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Abstract: Porcine deltacoronavirus (PDCoV) causes diarrhea and vomiting in neonatal piglets world-
wide and has the potential for cross-species transmission. Therefore, virus-like particles (VLPs) are
promising vaccine candidates because of their safety and strong immunogenicity. To the best of
our knowledge, the present study reported for the first time the generation of PDCoV VLPs using a
baculovirus expression vector system, and electron micrograph analyses revealed that PDCoV VLPs
appeared as spherical particles with a diameter similar to that of the native virions. Furthermore,
PDCoV VLPs effectively induced mice to produce PDCoV-specific IgG and neutralizing antibodies.
In addition, VLPs could stimulate mouse splenocytes to produce high levels of cytokines IL-4 and
IFN-γ. Moreover, the combination of PDCoV VLPs and Freund’s adjuvant could improve the level
of the immune response. Together, these data showed that PDCoV VLPs could effectively elicit
humoral and cellular immunity in mice, laying a solid foundation for developing VLP-based vaccines
to prevent PDCoV infections.

Keywords: porcine deltacoronavirus; virus-like particles; baculovirus; immune response; cytokine;
neutralizing antibodies

1. Introduction

Porcine deltacoronavirus (PDCoV), which belongs to the genus Deltacoronavirus in
the family Coronaviridae, is the causative agent of the contagious enteric swine disease [1].
The disease caused by PDCoV is characterized by severe diarrhea, variable vomiting, de-
hydration, and mortality in neonatal piglets [2]. Since its first report in Hong Kong in
2012, PDCoV has been identified in the United States, Canada, South Korea, mainland
China, Thailand, Vietnam, and Japan [3–7]. Hence, PDCoV has recently exhibited a global
distribution trend, resulting in substantial economic losses for the global swine industry.
Additionally, unlike other porcine enteric coronaviruses, such as porcine epidemic diar-
rhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea
syndrome coronavirus (SADS-CoV), PDCoV can infect multiple species, including pigs,
chickens, turkeys, mice, calves, and humans, which may pose a potential threat to hu-
man and animal health [8–10]. Therefore, it is urgently necessary to develop efficacious
preventive methods for preventing and controlling PDCoV.

Vaccine immunization remains the most effective means of disease control; however,
no licensed vaccines are currently available for PDCoV. Virus-like particles (VLPs) are
assembled from one or more viral structural proteins, and their morphologies and spatial
structure are similar to those of the native virions [11]. Because of the advantage of excellent
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immunogenicity, lack of possible infectivity, and good structural stability, VLPs have been
proven to be an effective and reliable platform for vaccine development [12]. To date,
several vaccines based on VLPs are commercially available, including human vaccines
against human papillomavirus [13], hepatitis B virus [14], and hepatitis E virus [15], as well
as veterinary vaccines against porcine circovirus type 2 [16]. These products have greatly
improved the development of VLP-based vaccines.

VLP-based vaccines for several coronaviruses, including Alphacoronavirus PEDV,
Betacoronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and
Gammacoronavirus avian infectious bronchitis virus (IBV), have been developed and evalu-
ated [17–19]. However, there are no reports of VLPs for PDCoV, another member of the
Coronaviridae family. Similar to other coronaviruses, the PDCoV genome encodes four
major structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N) pro-
teins [20]. According to studies on other coronaviruses, coronavirus VLPs generally consist
of the proteins of M + E or M + E + S [17–19,21]. Thus, we speculate that co-expression of
S, M, and E is sufficient for the formation of PDCoV VLPs. This study investigated the pro-
duction and characterization of PDCoV VLPs from recombinant insect cells co-expressing
PDCoV proteins (M, S, and E). The immunogenicity of VLPs was also evaluated in mice,
which suggests that the VLPs obtained in this study could be used for vaccine development
against PDCoV infection.

2. Materials and Methods
2.1. Bacterial Strains, Plasmids, Cells, and Viruses

E. coli SW106 AcMultiBac, which contains AcBacmid, pHelper, and pGB2Ωinv, was
constructed in a previous study [22]. pFBDM plasmid and the AcMultiBac system that
uses gentamicin resistance selection following Tn7 transposition were maintained in
our laboratory.

Spodoptera frugiperda 9 (Sf9) cells were cultured in Sf-900 III serum-free medium (SFM;
Thermo Fisher Scientific, Waltham, MA, USA) at 27 ◦C. Swine testis (ST) cells were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, Carlsbad, CA, USA),
supplemented with 10% fetal bovine serum (FBS; Biological Industries, Kibbutz, Israel) at
37 ◦C with 5% CO2. The PDCoV strain of HeN (GenBank accession number MN942260.1)
was kindly provided by Professor Enqi Du (Northwest A&F University, Shanxi, China).
Mouse anti-PDCoV polyclonal antibodies were prepared and stored in our laboratory.

2.2. Construction of the MSE Triple Expression Plasmid

To obtain a new triple expression plasmid, the p10 promoter and HSV TK polyadeny-
lation sequence were digested from the pFBDM plasmid by PmeI and SpeI restriction
enzymes and subcloned into another pFBDM plasmid at the BstZ17I and SpeI sites to
generate the pFBTM recombinant plasmid. First, the full-length S, M, and E genes from
PDCoV isolate with C-terminal 6 × His tag (for S), HA tag (for M), or Flag tag (for E) were
codon-optimized and synthesized (Genscript, Nanjing, China) for high-level expression in
Sf9 cells. Then, the codon-optimized S, M, and E genes were cloned into a single pFBTM
plasmid, each gene within its expression cassette. The S gene was inserted into the SmaI
and KpnI restriction sites under the control of the p10 promoter, the M gene was cloned into
the BamHI and SalI restriction sites under the control of the polyhedron (polh) promoter,
and the E gene was inserted into the XhoI and NheI restriction sites under the control of
the p10 promoter. Finally, DNA sequencing generated and verified the triple expression
plasmid named pFBTM-MSE (Tsingke, Beijing, China).

2.3. Generation of Recombinant Baculovirus

The recombinant plasmid pFBTM-MSE was transformed into E. coli SW106 AcMulti-
Bac for transposition into the genome of AcMultiBac, followed by the antibiotic selection
and blue-white selection. Afterward, the white E. coli colonies containing the recombi-
nant bacmid were identified through polymerase chain reaction (PCR) technology using
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primer pairs MF/MR, SF/SR, and EF/ER (Table 1). The resulting recombinant strain was
designated as rBacmid-MSE.

Table 1. Primer sequences used for PCR analysis.

Primers Sequence (5′-3′) PCR Product Size

MF ATGTCCGATGCTGAGGAGTGG 651 bp
MR CATGTACTTATACAGTCGAG
SF ATGCAACGAGCTTTGTTAAT 3477 bp
SR CCATTCTTTGAACTTAAAGGAC
EF ATGGTAGTCGACGACTGGGCC 249 bp
ER CACGTAATGCGTGTTCCTTG

Recombinant baculovirus was generated, as previously described [22]. Briefly, the
recombinant bacterial strains containing rBacmid-MSE were cultured at 30 ◦C, shaken
at 180 rpm for 12 h, and collected by centrifugation. The bacterial pellet was washed
with distilled ultrapure water three times. Then, the pellet was resuspended in 1 mL
of Sf-900 III SFM and adjusted to different densities (105–108 cells/mL). Sf9 cells were
incubated overnight in a 24-well plate (70–80% confluent single layer). After removing
the medium, 500 µL of bacterial cells were added to the corresponding wells at different
concentrations. After culturing at 27 ◦C for 4–5 h, the bacteria in each cell well were
removed by washing with Sf-900 III SFM. Then, 500 µL fresh Sf-900 III SFM was added
into each well and incubated for 3–5 days. Cytopathic effect (CPE) was observed using a
microscope (Zeiss Axioskop-40, Oberkochen, Germany) to determine the production of
recombinant baculovirus. The supernatant of cells transfected with the recombinant strain
was harvested and passaged in Sf9 cells; the resulting recombinant baculovirus was named
rBV-MSE. The baculovirus stock titer was determined according to the instructions of the
Baculovirus Rapid Titer Kit (TaKaRa, Tokyo, Japan).

2.4. Indirect Immunofluorescence Assay

To detect viral protein expression by the recombinant baculovirus, Sf9 cells were
grown in a 24-well plate and infected with rBV-MSE at a multiplicity of infection (MOI) of 2.
At 48 h post-infection (hpi), the cells were processed for indirect immunofluorescence assay
(IFA). Briefly, Sf9 cells were washed and fixed with 4% paraformaldehyde for 10 min at room
temperature. After blocking with 5% BSA at 37 ◦C for 2 h, the cells were then incubated
with mouse anti-His antibodies (Boster, Wuhan, China), mouse anti-HA antibodies (Boster,
Wuhan, China), or mouse anti-Flag antibodies (Boster, Wuhan, China) for 2 h at 37 ◦C. After
washing with phosphate buffer saline (PBS), Alexa Fluor 594 conjugated goat anti-mouse
IgG (H + L) (Boster, Wuhan, China) was added to the cells and incubated at 37 ◦C for
1 h. Finally, cells were observed under a fluorescence microscope (Zeiss Axioskop-40,
Oberkochen, Germany).

2.5. Production and Purification of VLPs

Sf9 suspension cells (2 × 106 cells/mL) were cultured in 500 mL polycarbonate Er-
lenmeyer flasks and incubated in an orbital shaker incubator at 125 rpm and 27 ◦C. The
cultures were infected with rBV-MSE at an MOI of 5. At 72 hpi, the cells were harvested
by centrifugation (3000× g, 10 min) and lysed by sonication. The lysed Sf9 cells were
centrifuged at 12,000× g for 10 min. Then, the supernatant was centrifuged at 35,000 rpm
in an SW41 Ti rotor (Beckman, Brea, CA, USA) for 2 h at 4 ◦C. The collected precipitates
were dissolved in PBS and the solution was loaded on the top surface of 20–40–60% (w/v)
sucrose gradient and then centrifuged at 35,000 rpm for 4 h at 4 ◦C. The white band between
the 40% and 60% sucrose liquid levels was collected and dissolved in PBS. Finally, the
solution concentration was measured using the BCA protein assay kit (Sangon, Shanghai,
China) and subjected to Western blotting analysis or electron microscopy.
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2.6. Western Blotting Analysis

Purified VLPs or cell lysates were separated using 12% SDS-PAGE gels and then
transferred onto a polyvinylidene fluoride (PVDF) membrane (Millipore Corp, Billerica,
MA, USA). The resulting membrane was blocked with 5% skim milk in tris buffered saline
with tween 20 (TBST) overnight at 4 ◦C. Subsequently, the membrane was incubated
with a 1:3000 dilution of mouse polyclonal antibodies against PDCoV or mouse anti-His
antibodies, mouse anti-HA antibodies, and mouse anti-Flag antibodies for 2 h at room
temperature. Unbound antibodies were removed by three washes of 5 min each in TBST
buffer. Next, the membrane was treated with horseradish peroxidase (HRP)-conjugated
goat anti-mouse IgG (H + L) (Boster, Wuhan, China) for 1 h at room temperature. Finally,
images were captured using a luminescent imaging system (Amersham ImageQuant 800;
Cytiva, Uppsala, Sweden).

2.7. Transmission Electron Microscopy

The purified VLPs samples were adsorbed onto a carbon-coated grid for 2 min and
the residual liquid was removed by blotting with filter paper. Next, the grid was negatively
stained with 2% phosphotungstic acid (pH 6.45) for 1 min, air-dried, and examined with a
Hitachi H-7600 transmission electron microscope (TEM) at 80 kV. Then, the average size
of particles was analyzed by dynamic light scattering (DLS) with a Zetasizer Nano ZS
instrument (Malvern Instruments Ltd., Malvern, UK). Three repeats were performed.

2.8. Immunization of Mice

A total of 20 8-week-old female BALB/C mice (Autobio, Zhengzhou, China) were ran-
domly divided into 4 groups (n = 5 per group). The mice from the PBS and Freund groups
were inoculated with PBS and an emulsion of Freund’s adjuvant plus PBS at the volume
ratio of 1:1. The mice from the VLPs group were inoculated with the solution of VLPs
(10 µg VLPs/mouse) and the mice from the VLPs/Freund group were immunized with the
emulsion of Freund’s adjuvant plus VLPs solution (10 µg VLPs/mouse) at the volume ratio
of 1:1. These mice were inoculated intramuscularly with a volume of 100 µL in the quadri-
ceps of legs. The mice were immunized twice at an interval of 2 weeks. Freund’s complete
and incomplete adjuvants were used for the first and second immunization, respectively.
Blood was collected through the tail vein weekly, and spleens were collected at week 5 to
isolate lymphocytes. All animal experiments were conducted following the regulations of
the Animal Research Ethics Board of Nanyang Normal University (No. NYNU-2022-016).

2.9. Determination of IgG Antibodies

ELISA was used to determine antibody titers of PDCoV-specific IgG in serum from vac-
cinated mice. Briefly, Costar polystyrene high binding 96-well plates (Corning, New York,
NY, USA) were coated with 100 µL of PDCoV (105 TCID50/mL) overnight at 4 ◦C and
blocked with 5% skim milk for 1 h at 37 ◦C. Serum samples were 1:20 diluted and added
to the coated plates (100 µL/well). Plates were incubated at 37 ◦C for 1 h, followed by
incubation with HRP-conjugated goat anti-mouse IgG at 37 ◦C for 1 h. Reactions were
developed with 3,3′,5,5′-tetramethylbenzidine (TMB) for 15 min at 25 ◦C and terminated
with 2M H2SO4. The microplate analyzer detected OD450 nm absorbance value within
15 min. The cutoff value was determined by counting the mean OD value of serum from
the mice before immunization plus three standard deviations (SD).

2.10. Detection of Neutralizing Antibodies

Two weeks after the booster immunization, a virus neutralization test (VNT) was
performed using PDCoV HeN to determine the levels of neutralizing antibodies (NAbs) in
the serum of vaccinated mice. Briefly, serum was heated at 56 ◦C for 30 min for complement
inactivation. Next, 100 µL of twofold serially diluted serum was incubated with an equal
volume of DMEM containing 100 TCID50 PDCoV virus at 37 ◦C for 1 h. Then, a 200 µL
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mixture was added to the ST cells in eight 96-well cell culture plate wells. CPE was observed
for 5–7 days, and the NAb titer was determined according to the Reed-Muench method.

2.11. Cytokine Release Assay

Three weeks after the booster immunization, the spleens of mice were obtained
aseptically and grounded in a 35 mm Petri dish containing 5 mL of pig 1× lymphocyte
separation medium (DAKEWE, Shenzhen, China); suspensions were filtered using 40 µm
filters into a new tube and were centrifuged at 600× g for 30 min. The splenocytes were
collected and washed with RPMI 1640 medium (Pricella, Wuhan, China) and then added to
24-well plates with 1 × 106 cells per well and then treated with PDCoV VLPs (5 µg/mL) at
37 ◦C for 72 h. According to the manufacturer’s instructions, the IFN-γ and IL-4 in culture
supernatants were evaluated with ELISA kits (Neobioscience, Shenzhen, China).

2.12. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 5 software (GraphPad
Software Inc., San Diego, CA, USA), and one-way analysis of variance (ANOVA) was used
to determine the differences. Data are expressed as the mean ± SD. Statistical significance
was designated for differences with p-values < 0.05 (* p < 0.05; ** p < 0.01).

3. Results
3.1. Generation and Identification of Recombinant Bacmids

To express the PDCoV M, S, and E proteins in Sf9 cells, a new triple expression plasmid
pFBTM containing two pP10 promoters, one pPH promoter, and three multiple cloning sites
was constructed. The M, S, and E genes were then cloned into the pFBTM vector to generate
the recombinant plasmid pFBTM-MSE (Figure 1). After verification by Sanger sequencing,
the pFBTM-MSE plasmids were transformed into E. coli SW106 AcMultiBac competent
cells, and the recombinant bacmids were extracted and identified through PCR. The results
showed that the amplification products containing the PDCoV M, S, and E fragments were
approximately 651 bp, 3477 bp, and 249 bp, respectively, consistent with the expected sizes
(Supplementary Figure S1). Therefore, the recombinant bacmids co-expressing M, S, and E
were successfully constructed.
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Figure 1. Schematic representation of the MSE triple expression plasmids. pPH, polyhedrin promoter
of baculovirus; pP10, p10 promoter of baculovirus; 6 × His, hexahistidine (HHHHHH) peptide tag;
Flag, DYKDDDDK peptide tag; and HA, YPYDVPDYA peptide tag.

3.2. Expression and Analysis of the Recombinant Protein in Sf9 Insect Cells

To obtain the recombinant baculovirus, Sf9 cells were infected with the recombinant
bacterial strains containing rBacmid-MSE. The pathological changes in Sf9 cells were
observed at 96 hpi. As shown in Figure 2A, compared with normal cells, Sf9 cells infected
with rBV-MSE display an obvious CPE, including an increase in cell and nucleus diameter,
the appearance of cell debris, and detachment from the plate. The titers of the second-
generation rBV-MSE were 2.1 × 107 PFU/mL. Sf9 suspension cells were then infected with
rBV-MSE at an MOI of 5 and harvested at 24, 48, 72, 96, and 120 hpi. The expression of
target proteins was then detected with Western blotting analysis using mouse polyclonal
antibodies against PDCoV. As shown in Figure 2B, the bands of S (180 kDa), E (12 kDa), and
M (23 kDa) recombinant proteins were determined in the lysate of infected Sf9 cells but not
normal Sf9 cells. Furthermore, the target proteins were detected in cell lysates harvested
at 48 to 120 hpi, with the highest expression of the protein at 72 hpi. Regarding further
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evidence, the expression of the S, M, and E proteins was confirmed in Sf9 cells infected
with rBV-MSE using IFA (Figure 2C), whereas there was no specific fluorescence in normal
cells (Supplementary Figure S2). These data demonstrated that the S, M, and E proteins
were successfully expressed in Sf9 cells.
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Figure 2. Expression and analysis of the recombinant protein in Sf9 cells. (A) Cytopathic effect of
Sf9 cells after transfection with rBacmid-MSE for 96 h. Left, untransfected Sf9 cells. Middle, Sf9
cells transfected with E. coli SW106∆asd. Right, Sf9 cells transfected with rBacmid-MSE. (B) Western
blotting analysis of the recombinant protein expression in Sf9 cells. Cells were harvested at 24, 48,
72, 96, and 120 hpi. Protein expression was detected with mouse polyclonal antibodies against
PDCoV and HRP-labeled goat anti-mouse IgG (H + L). Mock, normal Sf9 cells. (C) Identification
of the recombinant proteins expressed in Sf9 cells using IFA. Sf9 cells infected with rBV-MSE were
subjected to immunostaining using His, HA, and Flag antibodies. These cells were detected using
fluorescence microscopy.

3.3. Purification and Characterization of PDCoV VLPs

To obtain VLPs with high purity, Sf9 cells were infected with recombinant bac-
uloviruses, and the proteins were purified by sucrose density gradient ultracentrifugation.
TEM analysis showed the VLPs were in enveloped spherical shape (Figure 3A). Similarly,
the purified VLPs were found to be homogenous by DLS, and the majority VLPs were
approximately 100–120 nm in diameter (Figure 3B). To further determine whether the VLPs
were successfully assembled, the components of VLPs were identified through Western
blotting analysis. Figure 3B shows that three target bands corresponding to the expected
size were observed simultaneously. These results indicate that PDCoV VLPs autonomously
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assemble in insect cells infected with recombinant baculoviruses, and they are structurally
similar to the native virions [23].
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Figure 3. Identification of PDCoV VLPs using TEM and Western blotting analysis. (A) Electron
microscopic images of purified PDCoV VLPs. H-7600 was used to observe the morphology and
size of PDCoV VLPs. (B) Determination of size distribution of purified VLPs with dynamic light
scattering. (C) Using His, HA, and Flag antibodies, sucrose-purified VLPs were probed with Western
blotting. M, 10–170 kDa protein marker; 1, PBS control; 2, sucrose-purified VLPs.

3.4. Determination of PDCoV-Specific IgG and NAbs in Mice

To determine the immunogenicity of PDCoV VLPs, mice were immunized according
to the protocol shown in Figure 4A. ELISA was used to measure the PDCoV-specific IgG
antibody levels in the serum of vaccinated mice. Two weeks after the first immunization,
PDCoV-specific IgG antibodies in the mice inoculated with VLPs and VLPs/Freund were
detected as positive, and then the antibody level gradually increased. No PDCoV-specific
antibodies were detected in PBS and Freund groups during the experiment (Figure 4B).
Analysis of PDCoV NAbs in the serum of vaccinated mice showed that, although both VLPs
and VLPs/Freund induced PDCoV NAb production, VLPs/Freund elicited significantly
increased PDCoV NAb levels compared with VLPs (p < 0.01; Figure 4C).

3.5. Analysis of Cytokine Production in Splenocytes

To investigate cellular immune responses, we examined Th1-type (IFN-γ) and Th2-type
(IL-4) cytokines in the splenocyte supernatants of vaccinated mice. As shown in Figure 5A,
the concentration of IFN-γ in VLPs and VLPs/Freund groups was significantly increased
compared with that of the PBS and Freund groups (p < 0.01). Furthermore, the level of
IFN-γ in the VLPs/Freund group was higher than that of the VLPs group (p < 0.05). Addi-
tionally, the level of IL-4 was significantly higher in the VLPs/Freund group than in the
VLP, PBS, and Freund groups (p < 0.01). Therefore, PDCoV VLPs promoted IFN-γ and IL-4
production, inducing an antigen-specific cellular immune response in mice.
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Figure 5. Analysis of cytokine production in splenocytes. IFN-γ (A) and IL-4 (B) levels from
splenocyte supernatants were detected using ELISA. Statistical differences between groups are shown
as * p < 0.05 or ** p < 0.01. The data are expressed as the mean ± SD (n = 3).

4. Discussion

The rapid emergence and widespread transmission of PDCoV poses serious health
threats to humans and animals worldwide, leading to an urgent need for effective vac-
cine development approaches. Since PDCoV is a recently emerged viral pathogen, no
commercial vaccines are available. To date, several strategies for PDCoV vaccine develop-
ment, including inactivated vaccines [24], live-attenuated vaccines [25], and viral vector
vaccines [26], have been evaluated. However, each vaccine has disadvantages, limiting its
application and effectiveness in controlling PDCoV. VLPs have demonstrated enhanced
immune responses and greater protection than traditional vaccines. Still, they are not
infectious or replicative due to the lack of the viral genome, making them an ideal vaccine
candidate against various viruses [11,12]. Additionally, as VLP is versatile to genetic and
chemical modification and self-adjuvants, VLP-based vaccines could easily become one of
the most effective vaccines against coronaviruses. Therefore, it should be developed with
greater effort.
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Previous studies have reported the production of CoV-like particles using the
baculovirus-insect cell expression system (BEVS) [27]. PEDV, IBV, and SARS-CoV-2 VLPs
were successfully prepared by co-expression of S, E, and M proteins in Sf9 insect cells,
with shapes and sizes similar to those of the naive virus. Compared with other expression
systems (mainly bacterial, yeast, or mammalian expression systems), BEVS has many ad-
vantages in assembling VLPs, including inherent safety, the capacity to accommodate large
foreign genes, proper protein folding, and post-translational processing [28]. Therefore,
BEVS could serve as a platform for producing PDCoV VLPs. In this study, the recombinant
baculoviruses containing the M, S, and E genes of PDCoV were constructed and used to
infect Sf9 insect cells. The results of IFA and Western blotting assays showed that the M, S,
and E proteins were co-expressed in Sf9 cells infected with rBV-MSE. Subsequently, PDCoV
VLPs were efficiently purified using sucrose gradient purification. The morphology of the
purified VLPs was similar with the native virions under TEM. These results indicated that
the BEVS is suitable for producing PDCoV VLPs.

VLP-based vaccines were reported to interact with both innate and adaptive immune
cells, thus inducing strong humoral cellular immune responses [29–31]. To evaluate the
immune responses induced by PDCoV VLPs, we immunized mice with VLP vaccines
formulated by mixing PDCoV VLPs (10 µg) with or without Freund’s adjuvant. Humoral
immunity plays an important role in the fight against coronavirus infection [32]. The ELISA
data showed that VLPs could induce an antigen-specific IgG response and cause mice to
produce neutralizing antibodies. VLPs plus Freund’s adjuvant elicited a stronger IgG re-
sponse and neutralizing antibodies, which suggested that the adjuvant could modulate the
immune response induced by VLPs. In addition, mice inoculated with VLPs or adjuvanted
VLPs produced high levels of IFN-γ (Th1-type cytokines) and IL-4 (Th2-type cytokines),
which indicated that VLPs triggered Th1/Th2-mediated cellular immune response. These
results indicated that PDCoV VLPs could effectively stimulate the cellular and humoral
response in mice, which exhibit a good immunogenicity.

To the best of our knowledge, this study reports for the first time the production of
PDCoV VLPs using a single recombinant baculovirus; however, there are some limitations
in this study. For example, the conditions for preparing PDCoV VLPs, including baculovirus
infection time, MOI, modifications of the signal peptides, and so on, should be further
optimized. In addition, studies of the immunogenicity and protective effect against PDCoV
in pigs are lacking due to the limited experiment conditions. It is generally accepted that
passive immunity transferred from the sows to the piglets through the colostrum and milk
is critical for protecting piglets from enterovirus infection (e.g., PEDV and TGEV) [33,34].
Passive immunity is mainly achieved through high titers of IgG antibodies in colostrum
within the first 24–48 h after birth, and then persistent supply of secretory IgA (sIgA)
antibodies in milk throughout lactation. Previous studies suggest that maternal sIgA,
IgG, and VN antibodies contribute to the protection of the neonatal pig against PDCoV
infections [24]. Therefore, the proper vaccine strategies in pregnant swine to induce both
systemic antibody and maternal secretory IgA in milk should be taken into account.

In conclusion, we reported here that co-expressing PDCoV M, S, and E protein in insect
cells were assembled into PDCoV VLPs, which could efficiently induce PDCoV-specific
humoral immune responses and cellular immune response in mice. Therefore, the PDCoV
VLPs generated in this study have greater potential for vaccine development to control PDCoV.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/v15051095/s1: Figure S1: PCR identification of recombinant bacmids.
Figure S2: Identification of the recombinant proteins expressed in normal Sf9 cells using IFA.
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