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Abstract: Rotaviruses (RVs) are non-enveloped multilayered dsRNA viruses that are major etiologic
agents of diarrheal disease in humans and in the young in a large number of animal species. The
viral particle is composed of three different protein layers that enclose the segmented dsRNA genome
and the transcriptional complexes. Each layer defines a unique subparticle that is associated with a
different phase of the replication cycle. Thus, while single- and double-layered particles are associated
with the intracellular processes of selective packaging, genome replication, and transcription, the
viral machinery necessary for entry is located in the third layer. This modular nature of its particle
allows rotaviruses to control its replication cycle by the disassembly and assembly of its structural
proteins. In this review, we examine the significant advances in structural, molecular, and cellular RV
biology that have contributed during the last few years to illuminating the intricate details of the RV
particle disassembly and assembly processes.
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1. Introduction

During their replication cycles, double-stranded RNA (dsRNA) viruses face several
challenges inherent to the nature of their genomes. Since host cell enzymes cannot rec-
ognize dsRNA as a template for transcription, the virus must incorporate a transcription
machinery that can synthesize the necessary mRNAs to initiate the viral cycle. In addition,
dsRNA triggers an innate cell-based antiviral response, including interferon synthesis
and apoptosis [1], which the virus must bypass to control the host response [2,3]. Most
dsRNA viruses have evolved a common solution to these problems: they build a stable
protein cage in the host cytoplasm that isolates the viral dsRNA molecules, preventing the
cellular antiviral response. This cage, also known as the viral core, contains the enzymes
necessary for the transcription and replication of the genome, which are carried out without
disassembling the core particle. The core has an ordered architecture consisting of an
icosahedral T = 1 shell formed by 60 asymmetric dimers, a 120-subunit capsid present in
most dsRNA viral families [4,5]. While most of these viruses have a single protein shell
and no extracellular cycle, the viruses belonging to the order Reovirales and to the genus
Cystovirus have concentric protein layers surrounding the core, responsible for host cell
recognition, entry, and other processes [6,7].

The members of the order Reovirales have non-enveloped particles and present a
replication cycle that is regulated through the fine-tuned disassembly and assembly of the
different proteinaceous icosahedral layers [8,9]. Due to their clinical relevance, rotaviruses
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(RVs), together with mammalian reovirus [10] and bluetongue virus [11], are the model
systems for this order and their replication cycles have been extensively studied [12].

RV is the leading cause of severe gastroenteritis with dehydration in children un-
der 5 years of age and causes ~590 million infections per year in all age groups. The
introduction of RV vaccines has led to their inclusion in national immunization programs
in >100 countries. Despite this progress, RV continues to be the cause of approximately
235,331 deaths (with a 95% confidence interval of 110,221–415,457), with the majority of
fatalities occurring in developing countries [13]. In addition, RV represents a significant
economic burden to health systems in developed countries, with an estimated 5.5 million
infections and 1.6 million hospitalizations in children under five years of age in 2016 [13–16].

The genome of RV consists of 11 dsRNA molecules, with a total length of approxi-
mately 18,500 base pairs. These RNA segments encode six structural proteins (VP1, VP2,
VP3, VP4, VP6, and VP7) and six non-structural proteins (NSP1 to NSP6). Each RNA
segment is monocistronic, except for segment 11, which, in certain strains, contains two
overlapping open reading frames (ORFs) encoding NSP5 and NSP6 [12,17]. The infec-
tious virion is a non-enveloped, icosahedral, triple-layered particle (TLP), approximately
100 nm in diameter (Figure 1A), that resembles a wheel when visualized by electron mi-
croscopy [18–20]. In the past three decades, various structural, molecular, and cellular
biology studies have revealed not only the structure of the RV virion but also how its multi-
ple layers are disassembled and assembled during infection to perform various functions.
In this review, we examine the structure of the virion and its subviral particles and review
studies supporting the current models for the disassembly and assembly of these particles.
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cryoEM structure (PDB 4V7Q [20]). Color code is indicated in panel C. (B) Structure of the three 

Figure 1. Rotavirus particle structure. (A) Overview of the TLP structure in a hybrid model built from
the atomic model of the RdRp VP1 attached to the inner core (PDB 3OJR [21]) and the TLP cryoEM
structure (PDB 4V7Q [20]). Color code is indicated in panel C. (B) Structure of the three concentric
icosahedral layers. (Left) VP2 T = 1 inner shell. The two types of VP2 conformers (VP2-A and
VP2-B) are indicated and colored with different levels of green. (Center) Structure of the intermediate
VP6 T = 13 capsid. The 13 VP6 monomers of the asymmetric unit are arranged into 5 types of
trimeric capsomers colored with different levels of blue. (Right) Structure of the outer layer. The VP7
glycoprotein trimers are localized in phase with the VP6 trimers in a T = 13 architecture. The five
types of trimeric capsomers are colored with different levels of yellow. (C) Atomic structure of RV
structural proteins. From left: VP1 RdRp (pink), VP2 dimer (VP2A dark green, VP2B light green),
VP6 trimer (monomers in different blue levels), VP7 trimer (monomers in different levels of yellow
and Ca2+ ions in magenta), and VP4 trimer (subunits highlighted in different levels of red) [20,22,23].
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2. Rotavirus Virion Structure

The RV infectious particle is built by three concentric proteinaceous icosahedral layers
that surround the viral genome and its replication/transcription machinery [20,21,24]. The
inner core of rotavirus consists of a single-layered particle (SLP) composed of a T = 1
capsid formed by 60 asymmetric dimers of VP2 protein (102 kDa), enclosing eleven
dsRNA genomic segments and associated with the RNA-dependent RNA polymerase
VP1 (125 kDa) and the RNA capping enzyme VP3 (88 kDa) at the pentameric symme-
try positions [20,21,24,25]. The SLP is surrounded by a thick T = 13 layer formed by
260 pear-shaped VP6 trimers (45 kDa) to form the so-called double-layered particle
(DLP) [20,22,23,26]. The outer layer of the RV triple-layered particle (TLP) is formed
by 60 trimeric VP4 spikes and 260 Ca2+-stabilized trimers of the VP7 glycoprotein [20,27,28].
Each of these protein shells has different chemical and biophysical properties that account
for their different functions during the virus cycle [29]. The resolution of the in virio atomic
structure of VP1, VP2, VP4, VP6, and VP7 (Figure 1C) has allowed us to understand the
molecular interactions of these proteins in the viral particle.

The inner T = 1 spherical shell, which is approximately 55 nm in diameter, consists
of two comma-like-shaped VP2 subunits forming each asymmetric unit (Figure 1C). A
star-like complex is formed by five copies of the VP2-A conformer around the icosahedral
five-fold axis, while the VP2-B conformers are located in the gaps between the points of the
star [20,23] (Figure 1B). The VP2 subunits form a continuous shell, with pores located at
the five-fold axes. These channels are relatively small and have positively charged residues
on their outer faces [30]. VP1 is situated on the inner surface of the pentameric positions
(Figures 1A and 2A), through contacts with the VP2 N termini [21,24]. This VP1–VP2
interaction not only stabilizes the RdRp on the inner shell surface but also plays an essential
role in activating the polymerase activity [21,30].

The rotavirus RdRp, located with an offset from the five-fold symmetry axis, interacts
with several of the surrounding VP2 molecules via complementary surface interactions
and through their flexible N-termini. Thus, although the first 70 N-terminal amino acids
of VP2 remain unresolved, three long N-terminal VP2 extensions that form tentacle-like
interactions with VP1 (Figure 2A) have been characterized. Deletion of these N-terminal
extensions prevents VP1’s incorporation into recombinant virus-like particles but does
not hinder capsid–shell assembly [31]. The process of capping the nascent transcripts
synthesized from the genomic dsRNA segments by the RV polymerase VP1 is performed
by VP3, which in vitro is able to form a stable tetrameric assembly [32]. Each subunit of
VP3 has a modular domain organization that integrates the five distinct enzymatic steps
required for the capping of the transcripts in a unique way. However, in virio transcribing
VP1 structures [21] suggest that nascent transcripts pass directly from the polymerase
catalytic site through the five-fold pore to the capsid exterior. The process by which VP3
adds the 5′ cap to the transcript remains an unresolved puzzle. Different mechanisms, such
as the re-entry of the transcript into the capsid interior or a re-threading mechanism, have
been proposed [24].
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Figure 2. Rotavirus viral protein interactions. (A) In virio interactions of VP1 RdRp (pink) and
VP2 decamer (green) (PDB 6OGY). The N-termini of VP2A (dark green) and VP2B (light green)
subunits are highlighted. (B) Structure of the VP3 tetramer (PDB 6O6B). One subunit is shown
with transparency, with its domains represented in separate colors: kinase-like (KL) domain (red),
guanine-N7 methyltransferase (N7-MTase) domain (green), 2′-O-methyltransferase (2′-O-MTase)
domain (yellow), guanylyltransferase (GTase) domain (cyan), and phosphodiesterase (PDE) domain
(magenta). Front (left) and top (right) views of the complex are shown [32]. (C) Electrostatic potentials
of the inner surface of a VP6 trimer (top) and of the outer face of the VP2 shell (bottom). The positions
for the interactions of the five quasi-equivalent trimers on the VP2 surface are marked with blue.
(D) Atomic structure of the VP7 trimer (PDB 3GZT) with one subunit highlighted (top). Two calcium
ions (magenta) are bound at the interface between VP7 subunits. Interaction between VP6 and VP7
trimers (bottom). (E) Electrostatic potential of the inner surface of a VP7 trimer (top) and of the
outer surface of a VP6 trimer (bottom). (F) VP4 interactions. Side view of the pentamer-contacting
hexamers where the spike is located. VP2 is represented in green, VP6 in blue, VP7 in yellow, and
VP4 in red. Only the back VP6 and VP7 trimeric capsomers are shown.

The SLP is enclosed by a T = 13 capsid, approximately 15 nm thick, composed of
260 pear-shaped VP6 trimers. These trimers adopt five distinct conformations, forming the
70 nm DLP (Figure 1A) [22,23]. Unlike the smooth surface of the core, the DLP exhibits
an uneven surface with depressions located at the centers of pentamers and hexamers,
providing access to the VP2 surface. This DLP serves as the transcriptional machinery for
RV, producing capped, non-polyadenylated, positive single-stranded (ss) RNA that can
effectively initiate an infection upon release into the host cell cytoplasm [33]. The assembly
of the T = 13 layer of VP6 on top of the T = 1 layer that form the 60 VP2 dimers on the SLP
represents a notable example of symmetry mismatch, a characteristic preserved in most
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reoviruses. This asymmetry has been proposed to regulate the polymerase activity [23,24].
VP6 trimers settle onto the hydrophobic outer surface of VP2, occupying five distinct
positions (Figure 2C, triangles). This positioning is facilitated by hydrophobic interactions
involving the inward-projecting loop 64-72 of VP6, which encounters the outer surface
of the SLP. Intertrimeric contacts between VP6 molecules occur through their pedestal
domains, forming local two-fold contacts. While the VP2–VP6 and intertrimeric VP6–VP6
contacts are relatively modest, they play crucial roles in both assembly and transcription
processes [34].

DLP are non-infective when added to cells [35,36], but they can cause infection when
transfected into the cytoplasm [33]. The reason for their non-infectivity lies in the inability
to recognize, bind to, and penetrate the host target cell, capabilities attributed to the
outer layer of the TLP comprising VP4 and VP7. VP7, a glycoprotein, forms 260 Ca2+-
stabilized trimers that embrace each VP6 trimer of the DLP through its N-terminal arm
(Figure 2E) [27,28,37]. The VP7 trimer’s bottom surface has minimal contact with the VP6
trimer’s apex, the interaction between both proteins being primarily facilitated by the
VP7 N-terminal arm embracing the underlying VP6 trimer. These arms also interact with
adjacent VP7 trimers, creating a cooperative lattice that reinforces the RV outer shell. It has
been suggested that calcium ions do not only stabilize the VP7 trimers but also serve as a
bridge between the VP7 inner and VP6 outer surfaces, being sandwiched between them to
allow their assembly [29]. In this scenario, the depletion of calcium would destabilize the
VP7 intertrimeric interactions, leading to the rapid disassembly of the shell through the
disruption of VP7–VP6 electrostatic interactions (Figure 2D).

Finally, the viral spike consists of three copies of VP4, which are proteolytically pro-
cessed by trypsin-like proteases from the intestinal lumen to produce VP5* (60 kDa) and
VP8* (45 kDa), resulting in a fully infectious virion [20,38–40]. Each viral spike is formed by
three VP4 units and is anchored to the depressions in the center of the pentamer-contacting
hexamers (Figure 2F). The spike is an extreme example of structural polymorphism with
trimeric, dimeric, and asymmetric elements (Figures 1C and 2F). The C-terminal domains of
the three VP5* subunits interact, forming a trimeric foot that sits between the VP6 and VP7
layers. While the connection between the spike foot and VP7 is relatively weak (mediated
by the VP7 N-terminal arms), the assembly of VP7 trimeric caps onto VP6 secures the
spikes by narrowing the diameter of the cavity above the spike base. The region protruding
from the VP7 layer lacks the local trimeric symmetry observed in the foot. The beta-barrel
of one subunit forms the spike stalk, while the beta-barrels from the other two subunits
create a dimeric spike body that extends outward from the particle surface, capped by two
lectin domains.

3. Particle Disassembly during the Viral Cycle

Particle disassembly and assembly during the viral cycle are closely coordinated
with changes in the cell environment. Disassembly begins and progresses in response
to cellular signals that trigger conformational changes in the viral particle. A precise
sequence of cellular cues and conformational responses by the viral machinery allows
the particle to proceed from the initial receptor interaction in the cellular membrane to
the precise endocytic compartment where membrane rupture is possible [41]. Likewise,
particularly in segmented viruses of the order Reovirales, assembly progresses in stages
where the particle structure and composition are coordinated with changes in the cellular
environment produced by the progression of the virus cycle [42].

In most dsRNA viruses, entry of the infecting virion results in the partial disassembly
and release to the cytoplasm of a transcriptionally active core particle that does not further
disassemble [1]. These characteristic ribonucleoprotein complexes produce ss(+)RNAs
that function as mRNA for the translation of viral proteins or as precursors of the viral
genome, while simultaneously protecting the dsRNA genome from cellular surveillance
mechanisms [43].
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In rotavirus, partial disassembly of the TLP occurs during viral entry and is associated
with membrane disruption [44]. Entry ends with the liberation of the transcriptionally
active DLP particle into the cytoplasm, effectively initiating infection [33]. The machinery
necessary for entry constitutes the outer layer of the TLP [9,45]: the VP7 capsid, which
transforms the transcriptionally active and soft DLP into mechanically strong [29], tran-
scriptionally inactive, TLP; and VP4 spikes, responsible for target acquisition [9,46,47] and
entry route selection [48], whose conformational changes are the main drivers of membrane
penetration [49].

Arguably, rotavirus disassembly (Figure 3) begins with the activation of the TLP parti-
cle by the action of trypsin-like proteases in the digestive tract of infected animals [38,39,50].
Cleavage occurs in the exposed loops of the three VP4 chains and, as a consequence of
the different structural conformations adopted by the chains, after digestion, VP4-A and
-B maintain the lectin-like VP8* domain noncovalently bound atop VP5*, while the lectin
domain of VP4-C, which has not been identified in any of the structures determined so far,
is presumed to be released from the particle [20,51,52]. This activation produces minimal
but essential changes in the structure of the spikes [52,53], making the TLP competent for
productive entry [54].

Rotavirus initially engages the cell through the distal VP8* domains of VP4 chains A
and B, which, depending on the genotype, have been reported to interact with sialic acid,
gangliosides, histoblood group antigens, or mucin cores [9,46,55]. This interaction appears
promiscuous since only a few of the cell lines to which rotavirus binds are efficiently
infected [56]. Nonetheless, this initial interaction influences RV tissue tropism, host range
restriction, and interspecies transmission [46,57,58]. Several post-attachment interactions
of VP5* and VP7 have been described using cell lines, polarized intestinal cells, or human
intestinal enteroids, and involving gangliosides, different integrins, the heat shock cognate
protein hsc70, occludin, and the tight junction protein JAM-A. However, blockage of
these interactions produces a moderate reduction in infection titers, suggesting a high
redundancy/plasticity of virus entry interactions or the presence of yet unknown key
receptor proteins [55,59].

Virus internalization occurs in most rotavirus strains by clathrin-mediated endocytosis
dependent on cholesterol and dynamin [48,55,59–61]. The RRV simian strain is exceptional
in that it follows a different endocytic pathway, independent of clathrin and caveolin,
but requires cholesterol and dynamin [61]. The endocytic route employed seems to be
determined, due to an unknown mechanism, by the nature of the spike protein VP4; thus,
a single amino acid mutation on VP4 shifts the entry of RRV to a clathrin-dependent
process [48]. Regardless of the endocytic pathway followed, the particles reach an early
endosome [62–64] and progress to maturing endosomes, from which some strains (termed
early-penetration strains) can be released to the cell cytoplasm and initiate transcription.
Late-penetration strains must reach late endosomes before they are released to initiate a
productive infection [55,62,63,65].

Independently of the entry route and the final endosomal compartment that it reaches,
the incoming particle must penetrate the cell membrane to initiate infection. The current
model for this last step of virus entry has been established using the RRV strain in BCS-1
cells [44,45,49,66–68]. In this system, entry does not depend on clathrin or dynamin and
is believed to rely solely on the viral entry machinery [44]. The determination of the
near-atomic structure of a new reversed conformation of the VP4 spike has improved
our understanding of the molecular mechanisms involved [49]. Initial binding to the cell
membrane occurs through the interaction of the distal lectin domains of the two VP8*
molecules of chains A and B with a sialylated ganglioside. After attachment, progressive
interactions of the adjacent lectin domains with the cell membrane initiate the invagination
of the particle, followed by engulfment in a loose-fitting vesicle [44].
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Figure 3. Rotavirus disassembly. Rotavirus disassembly begins with the cleavage of the outer capsid
protein VP4 by trypsin-like proteases (A1), which release the lectin domains of the VP4-C chains
from the virus. Rotavirus internalization progresses sequentially through interactions with glycan
attachment molecules (B1) and coreceptors (B2), followed by endocytosis, which, depending on
the strain, could be clathrin-dependent or independent (B3). Incoming viral particles follow the
classical endocytic pathway (B4), reaching maturing endosomes (B5). From here (B6), some strains
(termed early-penetration strains) can be released into the cell cytoplasm and initiate transcription.
In contrast, late-penetration strains must first reach the late endosome compartment (B7) before they
can be released to initiate a productive infection (B8). Our current model for membrane penetration
(C1–C6) has been established using the RRV strain in BCS-1 cells and relies primarily on viral compo-
nents. Initial binding to the cell membrane occurs through the interaction of the distal lectin domains
of the two VP8* molecules of chains A and B with a sialylated ganglioside. Following attachment, pro-
gressive interactions of the adjacent lectin domains with the cell membrane initiate the invagination
of the particle (C1), which is then engulfed in a loose-fitting vesicle (C2). Spontaneous fluctuations
lead to dissociation of the lectin domains, revealing the two hydrophobic loops beneath them and
triggering their irreversible insertion into the membrane. This is followed by the reorganization
of the ß-barrel domains, adopting a trimeric structure in which the hydrophobic loops of the three
ß-barrel domains are inserted into the membrane (C3). The free energy released during this process
is likely the driving force for the wrapping of the virus in a tight-fitting membrane (C4). Finally,
the spikes transition to the reversed conformation, which occurs when the amino acids of the foot
domain of each of the three subunits, previously located in the foot cavity, are pulled towards and
inserted into the membrane. The insertion of multiple foot domains (C4) leads to perforation (C5)
and the release of DLP into the cytoplasm, starting transcription (C6). A third mechanism of entry for
rotavirus, vesicle-mediated en bloc transmission, has been recently discovered to play a significant
role in transmission [69], but it remains to be characterized further (D).
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During this process, spontaneous fluctuations lead to the dissociation of the two VP8*
lectin domains, exposing the hydrophobic loops of the two VP5* beta-barrel domains that
lie beneath and allowing their irreversible insertion into the membrane. This is followed by
the reorganization of the beta-barrel domains, adopting a trimeric structure in which the
hydrophobic loops of the three beta-barrel domains are now inserted into the membrane.
The free energy released during this process is likely to be the driving force for wrapping
in a tight-fitting membrane [49] The presence of the three proposed stages of this model,
the particle bound to the membrane, loosely enveloped, and wrapped, was confirmed
by thin-section electron microscopy [44]. Finally, a long, three-strand, α-helical coiled
coil is formed by polypeptide chain segments C-terminal to the beta-barrels, which, in
the normal VP4 conformation, reside in the foot cavity. The formation of the coiled coil
probably drives the pulling of the destabilized, partially unfolded remainder of the foot
domain of VP4 through cavities in the trimeric beta-barrel structure, without disturbing
the trimeric arrangement of the beta-barrels or its interactions with the VP7. The result is
that, in this reversed conformation, the foot cavity beneath the VP7 layer is empty, and the
≈250 amino acids that constitute the foot domains of each of the three subunits, previously
located in the foot cavity, are pulled towards and inserted into the membrane. Membrane
destabilization is thought to occur through the insertion of multiple foot domains, leading
to perforation and DLP release into the cytoplasm.

This model is supported by studies of cryo-electron tomography of RRV particles
that infect BSC-1 cells. Analysis of tomograms revealed engulfed RRV particles that
maintained two different distances from the outer layer of VP7 to the inner surface of
the membrane, bridged by projections of VP4 [44,49]. Icosahedral averages of individual
subtomograms obtained from nearly fully engulfed particles showed that, in loose-fitting
vesicles, this distance is similar to that of the spikes on normal TLP, which is interpreted
as the VP8* domains interacting with the attachment factors. The tight-fitting membranes
are separated by a shorter distance, similar to the distance from the surface of the VP7
layer to the hydrophobic loops on the tip of the trimeric beta-barrel, which implies that the
extruded foot domains are embedded in the membrane. Crucially, in these tomographic
reconstructions, the volume occupied by the foot domains in the normal TLP appears to be
empty, supporting the role of the reversed conformation during entry [49].

The flux of Ca2+ ions from the vesicular compartment surrounding the virion always
precedes the onset of VP7 and VP4 dissociation by approximately 2 min (which leaves
the particles together) [68]. Ca2+ leakage into the cytosol could follow any or both of the
interactions of VP5* with the membrane involved in this model. A reduction in the Ca2+

concentration in the vesicle, which induces the depolymerization of VP7, is followed by
the liberation of the DLP into the cytoplasm. Within 5 min of attachment, the particles are
completely enveloped, being inaccessible to external agents, and within 3–5 additional min,
the DLP contained in the wrapped TLP is released into the cytoplasm [44].

4. Particle Assembly during the Viral Cycle

Immediately after the DLP is released into the cytoplasm, positive-sense, capped,
non-polyadenylated RNAs are extruded from the viral particle and initiate the synthesis
of viral proteins (Figure 4). It is thought that virus assembly begins with the specific
interaction of VP1, the viral polymerase, with conserved bases at the 3′ ends of ssRNA(+)
that serve as precursors of the dsRNA segments, forming a pre-core complex in which VP1
is inactive [70–73]. These 11 different cytoplasmic complexes are specifically recruited to
the viroplasms, which are cytoplasmic electron-dense inclusions where viral ssRNAs and
viral proteins accumulate [74,75]. It is in the viroplasms that most of the events of rotavirus
morphogenesis are compartmentalized. The generation of SLP, genome replication, DLP
assembly, and secondary transcription occur in viroplasms [76]. Viroplasms are assembled
by the interaction of NSP2 and NSP5 [77,78] and are dynamic structures regulated by
phosphorylation events in these proteins [79–81]. Viroplasms are associated with lipid
droplets [82–85], tubulin [86], and other cellular components [87,88].
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Figure 4. Assembly of virions. Primary transcription occurs immediately after the release of the DLP
to the cytoplasm, and capped, non-polyadenylated, positive-sense ssRNAs are extruded from the viral
particle, initiating the synthesis of viral proteins (C1). Assembly begins with the specific interaction
of proteins VP1 (and possibly VP3) with conserved bases at the 3′ ends of the ssRNA(+), forming
pre-core complexes. The 11 different complexes are specifically recruited to the viroplasms (C2),
which are biomolecular condensates formed by the liquid–liquid phase separation (LLPS) of viral
proteins NSP5 and NSP2, and where the generation of SLP, genome replication, DLP assembly, and
secondary transcription occur (C3). TLP assembly occurs within membranous structures surrounding
viroplasms, which are derived from COOP-II cisternae (C4), which are sequestered and diverted,
along with viral protein VP7, to the vicinity of the viroplasms by the non-structural protein NSP4
(C5). Interaction between DLP-VP6 and NSP4 drives the progressive engulfment of the DLP by
NSP4/VP7-containing membranes, resulting in the budding of the DLP–VP4–NSP4–VP7 complex
into the lumen of the COPII-derived vesicles, in the form of transient membrane-enveloped particles
(eDLP) (C6). The rupture of the eDLP envelope appears to be directed by conformational changes in
the spike protein VP4, which transitions from a highly flexible, premature conformation in the eDLP
to the partially dimeric mature conformation observed in the TLP. The disruption of the transient
envelope and the assembly of the VP7 capsid, which locks the VP4 spikes in place, are proposed to
be driven by this transition. The process by which the newly assembled TLP, within COPII-derived
vesicles, moves outside the cell has not been thoroughly investigated (C7). However, in different
systems, rotavirus has been shown to exit the cell by lysis, active secretion from the apical cell surface
before cell lysis occurs, and in the form of extracellular vesicles containing viruses originating at the
plasma membrane, which are responsible for the vesicle-mediated en bloc transmission.

Recently, viroplasms have been shown to act as biomolecular condensates [74,75,78,89,90]
formed by the liquid–liquid phase separation (LLPS) of the proteins NSP5 and NSP2, where
NSP5 acts as the main driver of LLPS (scaffold), of which NSP2 is a client protein [89].
Immediately after infection, viroplasms show liquid-like behavior that matures to solid-
like condensates via the accumulation of other viral RNA and proteins that participate
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in these condensates as clients and by post-translational modifications, particularly the
phosphorylation of NSP5. Studies using the superresolution microscopy of viroplasms
have led to the description of viroplasms as highly organized structures where the different
viral proteins are distributed as concentric layers enriched in a particular protein around a
center formed by NSP5 [90]. Interestingly, multilayered behavior is a characteristic shared
by many biomolecular condensates [91].

Particle assembly progresses inside the viroplasms by the assortment of the 11 ss-
RNA(+)s that will compose the genome of the mature particle [42,74,76,92–94]. This enig-
matic process has recently been suggested to be driven by the interaction of NSP2 with the
ssRNA(+), which alters its structure, revealing otherwise hidden complementary sequences
capable of inter-segment base pairing [95]. It is believed that complexes containing the
complete complement of segments and the polymerase machinery (VP1/VP3) nucleate
the assembly of VP2 decamers around them, displace NSP2–NSP5 interactions with the
ssRNA(+), and result in the assembly of the SLP particle. However, a recently published in
situ analysis of rotavirus viroplasms by cryo-electron tomography shows the presence of
genome-less SLPs, an unanticipated intermediate in current models of assembly [52].

The structure of genome-less SLPs displays a profound indentation at the five-fold
symmetry axes due to the displacement of the VP2 dimers in these axes by 35º towards
the center of the structure. A density compatible with VP1 polymerase appears on top
of the indentations on each five-fold vertex. A similar genome-less SLP intermediate,
but lacking the polymerase density at the five-folds, has been described for mammalian
orthoreovirus [96]. Both are reminiscent of intermediate stages of assembly found in
bacteriophages of the Cystoviridae family, suggesting that this indented pre-packaging stage
is a conserved feature across the order Reovirales and the Cystoviridae family [52]. How
this new particle fits into the current assembly model and how the VP1–VP3–ssRNA(+)
complexes access its interior remain to be elucidated. Once the genome containing SLP
is formed, the interaction of VP2 with VP1 activates polymerase activity and allows the
replication of genetic material [30,71,97]. At the peripheries of viroplasms, where VP6 is
concentrated [76,90], the assembly of the VP6 capsid transforms the SLPs into DLPs. Newly
assembled DLPs are transcriptionally competent and initiate a secondary transcription that
increases ssRNA(+) production [98–100].

Until now, the morphogenesis of rotavirus particles has been considered a purely
cytoplasmatic process; however, the acquisition of the outer layer of the TLP occurs inside
membranous cisterns that surround viroplasms by a series of processes that are not well
understood. Recent results have shed light on the origin of these cisterns, which previously
were thought to be of ER origin. In this new model [101,102], NSP4 and VP7 are initially
located in the ER, where NSP4 interacts with the COPII transport system cargo binding
protein Sec24 [103] and integrates, along with the protein VP7, into COPII vesicles that
are released into the cytoplasm. Subsequent interaction with NSP4 inserts the autophagy
marker protein LC3-II [104] into the vesicles and diverts them to the viroplasms’ periph-
ery. Morphogenesis progresses by the budding of the DLP through the COPII-derived
membranes. This process is initiated by binding of the C-terminal cytoplasmic domain
of NSP4 to VP6 [105–107], which forms the outer coat of the DLP [42]. The incorporation
of the spike protein VP4 is thought to occur from the cytosol during the budding process
by interaction with NSP4 [108]. Progressive interactions of the outer DLP layer of VP6
with NSP4/VP7-containing membranes result in the budding of the DLP–VP4–NSP4–VP7
complex into the lumens of COPII-derived vesicles, in the form of transient membrane-
enveloped particles (eDLP), which are a unique intermediate among the morphogenesis of
dsRNA viruses. Recent data from the cryo-electron tomography of eDLPs have allowed
an initial, low-resolution glimpse into its structure [52]. eDLPs appear as DLPs containing
60 trimeric VP4 spikes that attach the particles to the transient envelope. VP7 and NSP4
are not visible in these reconstructions. VP4 spikes in eDLPs show a broadly three-fold
symmetric structure and are highly flexible. This premature conformation is reminiscent of
the trimeric intermediate adopted by the spike during entry, where the foot domain is still
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in its cavity and the ß-barrel domains form a trimer with the hydrophobic loops inserted in
the membrane. However, in the premature conformation, the VP7 layer is not present and
VP4 is not digested; thus, the three lectin domains are each bound by two loops to their
VP4 molecule. The transition from this trimeric premature conformation to the partially
dimeric mature conformation observed in the TLP requires major rearrangements of the
VP4 subunits, which are presumed to be responsible for the disruption of the transient
envelope [52]. During this process, the polymerization of the VP7 layer onto the DLP
particle locks the VP4 spikes in place [36,42,52].

The mechanism by which the fully assembled TLP, inside COPII-derived vesicles,
moves to the outside of the cell has not been thoroughly characterized. Nevertheless,
rotavirus appears to operate on more than one exit route. In the non-polarized kidney
epithelial cells MA104, rotavirus is released by cell lysis [109], whereas in a polarized
intestinal epithelial cell line, Caco-2, rotavirus is also actively secreted, before any cell lysis
occurs, from the apical cell surface, trafficking by a novel vesicular transport that bypasses
the Golgi apparatus and the lysosomes [110].

Until recently, viral entry, egress, and transmission were thought to occur essen-
tially in all viral types through single, free virus particles. It is now clear that viruses
can also be released from infected cells and transmitted as groups of particles protected
inside extracellular vesicles, a process common to multiple viral types that has been called
vesicle-mediated en bloc transmission [111]. Egress from the cell is non-lytic and applies to
enveloped [112] or non-enveloped [113] viruses or even to infectious genomes [114]. The
extracellular vesicles containing viruses can originate from different organelles, including
autophagosomes [115], plasma membranes [69], secretory lysosomes [113], and multivesic-
ular bodies [116]. The protection offered by the cloaking vesicle and the multiplicity of
genomes that initiate infection on vesicle-mediated en bloc transmission have important
effects on viral stability, replication fitness, the modulation of viral genetic diversity and
evolution, and the viral response to immune recognition [111,117–119].

During rotavirus infection, vesicle-cloaked particles are non-lytically released from the
cell [120] as large vesicles that originate at the plasma membrane [69]. They are also found
in the stool of infected animals, where they are a non-negligible fraction of the total virus,
significantly more infectious to animals than the equivalent number of free particles [69],
which underscores the relevance of this transmission mechanism. Interestingly, vesicle-
cloaked viruses released from H96 cells or found in the stool of infected animals show a
processed VP4 [69], whereas the virus released from CaCo2 and MA104 cell lines have an
intact VP4 [69,120]. Until now, the activation of VP4 was thought to occur in free particles
by the action of intestinal trypsin-like proteases, but the presence of proteolyzed VP4 inside
extracellular vesicles implies the existence of a new cell-specific activation mechanism. It is
also noteworthy that vesicle-cloaked viruses released from MA104 cells, i.e., with an intact
VP4, are infectious, raising the possibility of a different form of entry, independent of VP4,
for vesicle-cloaked viruses [120].

5. In Vitro Disassembly and Assembly of RV Particles

Many viruses coordinate calcium ions in their particle structures to stabilize their
monomers and the interface between their capsomers [121,122]. These calcium ions are
essential to maintain structural integrity and in regulating assembly/disassembly pro-
cesses [122]. We have seen previously that, in rotavirus, calcium ions stabilize the interac-
tion between the VP7 trimers that constitute the external layer of the mature virion [28,123].
Additionally, calcium ions are proposed to play a role in mitigating the repulsion between
the inner VP7 and outer VP6 electronegative surfaces, which are essential for TLP assem-
bly [29]. In essence, TLP integrity is dependent on the calcium concentration, and, during
rotavirus entry, the decrease in calcium concentration characteristic of endocytic vesicles is
used by the incoming particle to facilitate VP7 disassembly, membrane penetration, and
the release of the DLP into the cytoplasm [28,121–123].
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This disassembly process has been emulated in vitro by means of chelating agents,
such as ethylenediaminetetraacetic acid (EDTA) [40] or ethylene glycol-bis (beta-aminoethyl
ether)-N,N,N′,N′-tetraacetic acid (EGTA) [124], which induce the dissociation of VP7
trimers by depleting the calcium ions that stabilize them (Figure 5A–C). These studies
initially highlighted the crucial role of calcium ions in the regulation of the VP7 layer
disassembly and assembly. Additionally, the purified DLP can be uncoated and converted
into single-layer particles (SLPs) using chaotropic agents such as CaCl2 (Figure 5A,D) [125].
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Figure 5. In vitro disassembly of RV particles. (A) Generation of DLP and SLP from TLP. In
the presence of EDTA, VP7 and VP5*/VP8* are disassembled from TLP. The liberation of SLP is
achieved through the dissociation of VP6 trimers upon exposure to a high concentration of Ca2+ ions.
(B–D) Characterization of TLP, DLP, and SLP using Coomassie-blue-stained SDS-PAGE gels and
negative staining electron microscopy. The gel images show the positions of rotavirus structural
proteins (VP). The scale bar represents 100 nm. (E) Topographic evolution of TLP, TLP + EDTA, DLP,
and SLP during continuous AFM imaging at low force. Sale bar represents 20 nm [29].

The mechanical properties of the different particle shells have been explored by atomic
force microscopy using single indentation assays and mechanical fatigue experiments [29].
The strong VP7–VP7 and VP7–VP6 interactions provide high mechanical strength for
protective purposes (Figure 5E, TLP). This resistance allows the TLP to overcome the
severe extracellular conditions, including the stringent physicochemical conditions of
the digestive apparatus. In contrast, the VP6–VP6 and VP6–VP2 interactions offer lower
resistance, facilitating the required conformational dynamics for transcription. Fatigue
assays in the presence of EDTA have allowed to live-image the rapid disassembly of the VP7
lattice when these ions are depleted (Figure 5E, TLP + EDTA). When mechanical fatigue is
applied to DLP or partially disassembled TLP [29], the VP6 subunits are removed rapidly
from the underlaying SLP (Figure 5E, DLP). This reflects the low mechanical stability of the
trimeric VP6 layer [29] and its high flexibility, which allows the virus to adopt some level
of deformation, necessary for the expression of its genome. Finally, the fatigue applied to
the SLP after the disassembly of the VP6 layer indicated high instability in the VP2 layer
(Figure 5E, SLP).

In vitro recoating has been used successfully in reovirus to study the assembly and
cell entry mechanisms [126–129]. During recoating, the infectious cores, equivalent to
rotavirus DLP, are incubated with the recombinant overexpressed components of the outer
layer. This generates particles that are thousands times more infectious than cores but half
as infectious as native virions [130,131]. Transcapsidation experiments showed that it is
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possible to recoat the rotavirus DLP with virion-derived outer capsid proteins to generate
in vitro infectious particles [132]. However, the reaction is inefficient relative to the number
of recoated particles. Nevertheless, DLP recoating with baculovirus expressed recombinant
VP4 and VP7 proteins, produced at an acidic pH in the presence of calcium ions, generates
highly infectious recoated rotavirus particles [36]. The recoating effectivity is strongly pH-
dependent, with maximum efficiency at pH 5.2 and a lower effect at pH 7.2. These recoated
particles are as infectious as authentic purified virions, and when recoated particles are
incubated with EDTA, the infectivity is reduced to the level of DLP, accordingly with the
drop of the infectivity in native TLP when they are depleted of calcium [35]. The low VP7
concentration needed for recoating assays suggests that VP7 binds DLP with high affinity.
However, most of the particles show incomplete outer capsid recoating. This indicates a
cooperativity binding process between VP7 trimers during assembly that creates patches of
assembled VP7 in the particles but not fully coated or completely uncoated particles [29,36].
This was also evidenced during the dissociation of VP7 trimers in disassembly, or uncoating,
assays [29,36]. VP7 binding does not depend on the prior assembly of VP4 in the DLP,
but, for the full restitution of infectivity, VP4 must be added before VP7 [36]. VP4 spikes
bind to DLP via relatively weak interactions; afterwards, VP7 trimers assemble around the
particles and lock VP4 in its place.

Despite its relatively recent development, recoating has emerged as a powerful tool
to study the role of the outer layer proteins since it allows the construction and study of
mutants with lethal or very low fitness mutations, which are at present very difficult to
generate. Furthermore, DLP recoating represents a key tool for the high-resolution cryo-EM
analysis of different RV particle membrane penetration intermediates (Figure 6) and has
been crucial in understanding how the refolding of the RV spike mediates membrane
penetration [49].
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Figure 6. Cryo-EM structures of recoated DLPs. Hexameric position of a DLP section recoated
with (A) VP7 (PDBs 3GZT and 3GZU). (B) VP7 + VP5*/VP8* in upright conformation (PDB 6WXE).
(C) VP7 + VP5*/VP8* in intermediate conformation (PDB (6WXF). (D) VP7 + VP5*/VP8* in reversed
conformation (PDB 6WXF) [49].

6. In Vivo Assembly of RV Virus-like Particles

The structural proteins of numerous viruses self-assemble in vivo to form virus-like
particles (VLPs), which possess a similar structure to the subparticles and particles gener-
ated during the natural viral cycle [133]. The expression of RV structural proteins through
various heterologous expression systems has enabled the isolation of different VLPs from
strains of group A rotavirus (RVA) and group C rotavirus (RVC), including VLPs with
one layer (pseudo-SLP, vSLP), two layers (pseudo-DLP, vDLP), or three layers (pseudo-
TLP, vTLP). VLP assembly not only requires the expression of various structural proteins
but also their proper folding and assembly. The VLP assembly process in the different
heterogeneous expression systems is a poorly characterized process that appears to occur
spontaneously through the interaction of overexpressed structural proteins [134–141].
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The expression of RVA VP2 allows the formation of self-assembled vSLP
(Figure 7(A3)) [142]. These vSLP may also contain VP1 or VP1 and VP3 if co-expressed
alongside VP2 [143]. Co-expression of VP2 and VP6 [144] leads to the assembly of vDLP
(Figure 7(A4), where VP2 serves as the scaffold protein on which VP6 assembles [145]. The
expression of VP6 alone does not produce icosahedral assemblies but results in the forma-
tion of spherical particles (Figure 7(A2)), 2D crystal matrices, or helical tubes (Figure 7B)
as a function of the pH level [146–148]. Depending on the combination of co-expressed
structural proteins, vDLP can be formed by VP2/6 (Figure 7(A4)), VP1/2/6, VP2/3/6,
VP1/2/3/6, or VP2/4/6. The formation of vDLP (VP2/6) is crucial in generating vTLP,
as VP7 and VP4 wrap around the VP6 layer within the vDLP. These vTLP can contain
the RV spikes, VP2/6/4/7 (Figure 7(A6)), or be composed solely of structural proteins
from the three concentric capsid layers VP2/6/7 (Figure 7(A5)) [134,143]. In addition to
those of RVA, VLPs have only been generated for RVC strains, consisting of vDLPs (VP6/7,
Figure 7(A7)) or vTLPs (VP2/6/7, Figure 7(A8)). It is also possible to generate hybrid vTLP
assembled with structural proteins from different RV species, as has been done with RVA
and RVC (A-VP2/C-VP6/C-VP7, A-VP2/C-VP6/A-VP7, and A-VP2/A-VP6/C-VP7) [149].

Several expression systems have been used to generate RV VLP, such as yeast (Saccha-
romyces cerevisiae) [135], prokaryotic cells (Escherichia coli BL21 (DE3)) [140], transgenic
plants (Nicotiana tabacum, Nicotiana benthamiana, Lycopersicon esculentum) [136,137,141],
transformed Drosophila melanogaster cells [138], or mammalian cells (Vero 2-2 cells) [139].
However, most of the studies have used recombinant baculovirus (rBV) to express the
heterologous proteins in insect cells. This system presents several characteristics that
make it convenient for the expression of RV VLP [150–154], such as the baculovirus’ very
late promoters that can promote high levels of expression, as well as the simultaneous
co-expression of several proteins by means of bicistronic or multicistronic vectors.
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RVA TLP; (2) native RVA DLP; (3) RVA vSLP (VP2); (4) RVA vDLP (VP2/6); (5) RVA vDLP (VP2/6/4);
(6) RVA vTLP (VP2/6/7); (7) RVA vTLP (VP2/6/4/7); (8) RVC vTLP (VP2/6/7). (B) VP6 thin
helical 45 nm thick tubes (top) and thick 75 nm tubes (bottom). Scale bar 100 nm. Adapted
from [134,142,147,155].

VLPs maintain the morphology and antigenic characteristics of native viruses while
lacking genetic material, making them non-infectious. They exhibit higher immunogenicity
compared to monomeric recombinant proteins [133]. VLP-based vaccines can induce innate
and adaptive immune responses through various immunization routes [156–159] and
potentially reduce the side effects associated with conventional vaccines [160–162]. As a
result, VLPs are promising candidates for the development of vaccines [162], particularly
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for emerging RVA serotypes [156–159] or in combination with other enteric pathogens [163].
Other applications of these VLPs are related to the characterization of neutralizing and non-
neutralizing epitopes in VP4 and VP7 by ELISA and hemagglutination assays [134,164]. The
VLPs play a key role in VLP-based ELISA for the quantitation of RV antibodies, especially
for strains that do not replicate in in vitro cultures.

VLPs are also of interest in the medical and biotechnology fields as drug delivery
agents (nanocarriers) [165–167] or vehicles to display different heterologous epitopes [168].
The expression of a foreign protein at the amino terminus of VP2 does not prevent VLP
formation and could protect the molecules contained within it from degradation and, in
some cases, also enhance its uptake [169]. VP6 assemblies can be used to produce hybrid
nanobiomaterials [170] by functioning as a multimeric scaffold for the in situ synthesis
of noble metal, magnetic, and semiconductor nanoparticles conjugated over the reactive
amino acid residues of VP6. These hybrid nanobiomaterials exhibit high morphological
consistency, with potential applications in material sciences and nanomedicine.

7. Future Outlook

As we have observed, research on rotavirus is thriving, as evidenced by the abundance
of relevant results within the scope of this review. This progress is in large part driven by
recent technological advancements, particularly the development of a reverse genetics (RG)
system for rotaviruses [130,171–173] and the revolutions in various microscopy techniques
that we are currently witnessing [174]. As we have seen in this review, these advances
have had a significant impact on rotavirus research, providing important insights into
viral replication, assembly, and cell entry mechanisms. Furthermore, these improvements
have enabled the use of rotaviruses as vectors for the expression of proteins and peptides
and have deepened our understanding of rotavirus pathogenesis [58,175–179]. The fully
plasmid-based RG system, which provides complete control over the genome structure,
has emerged as the preferred platform for the development of next-generation rotavirus
vaccines [180–184].

These critical experiments have not only answered numerous questions about ro-
tavirus biology but also stimulated new areas of enquiry:

• The current molecular model for membrane disruption and entry is being devel-
oped in an outlier system (RRV strain/BSC-1 cells) that does not depend on the
cellular endocytic machinery and instead relies solely on the viral machinery for
entry from the plasma membrane. How does this model apply to other rotavirus
strains that do rely on the cellular endocytic machinery and enter the cell from late or
recycling endosomes?

• What are the mechanisms underlying the entry and non-lytic release of rotavirus as
vesicle-enveloped clusters, and how does vesicle-mediated en bloc transmission affect
viral pathogenesis, spread, and evolution?

• Identifying the membrane in eDLP as of COPII origin is a paradigm-shifting result
that awaits further characterization of the mechanisms involved. Additionally, it is
crucial to investigate the extent to which rotavirus disrupts the autophagy system and
the specific mechanisms underlying VP7 transport within these membranes.

• The description of viroplasms as biomolecular condensates is crucial in understanding
the dynamics of these viral organelles. To develop a comprehensive understanding of
the formation and maturation of viroplasms, it is important to address key questions
related to the maturation of viroplasms, the roles of lipid droplets and other cellular
components in the formation of viroplasms, and the roles of NSP2 and VP2 in the
formation and evolution of initial genome complexes.

• The description of viroplasms as highly organized structures with a concentric distri-
bution of viral proteins around a center formed by NSP5 suggests that there exists a
temporal and spatial coordination of viral processes, which has yet to be characterized
in detail.
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• Cryo-electron tomography of cellular lamellae and subtomogram averaging have
provided valuable insights into the structure of eDLP and have been demonstrated as
a promising approach to characterizing transient rotavirus structures in their native
cellular environment. With further advancements in these techniques, it is anticipated
that the reconstruction of VP7 and NSP4 within the eDLP can be achieved.

• The presence and the structure of the genome-less SLP are difficult to conciliate with
current models for rotavirus particle assembly and require further investigation.
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