, were extracted by cutting off both ends of the sequences
with bad quality. The sequences for each sample were mapped to a reference sequence
to generate a consensus sequence. This consensus sequence (Fasta file) was exported for
HIVDR classification and HIV-1 subtype identification on the online HIV Stanford database,
Version 9.4.
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2.7. Pre-Treatment Drug Resistance

Pre-treatment drug resistance was classified as surveillance drug-resistance mutations
(SDRMs) using the calibrated population resistance (CPR) tool on the online Stanford
HIV database. Genotypes were classified as wild type or SDRMs to NRTIs (M41L, K65R,
D67NGE, T69Dins, K70RE, L74VI, V75MTAS, F77L, Y115F, F116Y, Q151M, M184VI, L210W,
T215YFISCDVE, K219QENR); SDRMs to NNRTIs (L100I, K101EP, K103NS, V106MA, V179F,
Y181CIV, Y188LHC, G190ASE, P225H, M230L); SDRMs to PIs (L23I, L24I, D30N, V32I,
M46IL, I47VA, G48VM, I50VL, F53LY, I54VLMATS, G73STCA, L76V, V82ATFSCML, N83D,
I84VAC, I85V, N88DS, L90M) and finally SDRMs to INSTIs (T66AIK, E92GQ, G118R, F121Y,
E138AKT, G140ACS, Y143CHRS, S147G, Q148HRK, N155H, S230R and R263K) [13,14].

2.8. Acquired Drug Resistance Mutation

Acquired drug resistance was classified as the presence of any mutation that reduces
susceptibility or virological response to tenofovir (K65R), lamivudine (M184V) and DTG
(G118R, R263K and Q148HRK) as per the online Stanford HIV database.

2.9. Statistical Analysis

Statistical analyses were performed using Stata version 17.0 (StataCorp LP, College Station,
TX, USA; 800-STATA-PC). Descriptive statistics were used to summarize the baseline
demographic and clinical characteristics and were presented as proportions and medians
(IQR). These characteristics were compared between ART-naive and prior ART-exposed
participants using the Student’s T-test for parametric variables and the Mann–Whitney
sum rank test for non-parametric variables. Fisher’s exact test was used for comparison of
proportions of SDRMs between ART-naive and prior ART-exposed participants. Logistic
regression was used to explore factors (age, baseline VL and CD4, ART history and sex)
associated with any SDRM.

3. Results
3.1. Sociodemographic and Clinical Characteristics of All Participants

Between October 2021 and April 2023, a total of 172 participants were consecutively
enrolled in the study. The median (IQR) age of the 172 participants was 39 (29–48) years,
whereas the median (IQR) CD4 cell count and log10 VL were 175 (58–328) cells/mm3

and 5.41 (4.80–5.74) copies/mL, respectively. See Table 1. Slightly above half (54%) of
the participants were females. The majority were married (54%) and had undergone
a secondary education (78%). From these 172 participants,142 (83%) were ART naïve
and 30 (17%) reported previous exposure to ART. Among those who had experienced
ART, the majority, 43% (13/30), were on a DTG-based regimen as the previous ART. The
proportion of ART defaulters was larger among males than females (67% vs. 33%, p = 0.012).
Additionally, there were more divorced people among the ART defaulters than among the
ART-naïve participants (27% vs. 10%, p < 0.001).

Table 1. Sociodemographic and clinical characteristics of all the participants.

Characteristics All Participants
n = 172

ART Naïve
n = 142

ART Defaulted
n = 30 p Value

Age, years, median (IQR) 39 (29–48) 40 (31–49) 37 (28–44) 0.114

Sex, n(%)
Female
Male

93 (54%)
79 (46%)

83 (58%)
59 (42%)

10 (33%)
20 (67%) 0.012

Plasma VL in log10
copies/mL, median (IQR) 5.41 (4.80–5.74) 5.42 (4.78–5.76) 5.32 (4.80–5.74) 0.637

CD4 cell count in
cells/mm3, median (IQR) 175 (58–328) 165 (55–357) 213 (77–320) 0.795
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Table 1. Cont.

Characteristics All Participants
n = 172

ART Naïve
n = 142

ART Defaulted
n = 30 p Value

Marital status, n(%)
Married
Divorced

Single
Widowed

93 (54%)
23 (13%)
41 (24%)
15 (9%)

86 (61%)
15 (10%)
28 (20%)
13 (9%)

7 (23%)
8 (27%)

13 (43%)
2 (7%)

<0.001

Education, n(%)
None

Primary
Secondary

Tertiary

1 (1%)
14 (8%)

135 (78%)
22 (13%)

1 (1%)
11 (8%)

111 (78%)
19 (13%)

0 (0%)
3 (10%)

24 (80%)
3 (10%)

0.847

Occupation, n(%)
Employed

Unemployed
Student

79 (46%)
89 (52%)
4 (2%)

69 (48.5%)
69 (48.5%)

4 (3%)

10 (33%)
20 (67%)
0 (0%) 0.364

Previous ART, n(%)
ABC/3TC/ATV/r
ABC/3TC/DTG

AZT/3TC/ATV/r
TDF/3TC/ATV/r
TDF/3TC/DTG
TDF/3TC/EFV

0
0
0
0
0
0

1 (3.3%)
2 (6.7%)
2 (6.7%)
2 (6.7%)

11 (36.6%)
12 (40%)

NA

IQR = Interquartile range, VL = Viral load, ART = Antiretroviral therapy, ABC = Abacavir, 3TC = Lamivudine,
ATV/r = Atazanavir/ritonavir, DTG = Dolutegravir, AZT = Zidovudine, EFV = Efavirenz, TDF = Tenofovir
disoproxil fumarate, NA = Not applicable.

3.2. SDRMs among ART-Naïve and Prior ART-Exposed Participants

GRT of the pol (PR, RT and IN regions) gene was conducted on all the participants at
baseline. Of the 172 participants, 137 (80%) and 150 (87%) were successfully genotyped
for the PR/RT and the IN regions, respectively. The median (IQR) log10 VL of the 137 and
150 successfully genotyped was significantly higher than the 35 and 22 that failed genotyp-
ing, respectively [5.48 (5.03–5.83) vs. 4.60 (3.99–5.15) and 5.45 (4.92–5.80) vs. 4.50 (3.93–4.94),
respectively with p < 0.0001]. All sequences were confirmed as HIV-1 subtype C.

The presence of any SDRM was seen in 19% (26/137). See Table 2. Although not statisti-
cally significant, these SDRMs were more seen among prior ART-exposed participants com-
pared to ART-naïve participants (27% vs. 17%, p = 0.271, Fisher Exact test). SDRM to PI and
NRTI was low, found in 1% (1/137) and 4% (5/137), respectively, whilst SDRMs to NNRTI
was high, 15% (21/137). See Figure 1. SDRM to both NRTI and NNRTI (T69D + K103N)
was found in one ART-naive participant. There were no SDRM to NRTI + NNRTI + PI.
However, we found two PI accessory mutations (L10LF and Q58E) and 1 NRTI polymor-
phic mutation (S68G). The common NNRTI polymorphic accessory mutation E138A was
found in 21 participants. E138A is found in persons receiving etravirine and rilpivirine and
reduces their susceptibility by 2-fold.

Table 2. Surveillance drug resistance mutations among the participants.

Sequence IDs ART Status NRTI SDRMs NNRTI SDRMs PI SDRMs INSTI SDRMS

PDR_028 ART naive None K103N, V106M None None

PDR_030 ART naive None K103N None None

PDR_032 ART defaulted None K103N None None

PDR_038 ART naive None K103N None None
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Table 2. Cont.

Sequence IDs ART Status NRTI SDRMs NNRTI SDRMs PI SDRMs INSTI SDRMS

PDR_039 ART naive D67E None None None

PDR_040 ART naive None V179F None None

PDR_041 ART naive None K103N None None

PDR_057 ART defaulted None K101E, G190S None None

PDR_064 ART naive None K103N None None

PDR_067 ART naive None K103N None None

PDR_068 ART defaulted M184I None None None

PDR_072 ART naive D67G None None None

PDR_077 ART naive None K103N None None

PDR_080 ART naive None K101E None None

PDR_090 ART naive None K103N None None

PDR_092 ART naive None K103N, Y181C None None

PDR_117 ART defaulted None K103N, Y188C None None

PDR_122 ART naive None K103N, V179F None None

PDR_127 ART defaulted None K103N, Y181C, G190A None None

PDR_132 ART defaulted None K101E, G190A None None

PDR_140 ART naive K219R None None None

PDR_14 ART defaulted None K103NS None None

PDR_155 ART naive T69D K103N None None

PDR_174 ART naive None K103N None None

PDR_175 ART naive None K103N None None

PDR_179 ART naive None None V82L None

NRTI = Nucleotide reverse transcriptase inhibitors, NNRTI = Non-NRTI, PI = Protease inhibitor, INSTI = Integrase
strand transfer inhibitor, SDRMs = Surveillance drug resistance mutations.
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Figure 1. Diagram highlighting sites of mutations in the protease (99 amino acids) and reverse
transcriptase (560 amino acids) regions of the HIV pol gene found in this study as per the HIV
Stanford database, version 9.5.0.

There were no SDRMs to INSTI. However, four participants, all ART naïve, had INSTI
accessory mutations (E157Q, Q95K, G163GR and L74LM+ T97A).

3.3. Factors Associated with the Presence of SDRMs

None of these factors, i.e., age, baseline VL and CD4, ART status and sex were associ-
ated with the presence of SDRMs among the participants (p > 0.05). See Table 3.
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Table 3. Factors associated with the presence of SDRMs among the participants.

Characteristics, n = 172 Univariate Analysis

Proportion OR 95% CI p Value

Age, years
<40
≥40

0.51
0.49 0.49 0.20–1.16 0.106

Baseline CD4, cells/mm3

<200
≥200

0.53
0.47 0.77 0.32–1.85 0.556

Baseline VL, copies/mL
<100,000
≥100,000

0.32
0.68 2.23 0.79–6.28 0.128

ART status
ART naïve

ART defaulted
0.83
0.17 1.97 0.74–5.22 0.172

Sex
Male

Female
0.46
0.54 0.83 0.36–1.90 0.652

ART = Antiretroviral therapy, OR = Odds ratio, CI = Confidence interval, VL = Viral load.

3.4. Acquired Drug Resistance at Follow-up Visit

Participants were followed up for a median (IQR) duration of 27 (25–30) weeks on
TLD. Of the 131 participants with follow-up VL data available, the majority, 98% (129/131),
were virologically suppressed with VL < 1000 copies/mL. The two participants with
VL ≥ 1000 copies/mL did not have any SDRM at baseline and neither did they develop
acquired drug resistance to DTG.

4. Discussion

The current WHO treatment guidelines for all PLHIV recommend the use of DTG-based
regimens as the preferred first-line regimen because of its high potency and high genetic
barrier to resistance. DTG plays a crucial role in the efforts to control the HIV pandemic in
many resource-limited settings. In this study, we found no SDRM to DTG whilst finding a
high level of SDRMs to NNRTI (15%) and low levels of SDRMs to NRTI (4%) and PI (1%)
among ART-naïve participants initiating on TLD. Additionally, virological failure was
low (2%), and no emergence of ADR to DTG was seen among the two failures at the
follow-up visit.

The low prevalence of SDRMs to NRTI (4%) and PI (1%) along with the high prevalence
of SDRMs to NNRTI (15%), particularly among ART defaulters is broadly consistent with
our previous findings [15] and other available information on SDRMs to NNRTI [16–18].
Additionally, our results also confirm a previous report from the 2017 WHO survey on
HIVDR that showed that PDR to NNRTIs had increased across all WHO regions [1].
Furthermore, our findings are in support of the current WHO guidelines on the use of
DTG-based regimens as the preferred first-line so as to curb the problems of HIVDR and
improve the rate of virological suppression in many LMICs.

We found that, by week 24, virological suppression VL < 1000 copies/mL and
VL < 50 copies/mL on DTG was high (98% and 84%, respectively) among the partici-
pants. These findings were consistent with recent studies in LMICs that reported a high rate
(>95%) of virological suppression among individuals on DTG [7,19]. Similarly, improved
virological suppression in large clinical trials of ART-naïve individuals receiving DTG plus
two NRTIs has been reported [20–22].

In the ADVANCE (South Africa) [20], NAMSAL (Cameroon) [21] and GEMINI-1
(multinational) [22] clinical trials, virological suppression was seen in 95%, 80% and
98%, respectively.
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Unsurprisingly, prior to ART initiation, we found no SDRM to DTG among these
ART-naïve and defaulted individuals initiating on TLD in a resource-limited setting (RLS).
This is consistent with a previous study conducted in Zimbabwe which reported no SDRM
to INSTI among INSTI-naïve individuals prior to the introduction of DTG [23]. Further-
more, in our study, among the participants with VL ≥ 1000 copies/mL at follow-up who
underwent GRT, no emergent DRMs to DTG were found. Previous clinical trials studies
have reported very low prevalence of emergent INSTI DRMs in ART-naïve individuals
receiving DTG + two NRTIs. In the ADVANCE and NAMSAL clinical trials, no emergent
INSTI DRMs were observed among PLHIV failing their treatment [3,5,20,21]. However,
INSTI DRMs were reported after a longer period (by week 48 and 96) than this current
study (by week 24). In the STAT clinical trial, no emergent INSTI-associated DRMs were
reported by week 24 and 48 among ART-naïve PLHIV receiving DTG plus 3TC [24,25].

Additionally, the recent OPTIPRIM2-ANRS 169 and the Gilead’s phase 2 trials
(NCT02397694) have reported no emergent INSTI resistance among ART-naïve individuals
failing on DTG [26,27]. In these two studies, INSTI DRMs were reported by week 48. All
these findings are in support of the high potency and high genetic barrier to resistance
associated with the use of DTG [28].

Lastly, in our study, up to 17% of the participants were individuals who had previously
defaulted ART. Just under half, or 43% (13/30), of these participants were on a DTG-based
regimen as previous ART. Previous studies have shown that ART defaulters had higher
levels of PDR to NNRTI which may predispose them to virological failure and further devel-
opment of HIVDR once on ART [1,15]. In our study, we did not observe this phenomenon
with DTG. Nevertheless, strategies to retain people on ART in many RLS should be rein-
forced as these people may likely present for care with advanced HIV disease, increasing
their risk to HIV morbidity and mortality, as well as with further emergent HIVDR.

Overall, this study has provided baseline SDRMs to the preferred first-line ART (TLD)
in a RLS and assessed the extent to which acquired DTG resistance emerges in populations
receiving DTG. One limitation of the study is the small sample size. Another limitation
is the short duration of follow-up. However, previous studies with longer follow-up
duration did not find any emergent INSTI DRMs among ART-naïve individuals failing
their treatment.

5. Conclusions

We found no SDRM and acquired drug resistance to DTG among ART-naïve individu-
als initiating TLD in a RLS following 6-month post-DTG initiation. DTG is more likely to
address the problems of virological failure and emergence of HIVDR in Africa. However,
as DTG becomes widely available in many RLS, surveillance of HIVDR to DTG among
individuals on DTG is warranted so as to preserve its activity.
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