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Abstract: In this study, we discovered a new virus named Quanzhou mulberry virus (QMV), which
was identified from the leaves of an ancient mulberry tree. This tree is over 1300 years old and
is located at Fujian Kaiyuan Temple, a renowned cultural heritage site in China. We obtained the
complete genome sequence of QMV using RNA sequencing followed by rapid amplification of
complementary DNA ends (RACE). The QMV genome is 9256 nucleotides (nt) long and encodes
five open reading frames (ORFs). Its virion was made of icosahedral particles. Phylogenetic analysis
suggests that it belongs to the unclassified Riboviria. An infectious clone for QMV was generated
and agroinfiltrated into Nicotiana benthamiana and mulberry, resulting in no visible disease symptoms.
However, systemic movement of the virus was only observed in mulberry seedlings, suggesting that it
has a host-specific pattern of movement. Our findings provide a valuable reference for further studies
on QMV and related viruses, contributing to the understanding of viral evolution and biodiversity
in mulberry.

Keywords: Morus alba; Quanzhou mulberry virus; transcriptome sequencing; unclassified Riboviria;
virus infection

1. Introduction

Mulberry (Morus alba) is a deciduous tree belonging to the genus Morus in the fam-
ily Moraceae and has been cultivated in China for centuries due to its economic signif-
icance [1]. Its leaves serve as food for silkworms [2], and its fruits can be consumed
directly or processed into jam, juice, and desserts [3–6]. However, mulberry viruses that
impact the yield and quality of both mulberry leaves and fruits have been discovered
and reported in recent years. Mulberry crinkle leaf virus (MCLV) [7], mulberry mo-
saic dwarf-associated virus (MMDaV) [8], mulberry cryptic virus 1 (MuCV1) [9], and
citrus leaf blotch virus-ML (CLBV-ML) [10] all cause mosaic symptoms in mulberry trees.
Mulberry badnavirus 1 (MBV1) [11] affects both leaf and fruit development. In contrast,
there are also some viruses present in mulberry trees that do not cause significant damage
due to their low pathogenic ability and low accumulation, such as Citrus leaf blotch virus
isolate mulberry alba 2 (CLBV-ML2) and Mulberry-associated virga-like virus (MaVLV) [12].
It is still essential to identify and characterize these viruses to better understand their po-
tential impact on the crop.

Compared to highly pathogenic viruses that cause noticeable symptoms, there has
been relatively less research on plant viruses with low pathogenicity and subtle symptoms.
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However, studying these types of viruses is meaningful and has practical applications. For
example, viral cross-protection has been used to protect crops such as tomatoes, cucum-
bers, and potatoes from severe strains of viruses through pre-immunization using mild
strains of viruses [13–17]. Furthermore, citrus leaf blotch virus-based vectors have been
successfully used to express foreign genes in citrus without the need for transformation
and regeneration techniques required to obtain transgenic plants [18]. Such viruses should
cause symptomless infections to ensure that phenotype changes due to endogenous gene
silencing or foreign gene expression are not masked by virus symptoms.

Recently, several symptomless viruses have been reported in various crops, includ-
ing Blueberry latent virus (BBLV) in blueberry (Vaccinium corymbosum) [19], Persimmon
cryptic virus (PeCV) in Japanese persimmon (Diospyros kaki) [20], and Arhar cryptic virus-1
(ArCV-1) extracted from asymptomatic pigeonpea plants (Cajanus cajan) [21]. In the case of
mulberry trees, their unique features make them valuable for identifying and characterizing
new viruses, and old mulberry trees are particularly significant for this purpose due to
their longevity. In our previous studies, transcriptome sequencing technology was uti-
lized to identify three viruses from eight old mulberry trees [12]. Therefore, we employed
the same technology to analyze a sample collected from an ancient mulberry tree over
1300 years old located at Fujian Kaiyuan Temple in Quanzhou, Fujian Province. A novel
virus has been discovered with no homology to any known virus. Further investigation
suggested that the virus can infect both N. benthamiana and mulberry, but systemic move-
ment was only observed in mulberry seedlings. This host-specific movement feature of
QMV suggests that it may have evolved to specifically infect and move within mulberry
plants, making it a potential candidate for targeted delivery of transgenes or for use as a
biological control agent against mulberry pests or diseases. In addition, further research is
needed to explore the molecular mechanisms behind QMV’s host-specific movement and
to investigate its potential as a tool for genetic modification and disease management in the
mulberry industry.

2. Materials and Methods
2.1. Plant Material

The present study examined mulberry leaves that were collected from Fujian Kaiyuan
temple, Quanzhou, Fujian Province, China (118◦58′ N, 24◦90′ E), which were asymptomatic
at the time of collection. Following their removal, the leaves were immediately placed in
liquid nitrogen for rapid freezing and then stored at −80 ◦C until further analysis.

2.2. RNA Extraction and Sequence Analyses

The sample underwent transcriptome sequencing and analysis at Majorbio Corpo-
ration (located in Shanghai, China). A standard non-strand-specific cDNA library was
prepared, followed, and subjected to RNA sequencing (paired-end, 150 bp) on an Illumina
HiSeq 2500 platform (Illumina, San Diego, CA, USA). Raw data trimming and contig assem-
bly were conducted using Trimmomatic (Version 3.90) [22] and Trinity (Version 2.8.5) [23]
with default parameters. The assembled contigs were subjected to a Blastx search using
the BLAST suite web tool to identify viral proteins [24]. The viral open reading frames
(ORFs) were predicted using the ORF-finder web tool (https://www.ncbi.nlm.nih.gov/
orffinder/, accessed on 10 January 2023), and conserved domains were searched using
the CDD/SPARCLE web tool (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/,
accessed on 10 January 2023) provided by NCBI (Bethesda, MD, USA) [25].

2.3. Full-Length Genome Amplification, Sequencing

Total RNA was extracted from leaf tissues using the MiniBEST Universal RNA Ex-
traction Kit (purchased from Takara, Beijing, China), and the complete genome of QMV
was obtained through rapid amplification of cDNA ends (RACE) technology using the
SMARTer® RACE 5′/3′ kit (purchased from Takara, Beijing, China).

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/
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The kit-specific primers were used to synthesize cDNAs for amplification of the 5′ and
3′ end sequences. Amplification was performed using Hieff Canace® Plus High-Fidelity
DNA Polymerase (purchased from Yeasen, Shanghai, China), along with a universal primer
mix (UPM, CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT) and
gene-specific primers (GSP, QMV-5UTR-R: GATTACGCCAAGCTTGAGATATTTTGCG-
GTGATACG; QMV-5UTR-R1: CCCGTTCTCCCACTCTTTGTCCTGCTTC; QMV-3UTR-
F: GATTACGCCAAGCTTGACAGTCTACCACTACTCAATC; QMV-3UTR-F1:
GAGCCAGGAATCGGTTTTTACCGGGGGT) for the unknown 5′ and 3′-terminal se-
quences. The purified 5′ and 3′-terminal products were concatenated with a pESI-T vector
(purchased from Yeasen, Shanghai, China), followed by transformation into DH5α compe-
tent cells. Positive clones were identified via colony PCR using detection primers (M13-F:
CAGGGTTTTCCCAGTCACG; M13-R: GAGCGGATAACAATTTCACAC) and sequenced
at Youkang Corporation (located in Hangzhou, China). Finally, the full-length genome
sequence was assembled using DNAMAN software (version 9.0).

2.4. Phylogenetic Analyses

In this study, we performed phylogenetic analysis using the ORF1 and ORF2 amino
acid sequences from the QMV full-length genomic sequence (File S1). These sequences,
which were used for phylogenetic trees, were downloaded from the NCBI website and
compared with QMV ORF1 and ORF2 sequences by ClustalW (Clustal W 1.81, Dublin,
Ireland) [26]. Conservative regions of the sequences were selected and cut using Gblock
(G-Block, Wallonia, Belgium) and trimAI software (trimAI v1.2, Barcelona, Spain). The
optimum model for phylogenetic tree building was selected by ModelFinder software
(implemented in IQ-TREE version 1.6.12). Finally, the maximum likelihood (ML) algorithm
with PMB and JTTDCMut substitution models were used to construct phylogenetic trees in
IQ-TREE (version 1.6.12) with 1000 bootstrap replications [27].

2.5. Construction of a QMV Infectious Clone and Agroinfiltration

To construct a QMV infectious clone, two primer pairs (pCB301-QMV-F1: CAGGTC-
GACTCTAGAGGATCACATGGGTTTACCAATACATTATC; pCB301-QMV-R1: CGTCGAT-
GAAAAGAGTCTGACAAGATGGAGCACC; pCB301-QMV-F2: TCAGACTCTTTTCATC-
GACGAGTGTCTTATGTAT; pCB301-QMV-R2: TGAACGATCGGGGAAATTCGCCAAT-
GCATAACTAAACGGAAGGAAG) with homology arms were designed using the Takara
primer design website (https://www.takarabio.com/learning-centers/cloning/primer-
design-and-other-tools/, accessed on 15 February 2023). Two fragments covering the
full-length genomic RNA of QMV were amplified and inserted into the pCB301 vector
(gifted from Prof. Zongtao Sun, School of Marine Sciences, NingBo University) using the
seamless cloning technique.

Total RNA was extracted from leaf tissues using the MiniBEST Universal RNA Ex-
traction Kit (purchased from Takara, Beijing, China) and reverse transcribed into cDNA
using Hifair® III 1st Strand cDNA Synthesis Kit (purchased from Yeasen, Shanghai, China).
PCR amplifications were performed with Hieff Canace® Plus High-Fidelity DNA Poly-
merase (purchased from Yeasen, Shanghai, China) using a reaction mixture containing
25 µL 2×Canace® Plus PCR buffer, 1 µL cDNA, 2 µL forward/reverse primer (10 µM),
1 µL Hieff Canace® Plus High-Fidelity DNA Polymerase (1 U/µL), and 19 µL distilled
water. The PCR amplification procedure was as follows: (1) 3 min denaturation at 98 ◦C;
(2) 30 cycles, each consisting of 10 s at 98 ◦C, 20 s at 65 ◦C, and 2.5 min at 72 ◦C; and
(3) 5 min final extension at 72 ◦C. The purified PCR fragments and linearized pCB301
vector were mixed in proportion with 2×MultiF Seamless Assembly Mix (purchased from
ABclonal, Wuhan, China), incubated at 50 ◦C for at least 30 min, and transformed into
DH5α competent cells. Positive clones were screened by colony PCR using specific pCB301
vector detection primers (pCB301-det-F: CCTTCGCAAGACCCTTCCTCTA; pCB301-det-R:
GACCGGCAACAGGATTCAATC) and sequenced commercially.

https://www.takarabio.com/learning-centers/cloning/primer-design-and-other-tools/
https://www.takarabio.com/learning-centers/cloning/primer-design-and-other-tools/
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The pCB301-QMV plasmid was introduced into Agrobacterium tumefaciens strain
GV3101 for agroinfiltration. The transformed agrobacteria were infiltrated into the abaxial
surface of Nicotiana benthamiana seedling leaves and the cotyledon of mulberry leaves. For
N. benthamiana, inoculated leaves were collected at 3 days post-infection (dpi), and systemic
leaves (the second and third leaves at the top of inoculated leaves) were collected at 10 dpi.
Cotyledon and true leaves were collected from mulberry seedlings at 10 and 20 dpi. The
virus accumulation was detected by RT-PCR using QMV-RdRP primers (QMV-RdRP-F:
CAAAGTTGAAAAGTACTCAGATGAAG; QMV-RdRP-R: TCCCTTGACCTTGATTTCG-
GAAC), and the reaction procedure was as follows: (1) 94 ◦C for 3 min; (2) 30 cycles, each
consisting of 94 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 1 min; and (3) 72 ◦C for 5 min. The
PCR products were analyzed by electrophoresis on a 1.2% (w/v) agarose gel with nucleic
acid dye (purchased from Takara, Beijing, China), and the visualization of DNA molecules
was obtained using a BIO-RAD instrument (ChemiDoc XRS+, Bio-Rad, Hercules, CA, USA).

2.6. Electron Microscopy

The N. benthamiana and mulberry leaves were infected by QMV at 3 and 10 dpi. The
infected leaf samples were cut into small pieces measuring 1 × 3 mm and fixed with 2.5%
(v/v) glutaraldehyde and 2% (v/v) osmic acid, respectively. After each incubation for 2 h
at room temperature, samples were washed three times with 0.1 M phosphate-buffered
(PB) buffer.

After fixation, the plant samples were dehydrated in ethanol at 50%, 70%, 80%, 90%,
and 95% (v/v) for 15 min. Then, samples were dehydrated with 100% (v/v) ethanol twice for
20 min, and with 100% (v/v) acetone all night.

The dehydrated samples were immersed in a mixture of spurr and acetone in the ratio
of 1:1 (v/v), a mixture of spurr and acetone in the ratio of 3:1 (v/v) for 3 h, and in 100% spurr
embedding agent all night. The sections to be cut were placed at the bottom of the tube
and then polymerized at 70 ◦C for 24 h. Thin sections were subsequently cut and observed
under a transmission electron microscope (8100, ZEISS, Shanghai, China) [28].

3. Results
3.1. Discovery of Viruses, Full-Length Genome Amplification, and Sequencing Results

We conducted a virome analysis by analyzing the transcriptome sequencing data from
old mulberry leaves collected in the Kaiyuan Temple district of Quanzhou, Fujian Province
(118◦58′ N, 24◦90′ E). Through this analysis, we discovered a new virus that infects mulberry
trees, which we named Quanzhou mulberry virus (QMV), a potentially unclassified virus.
To obtain the complete genome sequence of QMV, we utilized the RACE method. The 5′ and
3′-terminal PCR products were analyzed by electrophoresis on an agarose gel with nucleic
acid dye. The visualization of DNA molecules is obtained using a BIO-RAD instrument
(Figure 1A,B) and subsequently cloned into the pESI-T vector. We confirmed positive clones
via colony PCR analysis (Figure 1C) and commercially sequenced them.

The QMV genome consists of 9256 nucleotides (nt) and includes five putative open
reading frames (ORFs). ORF1, located at positions 3–1377 nt in the full-length genome, is
predicted to encode a viral methyltransferase (Met, pfam01660, nt 375–1340, 322 aa) with
a molecular weight of approximately 35.4 kDa. A blastx search of this sequence revealed
the first three results to be 92% coverage and 29.93% sequence identity for Tohsystermes
virus (QQM16332, unclassified Riboviria), 86% coverage and 31.99% sequence identity for
Solenopsis invicata virus 17 (QRK69406, unclassified Iflaviridae), and 96% coverage and
29.31% sequence identity for Wuhan insect virus 8 (YP_009344994, unclassified Riboviria)
(Tables 1 and S1).
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Figure 1. The result of RACE and the QMV gene structure. (A) The 5′-terminal PCR product of
QMV. (B) The 3′-terminal PCR product of QMV. (C) The positive clone of pESI-T-QMV-5′UTR and
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(Hel, pfam01443), RNA-dependent RNA polymerase_2 (RdRP, pfam00978), and SP24 (pfam16504).
An: poly A tail.

Table 1. The summarized BLAST results of QMV ORF.

Blastx Results Coverage Identity Taxonomy

QMV ORF1 Tohsystermes virus 92% 29.93% unclassified Riboviria
Solenopsis invicta virus 17 86% 31.99% unclassified Iflaviridae

Wuhan insect virus 8 96% 29.31% unclassified Riboviria

QMV ORF2 Fasciogiga virus 47% 31.31% unclassified Riboviria
Beihai barnacle virus 2 46% 32.06% unclassified Riboviria

Cordoba virus 48% 30.16% unclassified viruses

QMV ORF3 NS

QMV ORF4 NS

QMV ORF5 NS

ORF2, located at position 1288–6993 nt in the full-length genome, is predicted to encode
a viral RNA helicase (Hel, pfam01443, nt 4336–5106, 257 aa) and an RNA-dependent RNA
polymerase 2 domain (RdRP_2, pfam00978, nt 5641–6939, 433 aa). The first three results
from a blastx search were the following: 47% coverage and 31.31% sequence identity for Fas-
ciogiga virus (DAZ87875, unclassified Riboviria), 46% coverage and 32.06% sequence iden-
tity for Beihai barnacle virus 2 (YP_009333216, unclassified Riboviria), and 48% coverage
and 30.16% sequence identity for Cordoba virus (AQM55308, unclassified viruses)
(Tables 1 and S2).

The GenBank accession numbers used are as follows: Tohsystermes virus, QQM16332;
Solenopsis invicta virus 17, QRK69406; Wuhan insect virus 8, YP_009344994; Fasciogiga
virus, DAZ87875; Beihai barnacle virus 2, YP_009333216; and Cordoba virus, AQM55308.
NS means no significant similarity sequences were found in the nr database.



Viruses 2023, 15, 1131 6 of 12

ORF3 and ORF4 are located at positions 7015–8115 nt and 8113–8480 nt in the genome,
respectively. The protein they encode is unknown. ORF5 is located at positions 8706–9104
nt in the genome and is predicted to encode a 133 aa SP24 protein (Figure 1). However,
a Blastx search of the ORF3, ORF4, and ORF5 sequences did not yield any significant
similarity with known proteins in the non-redundant (nr) database.

3.2. Phylogenetic Placement of QMV

After conducting a blastx search on the full-length genomic sequence of QMV, it was
found that 33.93% of the sequence showed similarity to unclassified viruses and 32.04%
similarity to unclassified Riboviria. The first phylogenetic tree is based on the QMV ORF1
sequence and part of representative members, whose sequences were downloaded from
the blastx search results. The phylogenetic analysis shows that the virus ORF1 falls in the
clade with Daeseongdong virus 1 (YP_009182191, unclassified viruses) and Negevirus nona
1 (BAS69360, unclassified Riboviria, Figure 2).
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The second phylogenetic tree is based on the QMV ORF2 sequence and is partially rep-
resentative of members downloaded from blastx search results containing RNA-dependent
RNA polymerase. The phylogenetic analysis shows that the virus ORF2 is closely related
to Varroa jacobsoni virus 4 (QKW94174, unclassified Riboviria), Megastigmus ssRNA
virus (QDZ71189, unclassified Riboviria), and Hibiscus green spot virus 2 (YP_004928118,
Higrevirus) (Figure 3).

Additionally, when performing a blastx search on the ORF3, ORF4, and ORF5 se-
quences, no significant similarity with known proteins in the nr databases was found.
Based on these findings, it can be concluded that QMV should be classified as a member of
the unclassified Riboviria.
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3.3. QMV Infectious Clone Construction and Infectivity in Nicotiana benthamiana

To evaluate the infectivity of QMV, two fragments covering the QMV sequence were
amplified and cloned into the pCB301 vector. The resulting PCR products were analyzed
by electrophoresis on a 1.5% (w/v) agarose gel with nucleic acid dye (Figure 4A), and the
purified fragments were seamlessly cloned into the linearized pCB301 vector. Positive
clones were screened by colony PCR (Figure 4B) and subsequently sequenced to confirm
their identity.

The recombinant agrobacteria were then infiltrated into the abaxial surface of
N. benthamiana. As a result, asymptomatic infections were observed on both inoculated
leaves and systematic leaves (Figure 4C). Electron micrographs revealed the presence of
regular icosahedral QMV virions distributed in the cytoplasm of the inoculated leaves
(Figure 4D). RT-PCRs were performed using QMV RdRP-specific primers for the inoculated
leaves at three days and systematic leaves at ten days. The virus was detected in the
inoculated leaves but not in the systemic leaves (Figure 4E,F).

3.4. QMV Infectivity in Mulberry

The inability of QMV motion from infected leaves to systemic leaves in N. benthamiana
is probably because it was not its natural host. Therefore, agrobacteria carrying the QMV
infectious clone were infiltrated into the abaxial surface of mulberry cotyledons. No
symptoms were observed on either the cotyledons or true leaves of infected mulberry
seedlings (Figure 5A). Electron micrographs revealed the presence of regular icosahedral
virions in the leaves of mulberry seedlings (Figure 5B). To confirm the presence of the
virus, RT-PCR was performed using QMV RdRP-specific primers on both cotyledons at
ten days and true leaves at twenty days after infiltration. The results show that the virus
was detected in both the cotyledons and true leaves (Figure 5C,D), suggesting that QMV
can achieve systemic infection in mulberry. This finding indicates that QMV may have a
species-specific host range.
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Figure 4. QMV infectious clone construction and typical signs of Quanzhou mulberry virus (QMV)
infected N. benthamiana, virion observation, and virus detection. (A) Two fragments PCR products
from QMV full-length genomic RNA. (B) The positive clone for pCB301-QMV. The red box is the
destination strip. (C) Symptoms of QMV infection in N. benthamiana. (D) Electron micrographs of
virions in QMV-infected N. benthamiana leaves. I panels are the enlarged images of the red boxed
areas I in the above panels. Red arrows indicate a QMV virion in the cytoplasm of N. banthamiana.
(E) QMV RdRP detection for inoculated leaves from N. benthamiana. (F) QMV RdRP detection by
RT-PCR in the apical leaves of N. benthamiana.
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(A) Symptoms of virus infection at different times for mulberry. (B) Electron micrographs of virions
in QMV-infected cotyledons of mulberry. Panels II are the enlarged images of the red boxed areas II
in the above panels. Red arrows indicate a QMV virion. (C) QMV RdRP detection for cotyledon from
mulberry. (D) QMV RdRP detection for true leaves from mulberry.

4. Discussion

This study presents the identification and characterization of a new virus, Quanzhou
mulberry virus (QMV), using transcriptome sequencing of mulberry leaves collected in
Kaiyuan Temple, Quanzhou, Fujian Province, China. Phylogenetic analysis revealed QMV
as an unclassified Riboviria. The complete QMV genome was successfully amplified, and
an infectious clone was generated. Agroinoculation assays were used to investigate QMV
infectivity in N. benthamiana and mulberry seedlings, with asymptomatic infections in both
plants. The results of RT-PCR detection found that QMV virus was accumulated in the
inoculated leaves of both N. benthamiana and mulberry, but only in the apical leaves of
mulberry. This suggests that QMV may have a species-specific host range. Our findings
provide valuable insights into the pathogenesis and host tropism of QMV.
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Based on QMV biological properties, developing a QMV vector for expressing foreign
genes in mulberry appears feasible. In recent years, several virus vectors have demonstrated
successful use in expressing foreign genes for controlling and researching gene function
in fruit trees. Previous studies on virus vectors have shown their ability to effectively
express foreign proteins. For instance, since citrus leaf blotch virus (CLBV) infections are
symptomless in most citrus species, CLBV-based vectors were successfully used to analyze
citrus gene function by silencing or overexpressing these genes in citrus trees [18,29,30].
CLBV-based vectors were also used to express the Arabidopsis thaliana or citrus Flowering
Locus T (FT) genes in citrus, and as a result, the juvenile period of citrus trees has been
reduced from 6 years to 4–6 months. More importantly, flowering was observed for a
minimum of 5 years, indicating that these vectors are highly stable [18,29,30]. Similarly, the
apple latent spherical virus (ALSV), a common virus infecting apple, pear, and cherry trees
without showing obvious symptoms, has emerged as a potential vector for expressing or
silencing foreign sequences in apple and pear trees, and the phenotypes could continue
for at least several months [31,32]. The potential of QMV as a vector for expressing foreign
genes in mulberry warrants further investigation, as it could have important implications
for mulberry research and production.

Previous studies have proposed that weakened strains of plant viruses can be uti-
lized in viral biocontrol techniques to protect plants from more severe strains of the same
species [33]. The application of Oryctes virus into areas experiencing an outbreak of
rhinoceros beetle (Oryctes rhinoceros, Coleoptera: Scarabaeidae) has been a successful exam-
ple of classical biocontrol with a virus, resulting in a significant reduction in palm damage
in numerous regions throughout the Asia/Pacific area [34]. Similarly, the mild mutant
of type P Hawaii severe strain (PRSV P-HA), Papaya ringspot virus (PRSV) HA5-1, has
been extensively used to control PRSV type P strains in papaya [35]. Given the infectivity
and pathogenicity of QMV, it is possible that this virus could be utilized as a biological
control agent. However, further research is required to determine whether QMV could be
employed as a biocontrol agent for mulberry or other plant species.

Transcriptome sequencing and infectious clone technology have been valuable tools
for discovering and characterizing novel plant viruses. Further research into the ecology,
evolution, and molecular biology of plant viruses will be essential for understanding their
impact on plant health and global food security. The differing abilities of QMV to move
within mulberry and N. benthamiana plants suggest specific interactions between the virus
and its plant hosts, which could be further investigated for important insights into the
interactions between QMV and its plant hosts. Overall, this study expands our knowledge
of the diversity and evolution of plant viruses and provides valuable tools and insights for
future investigations into QMV and related viruses.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15051131/s1. There are three supplementary tables. Table S1: The
blastx result of the QMV ORF1 sequence; Table S2: The blastx result of the QMV ORF2 sequence;
File S1: The whole sequence of QMV.
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