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Abstract: RNA vaccines, including conventional messenger RNA (mRNA) vaccines, circular RNA
(circRNA) vaccines, and self-amplifying RNA (saRNA) vaccines, have ushered in a promising future
and revolutionized vaccine development. The success of mRNA vaccines in combating the COVID-19
pandemic caused by the SARS-CoV-2 virus that emerged in 2019 has highlighted the potential of RNA
vaccines. These vaccines possess several advantages, such as high efficacy, adaptability, simplicity
in antigen design, and the ability to induce both humoral and cellular immunity. They also offer
rapid and cost-effective manufacturing, flexibility to target emerging or mutant pathogens and a
potential approach for clearing immunotolerant microbes by targeting bacterial or parasitic survival
mechanisms. The self-adjuvant effect of mRNA-lipid nanoparticle (LNP) formulations or circular
RNA further enhances the potential of RNA vaccines. However, some challenges need to be addressed.
These include the technology’s immaturity, high research expenses, limited duration of antibody
response, mRNA instability, low efficiency of circRNA cyclization, and the production of double-
stranded RNA as a side product. These factors hinder the widespread adoption and utilization
of RNA vaccines, particularly in developing countries. This review provides a comprehensive
overview of mRNA, circRNA, and saRNA vaccines for infectious diseases while also discussing their
development, current applications, and challenges.

Keywords: mRNA vaccine; circular RNA vaccine; saRNA vaccine; infectious diseases; drug
delivery system

1. Introduction
1.1. Conventional mRNA Vaccine

Over the past few decades, mRNA vaccine development has achieved significant
milestones since the discovery of mRNA in 1961 [1]. Within eight years, the successful
production of proteins from isolated mRNA in laboratory settings marked a critical ad-
vancement. Simultaneously, the lipid-drug delivery system, which started in 1965 with
the creation of liposomes, was progressively employed in drug and vaccine delivery,
respectively, in 1971 and 1974. Notably, a more refined drug delivery system utilizing
four-component lipid nanoparticles was developed in 2001 and subsequently utilized for
testing mRNA vaccines in mice, as well as clinical trials for rabies and influenza in 2013
and 2015, respectively [1]. In 2018, the first drug-employing lipid nanoparticles, patisiran,
received approval. Furthermore, in response to the SARS-CoV-2 pandemic, mRNA-based
COVID-19 vaccines were granted emergency authorization by the FDA in 2020, effectively
safeguarding individuals against SARS-CoV2 infection. The advancement of mRNA vac-
cine technology has fostered the establishment of several mRNA vaccine companies. Merix
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Biosciences, initially known as Argos and then CoImmune, laid the foundation in 1997.
Following this, CureVac was founded three years later. In 2008, BioNTech, Novartis, and
Shire established their mRNA divisions, and Moderna was established in 2010.

mRNA serves as the key element in vaccine development, encoding specific antigens
responsible for eliciting humoral and cell-mediated immunity and thus establishing a
protective barrier against infections. However, its single-strand structure and susceptibility
to environmental RNase digestion render mRNA highly unstable. To address this issue,
essential stabilizing elements are employed, including 5′ capping with the m7GPPPN
structure, a 3′ poly-A tail, and encapsulation in lipid nanoparticles (Figure 1). Optimizing
mRNA vaccine design and antigen screening involves integrating various critical features.
These include the incorporation of the Kozak sequence, efficient promoters, codon op-
timization, and UTRs to ensure robust antigen expression. Additionally, elements such
as P2A, signal peptides, transmembrane domains, and flexible linkers play a crucial role
in guaranteeing the correct folding and secretion of polyproteins. To enhance immune
responses and enable multivalent targeting, polymer tricks are employed. Strategies
such as incorporating sequences like FOLDON, which was used in BNT162b1 vaccines
designed by Pfizer/BioNTech [2], or introducing disulfide bonds through cysteine and
proline modifications (e.g., S2P, S6P, or SOSIP [3,4]), facilitate the production of homologous
and heterologous trimers or tetramers. Furthermore, peptide sequence truncation, recom-
bination, and amino acid substitutions are frequently employed for tailored structural
modifications. Through these reasoned adjustments and manipulations, mRNA can be
harnessed as a stable and functional conductor of immune cascade reactions.
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Conventional vaccines typically utilize natural pathogen proteins, whole microbes
that are inactivated or attenuated, or vectored recombinant proteins and organisms as
immunogens to elicit immune responses and generate memory lymphocytes upon re-
exposure to related epitopes or peptides. However, they face significant drawbacks when
countering emerging outbreaks effectively in clinical practice. In contrast, mRNA vaccines
represent a more advanced technology with distinct advantages. They can be rapidly and
affordably manufactured, exhibiting high flexibility and adaptability to address emerging
variants and outbreaks. mRNA vaccines achieve this by encoding any desired antigens or
combinations through simple modifications, making them ideal for handling viruses with
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frequent mutations, such as influenza and coronaviruses. Moreover, mRNA vaccines can
serve as both preventive and therapeutic measures, inducing robust humoral and CD8+ T
cell responses simultaneously. For pathogens that can hide inside host cells and remain
immunotolerant, such as Mycobacterium tuberculosis, Brucella abortus, and B. melitensis, the
induction of CD8+ T cell responses becomes crucial for microbial clearance and long-term
protection. CD8+ T cell responses are also essential for rapid recovery following infection.
Compared to DNA vaccines, another advanced technique, mRNA vaccines offer faster
and more efficient antigen expression, as mRNA can be directly translated in the cyto-
plasm, bypassing the nuclear transcription step required by DNA vaccines. Furthermore,
mRNA vaccines and their delivery components possess the ability to stimulate long-term
adaptive immune responses through a self-adjuvant effect, eliminating the need for addi-
tional ones [5]. In 2016, Swaminathan G. et al. showcased the application of empty lipid
nanoparticles (LNPs) as adjuvants in a dengue virus protein vaccine [6]. The ionizable
lipid in LNP acts as an immune stimulator. Combining empty LNPs with SARS-CoV-2
RBD proteins elicits a more robust immune response than protein vaccines with AddaVax
adjuvants [7]. Protein vaccines utilizing empty LNPs as adjuvants prompt immune effects
in both humoral and cellular realms, similar to mRNA-LNP vaccines, with the LNP’s
ionizable lipid playing a pivotal role [7]. Administering LNPs to mice leads to substan-
tial IL-6 production, fostering the generation of Tfh cells and GC B cells [7]. Moreover,
double-stranded RNA (dsRNA) and the double strand formed by the secondary structures
of mRNA could influence immune responses. Intracellular molecules TLR3 and MDA5
are indispensable for dsRNA recognition [8,9]. In mouse experiments with the BNT162b2
vaccine, TLR3-deficient individuals have minimized the neutralizing antibody level, while
MDA5-deficient ones significantly reduced the frequency of antigen-specific CD8 T cell
proliferation. The MDA5-IFN-α pathway notably enhances mRNA vaccine-induced cel-
lular immunity [10]. Additionally, the potential application of mRNA vaccines in cancer
immunotherapy highlights their capability to trigger robust humoral and cellular responses,
further showcasing their versatility and efficacy.

Since the first use of vaccines for cowpox in 1796 [11], researchers and clinicians have
utilized them to prevent various infectious diseases for over two centuries. Traditional
vaccine approaches, including inactivated, attenuated, recombinant protein, and vectored
vaccines, have effectively controlled at least thirty infectious diseases worldwide, with
smallpox being eradicated through immunization. However, certain pathogens have man-
aged to overcome and adapt to human immunity, posing challenges for conventional
vaccines. They struggle to provide long-term protection and pathogen clearance against
latency microbes and chronic viruses. These pathogens manipulate host immune responses
by regulating cytokine secretion, macrophages, natural killer cells, and other lymphocytes’
maturation, or by integrating into the host genome and maintaining latency for extended
periods. Additionally, for viruses like Dengue virus (DENV), Zika virus (ZIKV), and other
flaviviruses, antibody-dependent enhancement hinders the efficacy of classical vaccines. In
the context of the COVID-19 pandemic, the remarkable success of the SARS-CoV-2 mRNA
vaccines, mRNA-1273 (Moderna) and BNT162b2 (Pfizer), which have received emergency
use authorization (EUA) from the FDA [12,13], highlights the significant advancements in
mRNA vaccines. Recognizing the advantages of mRNA technology, prominent biotech-
nology companies have already developed numerous mRNA vaccine pipelines, targeting
pathogens such as Varicella Zoster virus (VZV), Respiratory syncytial virus (RSV), Human
immunodeficiency virus (HIV), and influenza virus, underscoring its critical importance
in the future of vaccine development. However, challenges do exist in the mRNA vaccine
field, as the reality of the SARS-CoV-2 pandemic has proven that conventional SARS-CoV-2
mRNA vaccines cannot control and eliminate community transmission during the pan-
demic; confirmed infectious cases have even climbed up after successful vaccination [14],
the neutralizing antibody titers declined rapidly [15], and side effects were also observed
after individual inoculations. Although many reasons and details could be discussed and
used to defend the mRNA vaccine from these cons, such as many people refusing to follow
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quarantine rules strictly, the mRNA vaccines were released long after the pandemic started,
and as a consequence, millions of people were already infected, which makes it impossible
to eliminate the transmission, the administration route is also inappropriate because it is
unable to generate mucosal robust immunity and functional sIgA to protect people from
nuzzle infection. Such challenges suggest that continuous efforts are still needed to be ad-
dressed in the development of mRNA vaccines for combating emerging infectious diseases.
The mRNA vaccine design must consider and improve long-lasting humoral immunity,
lower immunogenicity delivery system, and robust neutralizing antibody induction.

1.2. CircRNA Vaccine

Circular RNA (circRNA) represents a distinct class of naturally occurring or synthetic
closed-loop RNA molecules lacking 5′ and 3′ ends. Its unique covalent circular structure
confers higher pharmaceutical and biological stability compared to linear mRNA, protecting
it from exonuclease degradation. Similar to mRNA, natural circRNA encompasses both non-
coding and protein-coding components [16]. Current research on circRNA has unveiled
several functional traits, including acting as a molecular sponge, regulating cell activity,
and influencing protein translation. Moreover, circRNA’s association with specific human
diseases endows it with the potential to serve as a novel disease biomarker and therapeutic
target [17,18]. However, the precise physiological function of natural circRNA remains
elusive. Nevertheless, synthetic circRNA has emerged as a promising avenue for the
development of preventive and therapeutic vaccines, holding great promise for future
medical applications.

Traditional linear mRNA translation relies on eukaryotic initiation factors and the 5′

cap structure. However, under stress conditions, cap-independent mechanisms mediated
by Internal Ribosomal Entry Site (IRES) and m6A modifications can act as alternative
pathways for eukaryotic RNA translation. CircRNA, lacking a 5′ cap, utilizes IRES and
m6A RNA modifications for translation. The existence of IRES was first discovered by
Macejack and Sarnow in 1991 when they found that poliovirus-infected host cells still
expressed Immunoglobulin Heavy-Chain Binding Protein (BIP), suggesting IRES activity
in the 5′ UTR of BIP mRNA [19]. In 1995, Chen and Sarnow demonstrated that synthetic
circRNA containing EMCV IRES structures could express proteins in rabbit reticulocyte
lysates [20]. Later, AbouHaidar and colleagues found a 220 nt long covalent closed circular
RNA related to Rice Yellow Mottle Virus (RYMV) that was directly translated by eukaryotic
ribosomes [21]. Subsequent studies identified other circRNAs, such as Circ-ZNF609, circ-
FBXW7, circ-SHPRH, circPLNTexon2, circ-β-catenin, and circAKT3, that were translated
into proteins via IRES in vivo [22–27]. Additionally, “IRES-like” elements or m6A RNA
modifications can participate in the cap-independent translation of circular RNAs. A single
m6A in the linear mRNA 5′ UTR can initiate translation by binding to eIF3 and recruiting
the 43S complex. This M6A-driven translation requires initiation factors eIF4G2, m6A
reader YTHDF3, methyltransferases METTL3/14, and demethylase FTO [28,29]. Moreover,
Fan and his team identified IRES hexamer-like sequences enriched in endogenous circular
RNAs, initiating translation through trans-acting factors binding to the IRES hexamer
region [30]. While m6A represents a substitute mechanism for circular RNA translation,
further confirmation is needed to elucidate the translation of endogenous circRNAs. As the
field progresses, the role of IRES and m6A in circular RNA translation continues to be a
subject of active research.

The widespread presence of circular RNA in vivo, along with its unique structural and
functional properties, has generated a demand for efficient in vitro methods to prepare cir-
cular RNA, as illustrated in Figure 1. Currently, two primary approaches are employed for
in vitro synthesis of circular RNA: chemical synthesis and enzymatic methods. However,
most of these methods are better suited for small to medium-sized RNA [31]. Chemical
synthesis of circular RNA ensures homogenization of the 3′ and 5′ ends, while enzymati-
cally produced circular RNA often leads to reduced RNA cyclization yield due to terminal
heterogeneity when the precursor RNA is synthesized by in vitro transcription [31–33].



Viruses 2023, 15, 1760 5 of 19

Among the enzymatic approaches, the most commonly used methods for in vitro cycliza-
tion of long RNA involve the use of enzymatic ligases, such as T4 ligase. Meanwhile,
ribozyme-based approach ribo-self-clipping intron Group I and Group II are the most
popular in vitro circular RNA synthesis methods.

T4 ligase, derived from T4 phage, is commonly employed for enzymatic RNA ligations.
For efficient ligation, the 5′ end of the linear RNA substrate should be a monophosphate
nucleotide. If RNA is produced through an in vitro transcription (IVT) reaction using
triphosphate nucleotide as the substrate, the phosphate group is removed through dephos-
phorylation, and a phosphate group is added to the 5′ end of the RNA via phosphoryla-
tion [31]. T4 ligase for RNA cyclization encompasses three types: (1) T4 DNA ligase, which
catalyzes the repair of incisions in double-stranded substrates containing DNA. In this case,
the two strands at the junction must be completely complementary and paired. However,
its cyclization efficiency and the length of cycled RNA are limited [34,35]. (2) T4 RNA
ligase 1, which acts solely on single-stranded substrates, making the reaction specificity
relatively low [36]. This method involves designing splints with 10–20 nucleotides at both
ends of the RNA molecule to achieve hybridization and complementation, generating
circular RNA [31]. Sequences with complete complementary pairings typically exhibit the
highest cyclization efficiency. However, this process requires several enzymes, and the
turnover efficiency is low. (3) T4 RNA ligase 2, also used successfully for RNA cyclization,
is compatible with both single-stranded and double-stranded RNA ligation [37]. It can
achieve cyclization through complementary pairing within the molecule or by introducing
exogenous splint sequences [38,39].

Group I intron: Puttaraju and Been demonstrated in 1992 that Group I intron is
suitable for constructing circular RNA molecules [40]. The most widely used Group I
introns, Anabaena pre-tRNALeu and T4td, are rearranged to facilitate cyclization: the 5′

end of the Group I intron is placed at the tail end of the exon, while its 3′ end is positioned
at the head of the exon [40,41]. By adding exogenous GTP to attack the 5′ intron splice site,
the 5′ intron is cleaved, and the hydroxyl group at the cleavage site can further attack the 3′

intron splice site, resulting in exon cyclization. Ford and Ares replicated this strategy in
1994 using a similar rearrangement of the introns of the T4 phage thymidylate synthase
(td) gene, leading to the cyclization of the td exon. Since then, the rearranged T4 td and
pre-tRNALeu genes have become the main templates for the Group I intron cyclization
method, enabling the cyclization of various exon sequences inserted between the two halves
of the Group I intron. Wesselhoeft et al. reported that circRNA production significantly
increased when luciferin sequences were transferred from PIE constructs with td introns
to PIE constructs with Anabaena pre-trNA introns, suggesting that cyclization efficiency
varied between different Group I introns. Using the Anabaena skeleton, circRNAs up to
5000 nucleotides in length can be cyclized, while chemical and enzymatic linking strategies
typically achieve cyclization of RNA molecules around 1000 nucleotides with a lower
cyclization yield [42].

Group II intron: The Group II intron ribozyme self-splicing system operates similarly
to the mechanisms of Group I intron and precursor mRNA introns. Mikheeva et al. (1997)
demonstrated that rearranging Group II intron from yeast mitochondria generated a circular
RNA without an exon sequence, with its ring formation connected by a 2′-5′ phosphodiester
bond, while the ring formation of Group I intron is connected by a 3′-5′ phosphodiester
bond. However, the exact in vitro mechanism by which this occurs remains unknown [43].
Recently, a novel coronavirus RNA [44] was designed using the tetanus Group II intron, but
further investigation is needed to determine the mechanism details and overall applicability
of this method.

1.3. saRNA Vaccine

Self-amplifying RNA (saRNA) vaccines are genetic vaccines that utilize modified RNA
to induce immune responses against specific pathogens [45]. They have garnered significant
attention for their potential to rapidly and effectively prevent infectious diseases, including
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viral infections like influenza and SARS-CoV-2 [46,47]. The key distinction between saRNA
vaccines and conventional mRNA vaccines lies in their ability to amplify the RNA within
cells, leading to increased protein production and potentially stronger immune responses,
as depicted in Figure 1. This amplification feature is inspired by alpha-viruses, a group of
positive-strand RNA viruses known for their efficient replication within host cells [48].

To create saRNA vaccines, scientists have harnessed the replicative machinery of
alphaviruses and modified it to carry the desired genetic information for vaccine devel-
opment. The replication elements typically used in saRNA vaccines are derived from
alphaviruses like the Semliki Forest virus (SFV) [49,50] or the Venezuelan equine encephali-
tis virus (VEEV) [49,51]. These elements include non-structural proteins, such as the
RNA-dependent RNA polymerase (RdRp), which play a vital role in replicating the RNA
genome of alphaviruses. By incorporating these alphavirus-derived replication elements,
the saRNA vaccine can undergo multiple rounds of replication and amplification within
host cells, resulting in increased production of the desired viral protein(s). This approach
offers several advantages, such as efficient and robust RNA replication leading to higher
levels of viral protein expression within cells, enhancing the vaccine’s immune response. It
is essential to emphasize that while saRNA vaccines are inspired by alphaviruses, they do
not cause the same pathology or symptoms associated with natural alphavirus infections.
The replication elements of alphaviruses are carefully modified and engineered to ensure
safety and optimal vaccine performance. Researchers have leveraged their knowledge to
design saRNA vaccines with improved stability, translation efficiency, and immunogenicity.
Importantly, saRNA vaccines have the potential to elicit robust immune responses with
lower doses of RNA, making them an attractive platform for rapid and scalable vaccine
development against various infectious diseases. The saRNA technology comprises three
key components [48]: (1) Antigen coding sequence: This segment of the RNA contains
instructions to produce the desired viral protein(s) responsible for eliciting an immune
response. Often, this sequence is derived from the target pathogen, such as a specific viral
surface protein. (2) RNA replication elements: These elements enable saRNA to undergo
self-replication and amplification within host cells. They typically include components
from viruses known for efficient RNA replication, like non-structural proteins from positive-
strand RNA viruses such as alphaviruses. (3) Additional modifications: saRNA vaccines
may include specific modifications to enhance stability, improve translation efficiency, and
reduce immune recognition, thereby contributing to a more potent immune response.

It is essential to acknowledge that saRNA vaccines are still a relatively new technology
and have not been widely employed for human vaccination. However, they hold signifi-
cant potential for preventing and controlling various infectious diseases, including viral
infections. Ongoing research and clinical trials are evaluating their safety and efficacy [52].

2. RNA Vaccines for Infectious Diseases
2.1. Coronavirus

As of July 2023, the SARS-CoV-2 pandemic has resulted in over 768 million confirmed
cases and more than 6.9 million deaths [53]. SARS-CoV-2 is an enveloped single-stranded
RNA virus with a high mutation rate, leading to the emergence of several variants of
concern (VOCs) from different lineages. Notable VOCs include Alpha, Beta, Gamma,
and the more recent Omicron variant, identified in November 2021, consisting of three
sister lineages (BA.1, BA.2, and BA.3) [54], shown in Figure 2. These variants exhibit
varying epidemiological characteristics, such as contagiousness, severity, and mortality.
Traditional vaccine strategies cannot outpace the spread and evolution speed of the SARS-
CoV-2 virus for a couple of reasons. Firstly, the preclinical study is exceptionally time-
consuming, and usually takes decades before entering the clinic [55], since either molecular
cloning, viral vector attenuation, mutation variant construction, viral passaging, and
inactivation, or large-scale protein synthesis and purification require lots of experience
and time. Secondly, traditional vaccines may be unable to trigger robust immunity and
induce cross-protection to fight against the pathogen with high variability. Lastly, the
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relatively low scalability of traditional vaccines is another limitation when countering
emerging outbreaks. On the contrary, the mRNA vaccine could offer a lightning-speed
response to emerging infectious diseases, as proven in the SARS-CoV-2 pandemic. Due
to its flexibility, by simply modifying and designing the mRNA sequence, accommodated
RNA vaccines against different variants could be implemented in practice in a week by
finishing in vitro transcription, encapsulation, and related quality control. By adding
immuno-RNA elements, such as FOLDON, SOSIP, MITD, etc., the RNA vaccine could be
more specific and motivated, properly inducing humoral and cell immunity from various
signal pathways on purpose. On the other hand, an RNA vaccine would not consider the
pathogen proteins’ expression and fold as issues since mRNA is directly delivered into
eukaryotic cells, and mother nature will generate the native protein using cell machinery, no
matter how complicated the variant is, unlike some recombinant protein vaccines expressed
in prokaryotes with inappropriate glycosylation and folding.
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Significant efforts have been devoted to developing prophylactic mRNA vaccines
against SARS-CoV-2 over the past 3.5 years. Corbett et al. pioneered the design of a
prototype pathogen-based non-replicating mRNA vaccine, mRNA-1273, encoding the
SARS-CoV-2 spike (S) protein with specific proline substitutions [56]. Only after 34 days,
when Chinese scientists revealed the genome sequence of the mRNA, Moderna submitted
its first doses of the mRNA SARS-CoV-2 vaccine to the US National Institute of Health
(NIH), and the clinical trial was conducted 21 days later. This unprecedented develop-
ment speed makes mRNA a powerful weapon in fighting the pandemic. mRNA-1273 has
demonstrated efficacy in eliciting potent neutralizing antibodies and T-cell immunity in
preclinical studies and clinical trials [12]. Similarly, BNT162b2, designed with a similar
rationale as mRNA-1273 [57], has shown exceptional efficacy against the original SARS-
CoV-2 strain [58]. However, the effectiveness of these vaccines has shown signs of waning
over time, with declining neutralizing IgG antibodies and the emergence of new variants.
Studies suggest that booster doses of mRNA-1273 or BNT162b2 can enhance neutralizing
antibodies against Omicron and the Delta variant [59,60]. In response to the evolving
pandemic, Omicron-adapted mRNA vaccines have been developed. These vaccines, such
as Omicron-adapted BNT162b2 and ZSVG-02-O by Sinopharm, exhibit a remarkable boost
in neutralizing antibodies. ZSVG-02-O shows cross-activity against multiple strains, in-
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cluding the wild type, Delta, and BA.1 VOCs, offering critical advantages in combating
future variants [61]. Pharmaceutical companies, including Spikevax, Sinopharm, Pfizer,
and Moderna, have also explored bivalent vaccine strategies targeting two variants simul-
taneously, often including the wild type and Omicron variants [62]. These developments
reflect the continuous efforts to combat the evolving SARS-CoV-2 virus and underscore the
importance of mRNA vaccines in the fight against infectious diseases.

Both saRNA and circRNA technologies have significantly contributed to the advance-
ment of SARS-CoV-2 vaccine development, addressing the severity of the pandemic. McKay
et al. pioneered the development of a saRNA-based vaccine that encodes a stabilized SARS-
CoV-2 spike protein in its pre-fusion conformation. Pre-clinical studies in mouse models
have demonstrated its ability to induce robust Th1-mediated immunity, potent neutralizing
antibodies against SARS-CoV-2, and notable cytokine responses [63]. Encouraging clini-
cal results show that 80% of sera samples from vaccine recipients generated neutralizing
antibodies after the second dose, and all participants who tested positive for SARS-CoV-
2 exhibited a significant increase in spike-specific IgG levels [64]. Importantly, saRNA
vaccines can achieve desirable immunogenicity at relatively lower doses compared to
conventional mRNA vaccines, owing to their self-amplification property. This suggests that
saRNA vaccines may offer a more efficient immunization approach at ultra-low doses and
potentially shorten the immunization interval considerably. On the other hand, circRNA
has been utilized as a vaccine approach to combat SARS-CoV-2. Researchers, led by Qu
and colleagues, developed a circRNA encoding the trimeric Receptor Binding Domain
(RBD) for both Delta and Omicron variants. The design employed the group I intron
autocatalysis strategy with an IRES-SP-RBD-FOLDON construct, where the IRES element,
followed by the human tissue plasminogen activator (tPA) signal peptide, preceded the
RBD coding sequence. The addition of FOLDON to the RBD C-terminus facilitated RBD
trimerization. The results revealed that circRNA induced robust Th1-mediated immune
responses, resulting in higher levels of neutralizing antibodies and broader cross-activity
against Delta and Omicron variants. This makes circRNA a promising candidate for a
broad-spectrum vaccine approach. In conclusion, both saRNA and circRNA technologies
have demonstrated their potential in advancing SARS-CoV-2 vaccine development, offering
sophisticated and promising strategies to address the challenges posed by the pandemic.

2.2. Flavivirus

Flaviviridae is a family of viruses primarily transmitted by blood-feeding arthropod
vectors, causing a variety of diseases with pandemic potential [65], including Zika virus
(ZIKV) [66], Dengue virus (DENV) [67], Tick-borne encephalitis virus (TBEV) [68], West
Nile virus (WNV), Japanese encephalitis virus (JEV), and Yellow Fever virus (YFV) [69].
The spherical flavivirus particles are approximately 40–60 nm in diameter and consist of a
30-nm core region and a lipoprotein membrane. The viral nucleocapsid contains single-
stranded sense genomic RNA encapsulated by bi-layer lipid membrane glycoproteins
(E and M proteins). mRNA vaccines against flaviviruses have been developed since
2013, with promising results. Moderna developed mRNA-1893, encoding the prM and
E proteins of the RIO-U1 strain of ZIKV, and the vaccine showed robust ZIKV-specific
neutralizing antibody responses in phase 1 clinical trials. The vaccine provided effective
serum-neutralizing antibodies and long-lasting immunity, persisting up to month 13 [70].
Furthermore, it offered complete protection against the ZIKV challenge in nonhuman
primates [71]. However, another Moderna mRNA vaccine, mRNA-1325, induced 20 times
lower neutralizing antibody titers compared to mRNA-1893. Pardi et al. demonstrated that
a single low-dose immunization of mRNA-LNP encoding ZIKV membrane and envelope
(prM-E) glycoproteins protected mice and nonhuman primates from ZIKV infection [72].
A dose of 30 µg of ZIKV mRNA-LNP vaccine conferred protection against the ZIKV
challenge at two weeks or five months after vaccination, with no viremia detected in
vaccinated mice and rhesus monkeys after the ZIKV challenge. Roth et al. reported
that immunization of HLA class I transgenic mice with deny-NS, an mRNA vaccine
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consisting of immunogenic NS3, NS4B, and NS5 proteins, induced robust CD8+ T cell
immune responses and significant protection against DENV1 challenge [73]. Furthermore,
modified mRNA vaccines expressing prM and E proteins of the JEV P3 strain produced
effective neutralizing antibodies and CD8+ T lymphocyte-mediated immune responses
in mice. This vaccine provided protection against the lethal JEV challenge and reduced
neuroinflammation [74]. Additionally, Lex G. et al. demonstrated protection of mice
from lethal YF virus infection through passive injection of serum or spleen cells from
mice immunized with mRNA vaccines of YF virus membrane and envelope proteins or
nonstructural protein 1 (NS1). Macaques immunized with mRNA vaccines sustained
high humoral and cellular immune responses for at least five months after the second
vaccination dose. Overall, mRNA vaccines have shown promising immunogenicity and
protection against flaviviruses, making them potential candidates for combating these
infectious diseases [75].

2.3. Influenza Virus

Seasonal epidemics caused by influenza A and B viruses lead to millions of severe
cases and hundreds of thousands of respiratory deaths annually [76]. Currently, flu shots
are available, targeting two glycoproteins, hemagglutinin (HA) and neuraminidase (NA),
of four WHO-alerted flu viruses [77]. The success of the COVID-19 mRNA vaccine has
inspired the development of a new generation of influenza mRNA vaccines. Multiple
influenza mRNA vaccines have been released since 2019 [78]. Moderna’s quadrivalent
seasonal influenza vaccine candidate (mRNA-1010) and Pfizer’s quadrivalent mRNA flu
vaccine have shown promising results in Phase 3 studies. The mRNA vaccines exhibited
robust immune responses against all four circulating strains, indicating the advantage of the
mRNA platform [79]. In another case, Pfizer’s single-dose flu vaccine candidate exhibited
significantly enhanced CD4+ and CD8+ T cell responses against all four circulating strains
in 65+ adults [80]. However, current seasonal influenza vaccines offer only 40% to 60%
effectiveness, and sometimes as low as 10%, due to the antigenic drift and shift of the
influenza virus [81]. To address this limitation, the focus is now on developing universal flu
vaccines that provide broader and longer-lasting protection. Moderna’s mRNA-1011/1012
and mRNA-1020/1030 [82], as well as Pfizer’s self-amplifying RNA (saRNA) vaccine
pipeline [83], aim to provide near-universal protection against selected strains of the virus.
Furthermore, studies have explored multivalent mRNA vaccines encoding conserved
influenza virus antigens, inducing antigen-specific immune responses and broad protection.
A notable development is the 20-HA mRNA-LNP vaccine encoding HA from all known
influenza A virus subtypes and influenza B virus lineages, which demonstrated protection
against matched and mismatched viral strains in mice and ferrets [84]. As the quest for a
universal influenza vaccine continues, mRNA technology offers a promising strategy to
improve strain matching, induce broader immune responses, and generate long-lasting
antibodies [85,86]. The advancement of mRNA vaccines represents a significant milestone
in the pursuit of a universal influenza vaccine.

2.4. Respiratory Syncytial Virus (RSV)

RSV (Respiratory Syncytial Virus) is a negative-sense, single-stranded RNA virus
mainly transmitted through direct or indirect contact. It has two main serotypes, RSV-A
and RSV-B, that circulate primarily during the winter and spring. RSV can cause upper
respiratory tract infections (URTI) or lower respiratory tract infections (LRTI), with children
and elderly patients being particularly vulnerable to severe infections. Notably, RSV is
one of the most prevalent viral pathogens causing acute lower respiratory tract infections
(ALRTI) in children under the age of 5 globally, and it remains the primary cause of
hospitalization for infants with viral respiratory tract infections. This places a significant
burden on public health and healthcare systems [87–90]. The incidence and healthcare costs
associated with RSV infection vary across countries with different levels of development.
Low- and middle-income countries experience a higher incidence of RSV lower respiratory
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tract infections compared to high-income countries. However, the hospitalization rate in
low- and middle-income countries is lower, likely due to limited medical resources leading
to inadequate treatment for severely ill children. RSV infection has a higher mortality rate
compared to other causes of lower respiratory tract infections, making it a major concern for
healthcare services. Among children under 5, the number of RSV-related emergency visits
and hospitalizations is significantly higher than those caused by the influenza virus. In
China, the incidence of acute lower respiratory tract infections caused by RSV is estimated
to be approximately 31/1000, accounting for 18.7% of childhood acute lower respiratory
tract infections. RSV also poses a significant threat to the health of the elderly population,
with the aging population leading to increased incidence and mortality rates of respiratory
tract infections, including RSV. Individuals with compromised immune function and the
elderly are at higher risk of severe illness and potential life-threatening consequences due
to RSV. Moreover, RSV can worsen underlying conditions such as COPD, asthma, and
chronic heart failure, leading to pneumonia, hospitalization, and mortality. Given RSV’s
significant economic burden on global healthcare services, preventive vaccines against RSV
hold great promise. Developing effective RSV vaccines can help alleviate the impact of
RSV-related infections, particularly in vulnerable populations, and improve overall public
health outcomes.

The respiratory syncytial virus (RSV) genome encodes 11 proteins, with the surface
proteins, Glycoprotein (G) and Fusion protein (F), playing pivotal roles in the virus at-
tachment and fusion processes. These proteins are crucial antigenic sites for generating
neutralizing antibodies and act as primary targets for inducing host immune responses
and antiviral defenses [91]. Among these proteins, the F protein exhibits high conservation
across RSV subtypes, making it a promising target for cross-protective neutralizing antibod-
ies. In vaccine design and antibody development, the pre-fusion (pre-F) conformation of the
F protein is of particular significance, as it plays a more critical role in neutralization com-
pared to the post-fusion (post-F) conformation. The pre-F conformation contains a unique
antigenic site known as Ø, which triggers a robust neutralizing antibody response more
effectively than other antigenic sites. Studies have demonstrated that during natural RSV
infection, neutralizing antibodies are primarily induced by the Ø site in the pre-F form [92].
Therefore, stabilizing the Ø antigenic site is vital for the development of effective RSV
vaccines. Notably, designs such as DS-Cav1 and DS2, developed by McLellan, Joyce, et al.,
have successfully stabilized the RSV F protein in the pre-fusion conformation, significantly
advancing RSV vaccine research [92–96]. These breakthroughs hold promise for improving
preventive measures against RSV infection and represent significant advancements in the
field of RSV vaccine development.

In clinical practice, two available neutralizing antibodies for the respiratory syncytial
virus (RSV) are palivizumab and nirsevimab (Table 1) [97,98], both targeting the pre-F
conformation. Palivizumab requires multiple injections, making it more expensive and
recommended primarily for high-risk infants and children. In contrast, nirsevimab, devel-
oped by AstraZeneca/Sanofi, is a long-acting injectable neutralizing antibody specifically
targeting the RSV preF protein, administered as a single dose. Nirsevimab has demon-
strated remarkable efficacy, with a 74.5% reduction in RSV lower respiratory tract infection
(LRTI) incidence, and obtained marketing approval from the European Union in Novem-
ber 2022. Active protection against RSV infection is essential, and currently, more than
30 vaccine candidates have entered clinical trial stages. Significant progress has been made
by companies such as AstraZeneca/Sanofi, GSK, Pfizer, Johnson & Johnson, Bavarian
Nordic, and Moderna in RSV vaccine development [99,100]. Notably, GSK’s RSVPreF3
OA (Arexvy, showed in Table 1), a recombinant subunit pre-fusion RSV F glycoprotein
antigen vaccine for the elderly, has shown overall efficacy of 82.6% against RSV lower
respiratory tract disease (RSV-LRTD) and received FDA approval in May 2023. GSK is also
conducting Phase III studies for a maternal immunization vaccine utilizing a recombinant
subunit pre-fusion RSV F glycoprotein antigen, with results expected in early 2024. Pfizer’s
bivalent pre-fusion F subunit vaccine, Abrysvo (Table 1), developed explicitly for maternal
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immunization, has demonstrated over 80% protection in newborns and received FDA
approval in May 2023 for preventing RSV-associated lower respiratory tract disease (LRTD)
in individuals aged 60 and above. However, GSK’s RSVPreF3 OA has shown superior
efficacy to Abrysvo, likely attributed to the AS01 adjuvant used [101]. Moderna’s RSV
mRNA vaccine, mRNA-1345 (Table 1), encoding the RSV preF protein, demonstrated good
tolerability and efficacy in Phase III clinical trials, with an efficacy of 83.7% in preventing
two or more RSV-associated lower respiratory tract diseases (RSV-LRTD) in the elderly
population. Most RSV preventive drugs target the RSV pre-F conformation, although some
vaccines utilize other antigens. Advaccine (Table 1), for example, has developed subunit
vaccines targeting the G protein antigen for the elderly and children, with ongoing Phase II
clinical trials in Australia. Another notable vaccine candidate is MVA-BN RSV (Table 1),
which encompasses five RSV antigens and was granted breakthrough therapy designation
by the FDA in February 2022, recognizing its potential as a significant advancement in
RSV treatment. These vaccine developments show promising progress in the fight against
RSV infection.

Table 1. Worldwide RSV vaccine under development.

Name Developer Vaccine Type Participants Clinical Trial Status Year of
Approval

Beyfortus
(Nirsevimab)

AstraZeneca/
Sanofi

Anti-preF mAb
(Immune-
prophylaxis)

Infants
(0 Days to
12 Months)

Phase 3 (NCT03979313):
Attended RSV-LRTI through 150 days after
the injection: 74.5%

2022

mRNA-1345 Moderna RSV preF
(Nucleic acid) Elderly

Phase 3 (NCT05127434):
RSV-LRTD with ≥2 symptoms: 83.7%;
RSV-LRTD with ≥3 symptoms: 82.4%

mRNA-1345 Moderna RSV preF
(Nucleic acid)

Infants
(5–24 Months) Phase 1 (NCT05743881)

Arexvy
(RSVPreF3) GSK

RSV preF
(Protein-based
particle)

Elderly
(≥60 years)

Phase 3 (NCT04886596) (AReSVi 006):
RSV-LRTD with ≥1 symptoms: 82.6%;
RSV-LRTD with ≥2 symptoms: 94.1%

2023

Abrysvo
(RSV preF) Pfizer

RSV preF A and
RSV preF B
(Protein-based
particle)

Elderly
(60–80 years
old)

Phase 3 (NCT05035212):
RSV-LRTD with ≥2 symptoms: 66.7%;
RSV-LRTD with ≥3 symptoms: 85.7%

2023

Abrysvo
(RSV preF) Pfizer

RSV preF A and
RSV preF B
(Protein-based
particle)

Maternal
Immunization

Phase 3 (NCT04424316):
90-day-old infants with severe MA-LRTI:
81.8%
180-day-old infants with severe MA-LRTI:
69.4%

BARS13 Advaccine
G protein
(Protein-based
particle)

Elderly
(60–80 years
old)

Phase 2 (NCT04681833)

MVA-BN RSV Bavarian
Nordic

F, N, M2-1, G
(subtype A), G
(subtype B)
(Recombinant
vector)

Elderly
(≥60 years) Phase 3 (NCT05238025)

3. RNA Vaccine Delivery System
3.1. Lipid Nanoparticles (LNP)

RNA vaccines have emerged as a highly sophisticated and effective vaccine technology,
but they still face two key challenges that limit their effectiveness. Firstly, negatively
charged RNA has difficulty crossing the cell membrane structure, and secondly, RNA,
especially mRNA, is intrinsically unstable and susceptible to degradation by ribonucleases
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in the circulation. To address these challenges, drug delivery systems have been developed
to shield and protect the RNA. One of the most successful RNA delivery approaches is
the lipid nanoparticle (LNP), which has achieved great success during the SARS-CoV-2
pandemic. LNP is composed of four main components: an ionizable or cationic lipid to
neutralize the RNA’s negative charge, a zwitterionic lipid that has minimal electrostatic
interaction with blood cells’ membranes, cholesterol to stabilize the LNP’s membrane,
and PEG, which affects particle size and colloidal stability (as shown in Figure 3a) [102].
This four-component design offers several advantages, including scalable production,
efficient RNA encapsulation, and transfection of antigen-presenting cells. The most notable
examples of LNP-based delivery systems are the SARS-CoV-2 prophylactic vaccines mRNA-
1273 and BNT162b2, both utilizing the four-component formulation with minor structural
adjustments and lipid compositions [103].
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Figure 3. Structures and components schematic of four different drug delivery systems. (a) Structure
of lipid nanoparticles (LNP) and its four main components, including PEGylated lipid, ionizable lipid,
DSPC, and cholesterol; (b) Structure of the exosome. The exosomal lipids include phospholipids,
sphingomyelin, ganglioside GM and cholesterol. The most abundant exosomal protein is tetraspanin,
including CD9, CD63, and CD81; (c) Structure of outer membrane vesicle (OMV) and its main
components, the main lipid types of OMV are lipopolysaccharide and phospholipids; (d) Structure of
hydrogel and its main component, which is a water-soluble polymer with a hydrophobic unit.

Lipid nanoparticle (LNP) is currently the most widely used drug delivery system
for RNA vaccines. However, there are significant opportunities for improvement. First,
thermostability remains a challenge as these vaccines require extremely low transportation
and storage temperatures. Second, the inflammatory nature of LNP components can lead
to undesirable side effects or even fatalities with different administration routes [104].
Recent research focuses on developing lyophilized LNP formulations, exploring better
cryo-preservative or lipid alternatives, and investigating new-generation delivery systems.
These efforts aim to enhance the technology and address its limitations effectively.

3.2. Extracellular Vesicles (EVs)

Extracellular vesicles (EVs) have emerged as a promising natural RNA delivery carrier
due to their superior biocompatibility. These nanosized structures, enclosed by phospho-
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lipid bilayers, are released by mammalian and bacterial cells and contain proteins, lipids,
and nucleic acids. EVs play a crucial role in cell-to-cell communication by delivering
functional molecules. Mammalian EVs can be categorized into exosomes, microvesicles,
and apoptotic bodies based on their biogenesis routes [105]. Exosomes, originating from
vesicles inside multivesicular bodies (MVBs) and released during the fusion of MVBs with
the plasma membrane (Figure 3b), are particularly promising as mRNA drug delivery
vehicles due to their safety profile. However, efficient mRNA encapsulation inside exo-
somes remains a critical challenge in their use as a delivery system. Tsai et al. explored
mRNA encapsulation using cationic lipids mixed with Antares2 mRNA, which was then
incorporated into exosomes or attached to the phospholipid bilayers when combined with
exosomes. The study revealed that Antares2 mRNA-loaded exosomes exhibited higher
mRNA expression than LNPs in vitro and demonstrated expression in mice models [106].
Moreover, the researchers loaded exosomes with mRNA encoding the SARS-CoV-2 fusion
protein LSNME, which translated into nucleocapsid protein (N), membrane protein (M),
and envelope protein (E). This mRNA-loaded exosome induced a robust humoral and cellu-
lar response in animal experiments without significant adverse effects [106]. These findings
demonstrate the excellent biocompatibility and potential of exosomes as an RNA deliv-
ery system, although the functional mRNA cargoes were inserted into the phospholipid
bilayers rather than the exosome lumen, indicating further exploration is warranted.

Genetic engineering presents a promising approach for loading RNA cargo into the
lumen of extracellular vesicles (EVs). Hung et al. introduced the ‘TAMEL approach
(targeted and modular EV loading approach)’ to achieve dynamic mRNA loading. This
method involves fusing the RNA-binding protein MS2 bacteriophage coat protein to
the surface EV-enriched protein (EEP) LAMP2b, enabling high loading efficiency. Their
study revealed that smaller RNAs (500 kb) had higher loading efficiency compared to
longer RNAs (~1.8 kb). Additionally, the choice of EEP significantly impacted the loading
efficiency, with VSVG showing a 42-fold enrichment of cargo RNA in vesicles compared
to Hspa8, which exhibited minimal enrichment [107]. Another recent study used two
constructs to facilitate dynamic mRNA loading into exosomes. One construct expressed
a fusion protein of the RNA binding domain ‘PUFe’ and the EEP ‘CD63’, while the other
expressed the mRNA of interest. During exosome biogenesis, the mRNA cargo was
selectively packaged into the exosome lumen. In vitro experiments demonstrated that
Nanoluc mRNA could be selectively packaged inside exosomes using this approach, and
the Nanoluc mRNA was functionally delivered and translated. Notably, the researchers
enhanced mRNA stability by introducing PABPc, a protein that protects mRNA from 3′UTR-
directed degradation via the nonsense-mediated decay pathway, by binding to the poly-A
tail. Co-expressing PABPc in the donor cells substantially improved loading efficiency. By
decorating the exosomes with Vesicular Stomatitis Virus g (VSVg), the fusogenic escape
efficiency increased, allowing successful mRNA delivery at a much lower dose than LNP
in mice models [108]. These innovative genetic engineering strategies hold great promise
for improving the efficiency and functionality of RNA delivery using EVs.

Bacterial extracellular vesicles (EVs) display a diverse range of structures and compo-
sitions. Among them, outer membrane vesicles (OMVs) are shed from both Gram-negative
and positive bacterial organisms (Figure 3c). OMVs can selectively package specific cargoes
such as virulence factors, lipids, and DNA, making them crucial for functional commu-
nications between bacteria-bacteria, bacteria-host, and bacterial survival [109]. Over the
past decade, OMVs have emerged as a promising mRNA delivery system due to their
intrinsic immunogenicity, characterized by the display of ‘pathogen-associated molecu-
lar patterns (PAMP)’ on their surface. Moreover, OMVs can be manufactured on a large
scale through simple fermentation. Researchers have explored genetic engineering to load
mRNA onto the surface of OMVs effectively. For instance, Li et al. utilized an RNA-binding
protein (L7Ae) fused to the anchor protein cytolysin A, which is abundantly expressed on
the surface of OMVs, to specifically decorate OMVs with mRNA of interest. The mRNA
was labeled with a binding sequence (e.g., box C/D sequence) to achieve strong and spe-
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cific conjugation between the RNA-binding protein and the mRNA. To enhance mRNA
translation productivity, listeriolysin O (LL) was further added to the surface of OMVs to
facilitate endosome escape. This engineered OMV-LL-mRNA was successfully employed
as a colon cancer therapeutic vaccine, inducing 37.5% complete regression in experimental
models [110]. This research demonstrates the promising potential of OMVs as an efficient
mRNA delivery platform for therapeutic applications.

3.3. Other Delivery Systems (Protamine and Hydrogel)

Protamine is a naturally occurring protein derived from salmon spermatozoa, con-
taining a significant number of positively charged L-arginine amino acids, making it ideal
for condensing and stabilizing negatively charged mRNA [111]. Studies have shown that
protamine-mRNA complexes significantly enhance mRNA transfection efficiency, resulting
in robust antigen-specific CD4+ T cell, CD8+ T cell, and B cell responses in mice mod-
els [112]. To further improve the transfection efficiency of the protamine-based delivery
system, researchers have incorporated endosome membrane destabilizing agents, such as
poly(acrylic acid) polymers [111]. Hydrogels are soft, water-swollen, biodegradable, three-
dimensional structures that can efficiently trap mRNA within their network (Figure 3d).
Hydrogels offer several advantages as RNA delivery carriers. Firstly, they provide effective
protection against the enzymatic degradation of mRNA. Secondly, nano-gel engineering
allows for targeted delivery of mRNA to specific cells or tissues. Thirdly, hydrogels can
achieve pulsatile or prolonged release, potentially enabling single-shot immunization,
which could alleviate the need for multiple vaccine administrations [113]. Current mRNA
vaccines, such as those against SARS-CoV-2, VZV, RSV, and influenza, typically require
multiple injections. Replacing lipid nanoparticle (LNP) delivery systems with controlled-
release hydrogels have the potential to streamline vaccination processes, providing a more
convenient and efficient immunization strategy while reducing the burden on healthcare
systems [113].

4. Discussion

RNA vaccines have emerged as a powerful tool in the fight against the SARS-CoV-2
pandemic, demonstrating significant advantages such as large-scale manufacturing ca-
pacity and reasonable cost, making them accessible to developing and underdeveloped
countries, and creating a positive global impact. Different types of RNA, including con-
ventional mRNA, self-amplifying mRNA, and circular RNA, offer distinct advantages and
challenges. Conventional mRNA is safe for administration and easily manufactured via
in vitro transcription (IVT); however, it may not always elicit the desired immune response,
necessitating the use of an effective delivery system. Self-amplifying mRNA addresses this
limitation by enabling sufficient antigen expression through its self-amplifying process, but
the use of alphavirus elements may raise safety concerns and induce unwanted immune
responses. Circular RNA shows promise due to its inherent stability, resulting in a longer
RNA half-life and prolonged antigen expression without requiring a delivery system. How-
ever, its complex manufacturing process and limited RNA circulation pose challenges.
Additionally, in some circumstances, RNA vaccines may be difficult to implement, as
in resource-limited or low-income areas, poverty creates cost barriers for those regions
using this advanced technology. RNA vaccines can be more expensive to produce and
distribute if they require lyophilization or cold-chain transport to be stabilized. Despite
these challenges, mRNA vaccines have achieved significant milestones not only in the
SARS-CoV-2 pandemic but also in combating other pathogens, as evidenced by promising
preclinical and clinical data for mRNA vaccines targeting flaviviruses, VZV, RSV, and
influenza. Furthermore, ongoing efforts are directed toward developing mRNA vaccines
for obstinate infectious diseases such as ‘Mycobacterium tuberculosis’, ‘HIV’, and ‘Malaria’. To
further advance the field, attention should be directed towards addressing potential issues
in manufacturing and RNA delivery systems, including concerns related to the toxicity
of lipid components, and the need for low-temperature storage and transportation. With
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continued research and investment in this thriving area, these challenges are likely to be
overcome in the near future.
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