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Abstract: West Nile virus (WNV) neuroinvasive disease threatens the health and well-being of horses
and humans worldwide. Disease in horses and humans is remarkably similar. The occurrence
of WNV disease in these mammalian hosts has geographic overlap with shared macroscale and
microscale drivers of risk. Importantly, intrahost virus dynamics, the evolution of the antibody
response, and clinicopathology are similar. The goal of this review is to provide a comparison of
WNV infection in humans and horses and to identify similarities that can be exploited to enhance
surveillance methods for the early detection of WNV neuroinvasive disease.
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1. Introduction

Before its emergence in North America, West Nile virus (WNV) generally caused a
febrile syndrome referred to as West Nile fever (WNF) with limited outbreaks of neuroinva-
sive disease in Africa and hotspots of activity in the Mediterranean and Eastern European
countries [1–4]. Since the explosive emergence of WNV disease in North America, humans
and horses are at risk for developing grave disease worldwide [5]. Infection in humans and
horses, naturally outbred mammalian hosts, causes debilitating neurological disease and
death with much commonality, but often, initial cases are missed due to lag time and gaps
in reporting of environmental activity [6,7]. To enhance real-time detection of WNV activity
in humans and horses, human and animal syndromic surveillance has been explored for its
use in the prediction of WNV outbreaks [8–13]. Syndromic surveillance is a strategy for
the identification of general health abnormalities not dependent on diagnostic testing to
serve as an early warning system for disease threats [8–13]. This type of surveillance can be
further optimized by a comprehensive understanding of the clinicopathological similarities
of WNV in the two most affected mammalian species.

2. Virus Classification and Structure

West Nile virus is a mosquito-borne virus of the genus flavivirus, family Flaviviri-
dae, first isolated in the West Nile district of Uganda in 1937 [14]. WNV is a spherical,
enveloped, single-stranded, positive-sense RNA virus measuring 45–50 nm in diame-
ter [15–17]. The 11 kb genome contains a single open reading frame (ORF) that is translated
in its entirety into a polyprotein that is then cleaved by both cell and viral proteases into
11 viral proteins consisting of three structural proteins, including capsid (C), pre-membrane
(prM)/membrane (M), envelope (E), and seven nonstructural (NS) proteins (NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5) [17–19].
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3. Epidemiology

Prior to the encroachment in North America, outbreaks of WNV neuroinvasive disease
in humans or horses were becoming more frequent, as reported in North Africa, France,
Romania, and Russia in the late 1990s [20–23]. With new geographic encroachments of the
lineage 1 (L1) strain of WNV, high numbers of neuroinvasive infections, often with severe
outcomes, were reported [5,24]. Seven lineages of WNV have been characterized, with L1a,
L1b (Kunjin virus, KUN), and L2 documented in humans and horses [19,25–30]. While L2
was historically associated with WNF in humans before the 1990s and limited neurological
disease in horses, a neuroinvasive strain of L2 emerged in Europe in the early 2000s, which
was responsible for multiple outbreaks [29,31–33]. Japanese encephalitis virus (JEV) and
Murray Valley encephalitis virus (MVEV) also cause disease in horses and humans [25,26].
WNV is now endemic on all continents except for Antarctica. Significant differences
in nucleotide sequences between WNV isolates from different parts of the world have
been documented along with antigenic variation among strains isolated within the same
geographic region [6,34–36]. Continued expansion of multiple lineages and subtypes, with
ongoing emergence and re-emergence, indicates that WNV disease will continue to evolve
and threaten the health and well-being of both horses and humans worldwide [34,37].

3.1. Risk Factors for Human and Horse Exposure
3.1.1. Macroscale Factors

Activity and identification of drivers of WNV transmission in human and horse out-
breaks are variable and dependent upon the scale of the analysis [38]. Macroscale modeling
of the abiotic and biotic risk factors for WNV transmission is generally predictive, overlap-
ping as risk factors for infection in both humans and horses and predicated by the fact that
these enhance exposure to competent vectors of WNV that feed on mammalian hosts in an
environment with avian reservoirs [38,39]. Regardless of scale, climatological, hydrological,
and altitudinal variables are the main abiotic factors, while avian and mosquito fauna, as
well as vegetation, are common biotic factors [40–51]. In Europe, bird migration routes,
maximum monthly temperature, and annual temperature, wet agricultural activities, pres-
ence of poultry and horses, presence of rivers, and lower altitudes have been identified
as primary predictors for WNV activity, severity, and presence of human and/or equine
cases [13,43,44,49,50,52–55]. Most of these same factors are identified as predictors of WNV
activity in the Middle East and the Mediterranean coast of Africa [39,43,56,57]. In one study
conducted in Africa, risk was modeled separately for enzootic and epizootic activity, a
distinction not often considered in modeling [58]. Variables that increased enzootic ac-
tivity included birds, temperature, proximity to RAMSAR-designated wetlands, flooded
vegetation, and agriculture [58]. Predictors for epizootic activity were similar to enzootic
activity; however, the presence of vectors, reservoir hosts, population levels, proximity to
railways, and presence of irrigated crops were also predictors of outbreaks [58]. Mosquito
and environmental data have been used for forecasting WNV activity in areas of high risk in
the United States [41,59–65]. One of the largest and broadest scale US studies performed to
date evaluated the risk for equine disease (as reported to state and federal authorities) and
investigated a variety of abiotic/biotic factors, horse abundance, and socioeconomic vari-
ables as predictors for reported equine cases [64]. Avian host species presence outweighed
climate, land cover, and demographics. Local heterogeneity was demonstrated spatiotem-
porally and climatically. Reporting of equine cases followed a northward trend starting
in the spring, reaching parity in the middle of the summer, then trending southward in
the fall, reflecting the movement of birds and seasonal mosquito activity. Precipitation
did correlate to equine cases; however, a nonlinear relationship between activity and the
drought index demonstrated that dry conditions actually increased the likelihood of cases,
while drought had a negative effect on the likelihood of WNV disease. West Nile virus
activity is heterogeneous throughout Central and South America [66], and studies in Brazil
found that higher temperatures and lower levels of precipitation were associated with
increased seroprevalence in horses [67].



Viruses 2023, 15, 1230 3 of 22

3.1.2. Microscale Factors

Microscale modeling variables are difficult to compare between humans and horses
because of vast differences in environmental exposure. Logically, continuous environmental
exposure to mosquitoes would overwhelm differences in factors, such as housing and
human outdoor activities, socioeconomics, and the occupation of humans and horses.
The intersection of risk is best associated with land use. Agriculture and rural locations
are usually associated with higher rates of seroprevalence and neuroinvasive disease in
humans and horses [60,68–70]. In rural environments, horse and human occupation are
linked with agriculture, and agricultural workers are more likely to have either higher
seroprevalence rates and/or more reported WNV cases. In a Canadian study where rural
and urban populations were compared directly, humans residing in rural locations were
five times more likely to be seropositive to WNV than their urban counterparts [71]. Crops
that attract birds (e.g., orchards, etc.), the presence of forested habitat, and farming that
relies on irrigation are commonly and highly associated with WNV seroprevalence and
disease in horses as well as humans [72,73]. Where WNV disease risk was studied in
urban environments, areas of low population density characterized by higher amounts of
vegetation and water features (flow not defined) had higher incidences of reported human
cases [48]. The presence of water on a property or nearby is not always associated with
disease. In a study of risk factors for WNV neuroinvasive disease in Florida horses, farms
with freshwater features consisting of free-flowing water, such as springs and rivers, were
negatively associated with the presence of equine disease [74].

3.2. Transmission to Humans and Horses

In nature, WNV is transmitted to vertebrate hosts via the bite of a mosquito (Figure 1).
Many species of mosquito vectors are competent for transmitting WNV, but Culex sp. are
the most competent vectors worldwide [36,75–79]. In general, Cx. pipiens constitutes the
majority of WNV-positive mosquito pools in the eastern United States [75], and Cx. tarsalis
constitutes the majority in the middle and western United States [76]. In the southeastern
United States, Cx. quiquefasciatus and Cx. nigripalpus pools have been found with the
highest WNV infection rates [80–82]. In Europe, the presence of WNV has two cycles
based on the ecosystem, a rural (or sylvatic) cycle usually involving wetland birds and
ornithophilic mosquitoes, such as Cx. Molestus, and an urban cycle involving songbirds
(Passeriformes) and Cx. pipiens [44,83,84]. Culex univittatus is a main vector of WNV
in Africa and the Middle East (with expansion into parts of Europe) [2,85]. Aedes sp.
and Anopheles sp. mosquitoes are also considered to be potentially competent vectors
and are likely important mammalian feeders [79,86]. The lifecycle of WNV involves
primarily avian reservoirs, which can amplify the virus to high titers. High levels of viral
amplification occur in many bird species, especially in Passeriformes and Charadriiformes
(e.g., shorebirds) [87–90]. House sparrows and robins are considered important amplifying
hosts or “super spreaders” for WNV [88,89,91].

Several species of ticks have been investigated for the potential to transmit WNV;
however, the evidence is unclear as to the competency of ticks as vectors. Transstadial
transmission was demonstrated in one study of Ixodes ticks but failed to occur in a second
study [92]. Infected Argas arboreus ticks experimentally transmitted WNV to chickens [93].
Carios capensis transmitted WNV under experimental conditions to ducklings and several
Ornithodoros spp. transmitted WNV under experimental conditions to mice [93,94].

Beyond mosquito transmission, documented infections in humans have been traced
back to blood transfusions (reviewed recently by Gimenez-Richarte in 2022) [95,96]. To
the authors’ knowledge, there are no reports of transmission of WNV by blood or plasma
transfusion in horses. Nonetheless, this remains a possibility since iatrogenic transmission
of Theileria equi [97], equine pegivirus [98], and equine infectious anemia virus [99] has
been documented. Other routes of transmission documented in humans are through organ
transplantation and vertically through breast milk and across the placenta [95,96]. Vertical
transmission of WNV has also been reported in horses [100]. Occupational transmission is
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possible and is typically due to injuries sustained by sharp objects in the laboratory and
during postmortem handling of tissues [101,102].

Viruses 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 1. Transmission cycle of West Nile virus to humans and horses. Birds are the main reservoirs 
of West Nile virus, and upon infection, the virus replicates to levels allowing for transmission to 
mosquito vectors. In horse and human infections, the viremia is too low for transmission to mos-
quito vectors; thus, they are dead-end hosts. Other modes of transmission in humans include hori-
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struments. Vertical transmission from mother to child occurs via placenta and breast milk. Created 
with BioRender.com (accessed on 14 April 2023). 
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Figure 1. Transmission cycle of West Nile virus to humans and horses. Birds are the main reservoirs
of West Nile virus, and upon infection, the virus replicates to levels allowing for transmission
to mosquito vectors. In horse and human infections, the viremia is too low for transmission to
mosquito vectors; thus, they are dead-end hosts. Other modes of transmission in humans include
horizontal transmission by organ transplantation, blood transfusion, and occupationally via sharp
instruments. Vertical transmission from mother to child occurs via placenta and breast milk. Created
with BioRender.com (accessed on 14 April 2023).

4. Comparative Clinical Disease
4.1. Viral Kinetics

Human and equine viral kinetics are similar, although more is known about virus
dynamics in the horse due to experimental infections. Titers in donated human blood
can range from 0.06 to 0.6 PFU/mL [95,103–105]. In humans, the estimated period from
infection to clinical disease is likely 3 to 14 days, and in one study, the development of
symptoms after the onset of viremia averaged 6.9 days [103,105]. Much of the available
data regarding WNV infection in horses has been generated by experimental infection,
and the course of experimental infection is similar whether horses are challenged in-
tradermally, subcutaneously, intrathecally, or by mosquito feeding [106–113]. One of
the first descriptions of experimental infection of horses was published in 1963 [106]. In
this early study, six donkeys and three horses received peripheral injections of WNV L2
derived from previous murine brain inoculation. Two of six infected donkeys became
viremic with 101.5 LD50 virus/mL (neonatal intracranial inoculation model) for one day
on days 4 and 6 post-inoculation; conversely, none of the infected horses became viremic.
Infections with L1a, L1b, and more recently, isolated L2 strains have similar kinetics upon
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peripheral inoculation in horses [107,108,110–114]. In general, horses develop viremia
between days 1 and 6 post-inoculation, with titers ranging from 101.0 to 103.0 PFU/mL,
usually lasting for a short duration of less than 3 days [107,108,110,111,114]. In work per-
formed with the WNV L1 strain, horses were fed upon by Aedes albopictus mosquitoes
infected with 106.6 to 107.4 PFU/mL of virus [107]. These infected horses failed to trans-
mit the virus when fed upon by uninfected mosquitoes between days 3 and 5 post-
infection, conclusively demonstrating that the horse is a dead-end host in virulent
L1a infections [111]. Viral load in the central nervous system (CNS) of experimentally
infected horses is much higher than that of peripheral blood and tissues, measuring
between 104 and 106.8 PFU/mg of tissue [110,111,114].

Based on viral culture, WNV is not detectable in the blood of horses and humans
once clinical signs become apparent. The paradigm of short duration, low titer viremia
prior to the onset of clinical signs is shifting due to enhanced sensitivity of molecular
techniques as well as persistent testing in humans and horses [103,105,115]. In one blood
donor study, WNV was detectable in human blood for an average of 13.2 days using a
transcription-mediated amplification [105]. In a clinical study, WNV RNA was detected by
RT-qPCR in the blood of 80% of clinical WNV patients during the first five days of clinical
symptoms at cycle threshold (Ct) values below 35, levels which may reflect the continued
persistence of live virus [115]. In one study, the L2 virus was detected in the serum and
white blood cells (WBCs) of one horse after the onset of neurological symptoms [116].

Originally, WNV infection was considered to be confined to the bloodstream with
no detectable shedding in body fluids. Detection of WNV in urine in a human patient
after the onset of symptoms was first reported in 2005 [117]. In another study, the urine of
WNV patients was positive at Ct values of less than 35 for up to 30 days [115]. These latter
findings are important—if molecular detection of WNV is possible in a small subset of
humans and horses, genetic sequencing of WNV in humans and horses displaying clinical
signs allows for molecular typing in real-time during outbreaks. Detection of the virus in
multiple body fluids also provides an opportunity to study the evolution of WNV in the
outbred host.

4.2. Clinical Syndromes

Not all of the WNV syndromes defined in humans are recognized in horses. Human
WNV disease includes West Nile fever (WNF), West Nile encephalitis (WNE), or West
Nile acute flaccid paralysis (AFP; polioencephalomyelitis) [118]. West Nile neuroinvasive
disease (WNND) usually incorporates both encephalitis and paralysis. In the horse, the
syndromes of WNE and AFP are not strictly defined as they are in human diseases. The
low prevalence of WNF in horses is likely a reflection of limited arbovirus testing in febrile
horses; however, WNF likely occurs, as has been documented in peripheral experimental
infections of WNV in horses [107,119]. Furthermore, a model of non-lethal equine infection
of WNV was developed in which horses challenged with relatively low doses of L1b
developed minimal symptoms but nonetheless had neuronal pathology [113].

4.3. Demographics and Outcomes

Demographic risk factors for severe neuroinvasive disease have been well-established
in human disease and mainly include age, gender, race, and comorbidities, including
diabetes, chronic heart and renal disease, and immunosuppression [120–122]. While horses
have endocrinopathies and cardiac or renal disease, little is published regarding relevant
comorbidities and WNV disease severity in horses. Increased age is a commonly cited risk
factor in humans [120,123,124]. In one publication, the incidence of neuroinvasive disease
was 10 times higher in patients between the ages of 50 and 59 years old and 43 times higher
for those greater than 80 years old [123]. In Romania, the case fatality rate increased from
less than 4.3% in patients less than 50 years old to greater than 17% in those older than
70 years [124,125]. This finding holds true for L2 infections where both WNF and WNND
increase with age [115]. Age as a risk factor for neuroinvasive disease in horses, as well
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as a risk factor for severe disease and higher mortality, is unclear based on individual
studies. In a selected group of publications that included four or more cases where age was
provided, the average age of pooled data from 2891 horses with neuroinvasive disease was
8.5 years (ranging from 0.5 to 32 years) [21,24,116,126–136]. Although there was limited
data in most publications regarding the age of the horses that died or were euthanized; in
five of the aforementioned studies representing 637 horses, the average age of mortality
was 10.37 years (current lifespan is 20–30 years) [24,116,127,130,135]. In two other studies,
animals less than one year of age were more likely to die than in other age groups. [134,136]
In another, all animals less than one year of age died [128].

Case fatality rates in humans with WNND L1a are generally 8–10% [95,115]. There is
variation across Europe in case-fatality rates in L2 infections. In a study of 427 patients in
Italy, the case-fatality rate was 22% [115], while the case-fatality rate was 8.8% in a cluster
of 57 cases in a study from Romania [137]. The overall mortality was 28% in pooled data
of 2993 horses from selected studies [9,22,24,116,126–132,134–136,138–140]. Mortality rates
calculated using this same data were similar in horses infected with either L1a or L2 viruses,
averaging 29% and 34%, respectively.

In human studies, men are typically considered more likely to develop WNV disease
than women [95,115,141]. In equine studies, sex ratios vary between studies, with some
demonstrating bias toward females [126,130] and in others, male horses [22,24,128,134–136].
However, the average of pooled data from 14 studies that included 2182 horses was
50.4% and 49.5% in males and females, respectively [24,116,126,128–130,132,136,139,140].

4.4. West Nile Fever

Blood donor screening studies and seroprevalence data collected early in the course
of WNV emergence in the United States indicate that 20–26% of WNV-exposed humans
develop WNF [142,143]. As discussed previously, WNF is characterized by an abrupt onset
of febrile illness consisting of clinical signs, such as headache, malaise, skin rashes, fever,
myalgia, and/or joint pain [144].

4.5. West Nile Neuroinvasive Disease

Neuroinvasive disease is estimated to occur in 0.66–1% of symptomatic human pa-
tients [33,142,145]. In horses, approximations vary slightly, but it is estimated that between
10% and 20% of exposed horses develop neuroinvasive disease [107,119]. This number is
based on the approximate 1:10 symptomatic to asymptomatic ratio seen in WNV NY99
peripheral challenge studies [107,119] and clinical studies [146].

In a large systematic review of clinical L1 human infection, it was observed that
the frequency of specific clinical signs and rates of occurrence for each syndrome were
inconsistently reported [118]. WNE presents as a spectrum, from mild short-term confusion
and disorientation to severe changes in cognition and sensorium [147,148]. Patients can
exhibit various levels of mentation with catatonia and coma [144,145]. Postural tremors
occur with primary involvement of the upper extremities [144,145]. This Parkinsonian-like
feature also includes bradykinesia, stiffness, and postural instability. Seizures can occur but
are infrequent. Meningitis without changes in mentation also occurs and is characterized
by fever, headache, and stiff neck [147,149]. Acute flaccid paralysis (AFP) is primarily
characterized by the acute onset of flaccid paralysis that is usually asymmetrical with a
general loss of spinal reflexes without sensory disruption [147,150,151]. The prognosis
for complete resolution of paresis secondary to AFP is guarded [118,152], as AFP can be
life-threatening with loss of respiratory muscle function [150].

The clinical features of equine neuroinvasive WNV disease are similar to those
observed in human infections. Clinical symptoms in the horse are generally catego-
rized as changes in mentation, locomotor disorders, and/or notable cranial nerve
aberrations [127,128]. Changes in mentation can range from depression/obtundation
to hyperexcitability. Approximately 30% of horses have some degree of decreased
mentation or depression [10,22,116,126,128,129,134–136,140] to the point of stupor as
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well as narcolepsy [10,116,127,129]. Hyperexcitability has also been reported in ap-
proximately 30% of cases [9,22,24,116,128,129,133–136,140]. Horses also exhibit com-
pulsive behaviors, such as constant chewing or walking [22,116,127,128,131,135,136].
Another manifestation is hyperesthesia or hypersensitivity to tactile or auditory
stimuli [9,22,24,116,128,129,133–136,139,140]. Parkinsonian-like features are also
prominently displayed in equine disease. Fasciculations manifest as coarse or fine
tremors of the upper limbs, neck, and face and occur in approximately 80% of di-
agnosed horses [9,24,54,116,126,128,129,131,134–136,138–140]. Similar to humans,
these are postural and not noted when lying down. Slow walking, reluctance to walk,
and rigidity are also reported [127,128]. Seizure activity is infrequently reported,
as in humans [116,131].

In horses, WNV also has a predilection for motor neurons of the cranial
nerves [9,116,127–129,131,133–136,139,140]. Most common abnormalities include
drooping lip, deviated muzzle, tongue weakness, loss of swallowing reflex, head
tilt and listing to one side, and slow pupillary light responses to include combi-
nations of cranial nerves III, VII, VIII, IX, X, and XII. This reflects virus localiza-
tion to the cranial nerves of the mid- and hindbrain. Limited numbers of horses
exhibit blindness [128,131,135,136].

Locomotor deficits are typically multifocal, asymmetric, and may include compo-
nents of ataxia (approximately 70%) [9,21,24,54,116,126–132,134–136,138] and weakness
(45%) [21,24,54,116,126–132,134–136,138]. These two clinical signs reflect both brain and
spinal cord disease causing interruption of the sensory and motor tracts in the hindbrain
and the spinal cord. Similar to AFP in humans, monoparesis and paraparesis involv-
ing one or all limbs in the horse are reported in approximately 40% of horses. Paresis
can involve any of the fore or the hind limbs without a consistent pattern from horse to
horse [9,22,24,116,126,128,131,133–136,139]. When unilateral, this generally indicates lower
motor neuron disease from viral infection of the grey matter of the ventral and lateral horns
of the spinal cord. Approximately 20% of horses can display severe intermittent weakness of
front and/or hind limbs causing the horse to be unable to stand (recumbent), temporarily or
intermittently kneel, or to dog-sit, depending on which limbs are involved. Forelimb weak-
ness without hindlimb weakness is unique to WNV; it has been described in L1a infections
and was overrepresented in one report of L1b infections [136]. In a study of L2 infections,
hindlimb weakness was overrepresented [133]. Full persistent recumbency occurs in ap-
proximately 30% of cases with or without loss of reflexes [24,116,126,128,129,131–136,140].
Many horses that are persistently recumbent are often euthanized due to the poor prognosis
for recovery [116,128,133–135]. In human cases, persons with AFP or full paralysis also
face a grave prognosis for recovery and survival [118].

4.6. Extra-Neural Symptoms

Extra-neural symptoms in WNV-affected humans may involve the eye, skin, gastroin-
testinal tract, heart, and kidneys [153–157]. Involvement of the eye in human infection
is well documented [153,154]. Manifestations include chorioretinitis, anterior uveitis, vit-
ritis, and retinal hemorrhage [153,154]. Ophthalmic changes have not been documented
in the horse but have been documented in birds of prey and waterfowl [158–161]. Gas-
trointestinal signs such as nausea, abdominal pain, and diarrhea have been documented
in humans [155–157]. Horses can exhibit abdominal pain prior to developing clinical
signs. Enterocolitis, colonic impaction, and rectal prolapse have also been documented
in the horse [156,157].

4.7. Long-Term Recovery

Humans can experience a variety of debilitating cognitive and physical effects from
neuroinvasive WNV disease [152]. Even with WNF, lasting fatigue, weakness, and cognitive
issues are often self-reported [162]. With WNND, the long-term effects can be substan-
tial, with self-reporting by patients indicating that up to 20% experience fatigue, muscle
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pain, and headaches [152,163–166]. Cognitive outcomes include attention and memory
deficits and sleep disorders [152,163–166]. Patients with AFP can have long-lasting paresis
and loss of strength [152,163–166]. Horses can exhibit slow recovery to athletic poten-
tial following WNV [127]. Horses can exhibit life-threatening injuries sustained during
clinical disease [128].

5. Comparative Clinicopathological Features
5.1. Clinical Pathology

Clinical pathology is an unrewarding diagnostic tool for use in human and equine
WNV patients. Humans with WNE or WNP may have increased peripheral WBC counts.
Conversely, prolonged lymphocytopenia has also been reported [147,167]. The most com-
mon changes in horses consist of a decreased peripheral lymphocyte count [116,128].
Increased neutrophils have also been observed less commonly [116]. Cerebrospinal fluid
(CSF) of WNV-infected humans and horses usually yields a mononuclear pleocytosis with
increased protein concentrations [138,156,168,169]. However, in some human patients,
a neutrophilic pleocytosis has been noted in the CSF when obtained early in the course
of the disease process [167]. Cerebrospinal fluid of equine patients is similar to humans,
with most infected animals exhibiting mononuclear pleocytosis that is lymphocytic and
occasionally neutrophilic [138,169].

5.2. Pathology
5.2.1. Gross Pathology

Descriptions of gross and histopathological lesions in humans as well as horses
are usually confined to case reports or limited case series (recently reviewed in Byas
2022) [6,116,133,134,140,170–176]. Gross pathology is limited to post-mortem examinations
of horses infected naturally with WNV. When obvious, lesions in the CNS may include
mild to moderate meningeal hyperemia, subdural exudates with fibrin tags, and focal
areas of hemorrhage visible on cut sections of the brainstem and spinal cord [116,170,171].
When WNV neuroinvasive disease is suspected in the horse, only examination of the CNS
may be performed for safety reasons, which limits our knowledge of WNV pathology
in other organs [116,128]. Pulmonary congestion and edema were reported along with
hemorrhages in the tissues of the heart of one horse during the 2000 WNV outbreak in
Israel [170]. Gross pulmonary lesions have also been described in horses during previous
outbreaks in Morocco and Italy [170,173].

5.2.2. Microscopic Pathology

The histopathological findings of WNV neuroinvasive disease are similar in humans
and horses, consisting of moderate to severe non-suppurative polioencephalomyelitis in
the brain and spinal cord [6,174]. Inflammatory lesions tend to be more severe in aged or
immunocompromised humans. In humans, the histopathology is nonspecific and includes
perivascular lymphocytic infiltrations, microgliosis, microglial nodules of lymphocytes
and histiocytes, and neuronal destruction [151,167,176–181]. Limited involvement of the
cerebrum is common, although if present, it is usually concentrated in gray matter in both
humans and horses [127,151,167,172,176–181]. In humans, the most common and severe
lesions are in the thalamus, basal ganglia, pons, and medulla oblongata (Figure 2) [145].
Horses have similar changes, with inflammatory cells found most commonly in the thala-
mus, basal ganglia, midbrain, and hindbrain [128,133,134,140,171,172]. When noted, gliosis
and glial nodule formation occur with neuronal degeneration and limited necrosis, except
in severe cases (Figure 3a). Spinal cord lesions localize to the ventral and lateral horns in
horses and the anterior horns in humans. In some horses, lesions may be found only in
spinal tissues [128,171].
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case in a horse showing a single neuron laden with WNV antigen. This was the only stained struc-
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Figure 2. Side-by-side comparison of neuroanatomical localization of West Nile virus in the brain of
humans (left) and horses (right). Red virions represent where the highest levels of virus are typically
found, with yellow representing where the lower levels are found (cerebrum and cerebellum). Created
with BioRender.com (accessed on 14 April 2023).
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Figure 3. Histopathology of West Nile virus infection in the brain of humans and horses. (a) Hema-
toxylin and eosin-stained section of human brain from a fatal case of WNV demonstrating severe
neuronal necrosis and dead neurons, with infiltrating glial cells and leukocytes. (b) Immunohisto-
chemistry performed on human central nervous tissue showing WNV antigen (red) in the cytoplasm
of neurons and cell processes. (c) Immunohistochemistry performed on the brain of a fatal WNV case
in a horse showing a single neuron laden with WNV antigen. This was the only stained structure
in the cortex of this horse. (d) Section of brain from an experimentally infected horse stained with
antibody to the glial fibrillary acid protein showing tangles of astrocyte process within glial nodules
and associated with perivascular cuffs. (Photos 3a and 3b provided courtesy of Wun-Ju Shieh). Figure
created in Biorender.com (accessed on 14 April 2023).

In addition to viral culture, detection of WNV antigen and nucleic acids in the brain
of humans and horses is required for a confirmatory diagnosis of disease [182–185]. The
most common diagnostic methods consist of immunohistochemistry (IHC) and RT-qPCR.
West Nile virus is highest in areas with pathology in the thalamus, basal ganglia, midbrain,
and hindbrain (pons and medulla), and IHC staining demonstrates virus-laden neurons
within and around lesions (Figure 3b). If IHC is performed in areas of the brain where
the pathology is mild to moderate, this procedure is less sensitive than RT-qPCR [186,187].
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Limited quantities of virus are typically found in the cerebrum of infected humans and
horses (Figures 2 and 3c). Examination of tissues for WNV in the spinal cord should include
those segments that reflect neuroanatomical localization of clinical symptoms. The virus is
commonly found in the anterior horn of humans and the ventral and lateral horns of horses.
Molecular techniques are more sensitive but can also result in false negative testing. While
WNV can be isolated from tissues, the need for enhanced laboratory biosafety precludes
extensive use of viral culture.

Immunophenotyping has been performed on the CNS lesions found in WNV-infected
humans and horses. In several human studies, the predominant cell type within severe lesions
consisted of CD8+ T cells and lower numbers of CD4+ T cells [151,174,176,177,179,181,187]. The
majority of B cells were confined to the perivascular cuffs [151,174,176,177,179,181,187]. Work
performed in experimentally and naturally infected horses demonstrated significant numbers
of Iba-1+ microglia, CD3+ T cells, and lesser numbers of MAC387+ macrophages [171,172,188].
The phenotype T cells within tissues of WNV-challenged horses were mixed, composed of
approximately equal numbers of CD4+ and CD8+ T lymphocytes. B cells were the least
abundant cell populations [188]. Expanded networks of prominent astrocyte cell processes were
observed when stained with antibody to the glial fibrillary acidic protein (Figure 3d) [188].

6. Diagnosis of WNV
6.1. Detection of WNV Antibody
6.1.1. Serosurveillance

Upon infection, horses and humans have a short window of minimally detectable
circulating virus; thus, serology is the cornerstone of surveillance, seroprevalence studies,
and ante-mortem diagnosis of WNV infection. Serosurveillance is usually performed with a
combination of screening tests. ELISA testing consists of in-house or commercially available
indirect IgG, IgM capture, and competitive inhibition (CI) formats [189–192]. The indirect
immunofluorescent antibody (IFA) test is used to screen for the closely related Usutu
virus [189,193]. This test has value in that it is rapid and less expensive than ELISA test kits;
however, the IFA has a higher percentage of false positives [189,193]. The hemagglutination
inhibition (HI) test is rarely used and has decreased sensitivity compared to both IgG
and IgM ELISA testing in horses [194,195]. In a side-by-side comparison of the HI test
to ELISA and PRNT, the endpoint titers failed to differentiate JEV from WNV [194]. All
closely related flaviviruses cross-react irrespective of testing format. In regions where
multiple flaviviruses circulate, endpoint testing using a neutralization test is required for
accurate surveillance [196].

Arbovirus response plans usually rely upon the reporting of positive horses based
on serology and/or postmortem findings in horses to identify increased WNV activity.
However, the results of laboratory testing are often delayed by days or even weeks. In
studies where both humans and horses are simultaneously tested, horses generally have a
higher seroprevalence [193,197–202], and mapping of WNV antibodies in non-vaccinated
populations of horses is predictive of past or recent WNV activity [193,203,204]. The overall
usefulness of laboratory-confirmed neuroinvasive horse cases for the prediction of WNV
cases in humans is equivocal. In one study, the human disease itself was predictive for
equine cases during one season [205]. In another, when horses and human cases were
identified in spatial clusters, human cases were not preceded by positive horses [206]. In
the United States, the annual case count in horses has even less predictive power due
to the widespread use of vaccines. The annual number of reported equine WNV cases
has been lower in horses than in humans since 2005. After the release of equine WNV
vaccines, WNV infections in horses have dropped to under 500–600 reported cases since
2006 (Figure 4). Since 2005, 20,735 human WNND cases have been reported compared to
6,234 equine WNND cases.
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6.1.2. Serodiagnosis of Clinical Disease

Detection of IgM antibodies in the blood and CSF is used for the diagnosis of acute
WNV infections in humans [189,207]. In human blood donor studies, the median time
from the detection of WNV to seroconversion was 3.9 days [105,167]. While most IgM
levels drop within weeks, IgM following WNV infection can persist for months or years
in humans. [208,209]. The IgM response in the horse is of shorter duration and generally
undetectable at the cut-off dilution of 1:400 by 4–6 weeks after exposure [210–212]. Both in-
house and commercially available equine IgM capture ELISA formats have high sensitivity
and specificity (>88–90%) for a diagnosis of WNV in horses [210,213]. The widespread
use of currently available equine WNV vaccines confounds the interpretation of serologic
diagnostic tests in the symptomatic horse. Two studies showed no detection of IgM
antibody at 1:400 when animals were tested on a weekly basis [210,214]. However, IgM
was detected in 13/66 horses post-vaccination in another study [195]. Thus, vaccination
history is essential for the interpretation of IgM results in the vaccinated horse. Vaccination
with currently inactivated products theoretically does not result in the production of IgM
in the CNS due to the blood-brain barrier, and the presence of IgM in the CSF likely
indicates neuroinvasive infection due to intrathecal production of antibody [167]. Serum
IgM cross-reactivity, as well as serum neutralizing antibody, is common in regions with
circulating St. Louis encephalitis virus, yellow fever virus, Zika virus (ZIKV), Dengue virus
(DENV), Usutu virus, and JEV [194,207]. Usutu virus and tick-borne encephalitis virus are
neuroinvasive flaviviruses that confound the interpretation of testing in both horses and
humans in Europe [207] and Africa [215]. Japanese encephalitis virus confounds test results

https://www.cdc.gov/westnile/statsmaps/index.html
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/2021-wnv-report-summary.pdf
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/2021-wnv-report-summary.pdf
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in the east and near-east [194]. Neutralization testing with the comparison of endpoint
titers for endemic flaviviruses remains the gold standard for the differentiation of closely
related flaviviruses [203].

Neutralizing antibodies to WNV are usually present by the second week of clinical
signs and continue to rise over the next several weeks. A four-fold change in neutralizing
antibody titers in serum samples obtained 2–4 weeks apart is confirmatory for recent
exposure in humans and the nonvaccinated horse [195,211,216]. Vaccination of horses
induces the formation of neutralizing antibodies to the E protein of the virus. Knowledge of
vaccine history and testing of serial serum samples side-by-side for comparison of endpoint
antibody titers is recommended for proper interpretation of WNV-neutralizing antibody
test results in the horse.

6.2. Other Diagnostic Modalities

Initial clinical workup in humans may include electrodiagnostics and diagnostic
imaging. Cranial magnetic resonance imaging (MRI) is more reliable than computed
tomography (CT) in determining the presence of CNS inflammation, although both have
low specificity for the diagnosis of WNV infection [217–221]. MRI and CT are not used as
standard diagnostic procedures for the diagnosis of WNV in horses; however, these are used
as ancillary diagnostics to rule out other intracranial diseases and limb and spinal disorders
in the horse [222]. Similarly, MRI has been used as part of the diagnostic workup for Eastern
equine encephalitis in a dog [223]. Electrodiagnostics did enhance our understanding of
WNV by demonstrating interruption of the motor pathways consistent with lower motor
neuron disease in human AFP [221].

7. Vaccines and Therapeutics against WNV
7.1. Vaccines

At present, no WNV vaccine is approved for use in humans, but clinical phase trials
have been approved for three vaccines. Two of the vaccines are flavivirus chimeras, in
which the prM-E proteins are expressed in either the yellow fever 17D vaccine modified-live
virus or DENV, the former being one of the earliest to reach the trial stage. The chimera
vaccines stimulate antibody development after one dose. The third vaccine construct
is a DNA vaccine that expresses the prM-E proteins, and three doses are required for
the development of comparable antibody levels [224]. The 17D chimeric vaccine virus
replicates without causing neuropathology, and a version of this vaccine was investi-
gated for safety, immunogenicity, and duration of immunity in horses. Although not
available, this vaccine was originally marketed as a single-dose injection which provided
94% protection against grave neurological disease. An inactivated version of this vaccine
is currently marketed for use in horses and is labeled to “aid in the reduction in disease,
encephalitis, and viremia.” Two other equine vaccine formulations are presently marketed,
consisting of two inactivated whole virus vaccines and a recombinant canarypox vectored
vaccine [108–112]. One killed vaccine is labeled to “aid in the prevention of encephalitis
and viremia.” The other killed vaccine is labeled to “aid in the prevention of West Nile
virus.” The canarypox vaccine is labeled to “aid in the prevention of disease, viremia, and
encephalitis.” The difference in labeling reflects the challenge model used to test the im-
munogenicity of each vaccine. Early models utilized mosquito or needle challenge, where
most unvaccinated horses develop viremia but limited neurological symptoms [108,224].
Later, vaccine candidates were tested using an intrathecal challenge by injection of the
atlanto-occipital space [109–111]. In this model, 90–100% of unvaccinated horses developed
grave signs of encephalitis. The duration of immunity in vaccinated horses beyond one-year
post-immunization is unknown. In one field study, not all horses maintained antibodies
for up to one year after the initial primary immunization [195]. In this same study, all
horses that had been vaccinated for two consecutive years had neutralizing antibodies for
a full year [195].
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Vaccines in development for horses include a recombinant vaccine that targets the
WNV-EIII domain. In one study, this vaccine demonstrated immunogenicity when com-
bined with an equine CD40 ligand (CD40L) [225]. Another promising equine vaccine
candidate under development utilizes an avian paramyxovirus 2 (APMV-2)-vectored WNV
construct [226]. Experimentally, this vaccine elicited humoral immune responses in horses
as well as birds, thus potentially laying the foundation for a multispecies vaccine platform
that could be deployable during epizootics.

7.2. Therapeutics

Multiple therapeutics are under development against flaviviruses, including mon-
oclonal antibodies (mAb), peptides, and antivirals [227,228]. Most of the antibody ther-
apeutics in development are for the treatment of ZIKV. Regarding WNV, a combination
of 10 mAbs (WNV-86) under investigation results in 50% neutralization of WNV in vitro.
Tat-beclin-1 is a peptide containing the HIV-1 Tat protein, which induces autophagy [228].
Endogenous Tat has antiviral activity, and investigation using this synthetic peptide demon-
strated up to a 50-fold reduction in WNV titers in cells. In vivo, this peptide experimentally
decreases WNV in the brains of infected mice [228].

8. Conclusions

Humans and horses are susceptible to grave neuroinvasive disease with shared clini-
cal symptoms, WNV virus dynamics, antibody responses, and clinicopathology [7]. Both
species undergo cyclic outbreaks of febrile neurological disease that overlap temporospa-
tially. These similarities can be exploited to leverage and improve surveillance for the
detection of WNV outbreaks. The performance of syndromic surveillance defined only by
the occurrence of CNS disease in horses and mortality events in birds demonstrated an
area under the curve (AUC) of 0.87 for the WNV outbreak detection [11,12]. Exploiting the
similarities in neuroinvasive symptoms in humans and horses can enhance the specificity
of syndromic surveillance strategies [11,13]. Further harmonization of ancillary testing
methods across regions and countries will also result in more accurate and timely detection
of WNV outbreaks.
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