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Abstract: In this study, we describe the input data and processing steps to find antiviral lead
compounds by a virtual screen. Two-dimensional and three-dimensional filters were designed based
on the X-ray crystallographic structures of viral neuraminidase co-crystallized with substrate sialic
acid, substrate-like DANA, and four inhibitors (oseltamivir, zanamivir, laninamivir, and peramivir).
As a result, ligand–receptor interactions were modeled, and those necessary for binding were utilized
as screen filters. Prospective virtual screening (VS) was carried out in a virtual chemical library of
over half a million small organic substances. Orderly filtered moieties were investigated based on
2D- and 3D-predicted binding fingerprints disregarding the “rule-of-five” for drug likeness, and
followed by docking and ADMET profiling. Two-dimensional and three-dimensional screening were
supervised after enriching the dataset with known reference drugs and decoys. All 2D, 3D, and 4D
procedures were calibrated before execution, and were then validated. Presently, two top-ranked
substances underwent successful patent filing. In addition, the study demonstrates how to work
around reported VS pitfalls in detail.

Keywords: influenza; neuraminidase inhibitors; noncompetitive inhibition; virtual screening; ligand
docking; screening pitfalls; screening problems

1. Introduction

Despite world-wide vaccination efforts and “anti-flu” public health prevention cam-
paigns (general hygiene and patient confinement), the influenza disease has never been
controlled due to antigenic drifts or occasional abrupt shifting by gene mutations in the
viruses—in addition to viruses occasionally crossing host–range barriers, thereupon ex-
panding their genetic pools. Hence, as a severe setback, vaccines must be developed in
advance of a forthcoming flu season based on predictions on previously known strains.
Moreover, vaccine production time is a bottleneck, so vaccines are not readily available
during the initial spread of a pandemic. As such, alternative treatments such as novel mini-
antibodies have been proposed [1]. Human influenza A vaccines constitute the cornerstone
of flu prevention while drugs have been developed for monotherapeutic purposes in the
early stages of infection or as a co-medication, such as orally inhaled zanamivir (Relenza™)
or orally administered oseltamivir (Tamiflu™). The latter suffered from complicated multi-
step and resourceful synthetic preparation challenging production and delivery on time.
These setbacks beg for simpler chemical moieties with broad anti-flu activity (against H1N1
and H5N1), as well as the possibility of structural derivatization.

Traditional experimental drug development techniques are based on laborious op-
timization cycles until favorable results are met. In contrast, computational molecular
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simulations—namely virtual screening, scaffold hopping, and drug candidate profiling—
can save time, materials, and human resources. In particular, compound collections allow
the inclusion of huge amounts of chemical substances—either already extant “real world”
substances or non-existing molecules from virtual libraries. In this context, novel scaffolds
against new influenza virus targets have emerged [2].

Three types of viral proteins are located on the influenza virus’ surface: M2, HA, and
NA. Primary sequence variants of the latter two define the subtypes, including human
H1N1 or avian H5N1, etc. The human influenza A neuraminidase (protein name NA, gene
name: na) is similar to the other viral surface glycoprotein hemagglutinin (HA), with com-
plementary functions during the infection process. NA and HA protrude spike-like above
the viral outer envelope, where four NA glycoproteins usually form homotetramers [3].
Mechanistic insight concerning virus-binding specificities to sialyloligosaccharides on hu-
man cells from clinical isolates was published as early as 1989 [4]. Of all nine existing NA
subtypes, only influenza virus types A, B, and C circulate in the human body, specifically
N1 from influenza A virus [5,6]. Originally H5N1 was an avian influenza subtype, but,
after the 2009/10 “bird flu”, this virus has been suspected to be on the brink of zoonosis,
risking a viral pandemic spread among humans [7]. Thus, the N1 protein is a prime and
timely target for antiviral screening.

Human influenza viral neuraminidase extracts sialic acid (N-acetylneuraminic acid)
from the sugar chains of glycoproteins on the human cell membrane surfaces. During
initial infection and subsequent reproduction cycles in the patients’ mucosa cells, this
viral sialidase has two essential functions: (i) it breaks down the mucin in the mucus
layer, thereby facilitating viral entry into upper respiratory epithelial cells; (ii) it enables
the dissemination—i.e., the “budding”—of newly reproduced virus particles from the
host cells. During the last phase of budding, when the new viruses are still attached to
host cell glycoproteins, galactose and sialic acid constitute the last two sugar monomers
in the sialoglycan receptor on the human cell membrane surface. Both are linked by a
glycosidic bond that is enzymatically cleaved by viral NA during budding when detaching
offspring viruses from the human host cell. In contrast, viral HA binds to the terminal
sialic acid residue of human sialoglycan receptors during the initial stage of infection to
attach the incoming virus particle to the host cell surface. However, this HA-mediated
virus–host binding can interfere during the late infection cycle when the multiplicated
new outgoing offsprings are prevented from escaping the cell surface. Thus, the virus
requires the enzymatic intervention of its neuraminidase to enable its separation from the
host cell. The viral neuraminidase belongs to the glucosidase family (EC: 3.2.1.18), and has
an aspartate and glutamate catalytic dyad in the active site that is responsible for cleaving
the glycosidic bond between the hosts’ sialic acid and galactose. Precisely, Glu277 attacks
the glycosidic bond, forming a cationic intermediate (a carbenium-oxonium moiety) in
noncovalent concert with the adjacent Tyr406 [8,9].

The present study describes not only the findings in details, but also the methods
that we used to find drug-like molecules combining computational screening, docking,
and profiling. We also discuss some of the limitations of virtual screening and the pitfalls
to be avoided during virtual screening. Our approach is exemplified by a description
of our discovery of small Fmol and AAmol molecules that are predicted to inhibit the
budding of influenza viral particles. The target biomolecule belongs to the human in-
fluenza A H1N1 virus from the 2009 pandemic outbreak, also known as “Mexican flu”
(A/California/04/2009 (H1N1)), as well as the H5N1 subtype, also known as “bird flu”
(A/Viet Nam/1203/2004 (H5N1). In the meantime, clinical observation has revealed that
H5N1 infection is less common in humans. The motivation for searching for a combination
of virus types is intended to identify conserved scaffolds common to all N1 proteins that
are unlikely to possess intrinsic target preferences or exhibit mutational resistance, i.e.,
complications which lie beyond our scope and are addressed by others [10,11]. Our study
is embedded in the extant literature on ongoing drug research to find new scaffolds for
targeting neuraminidase N1 [11,12].
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Prior to virtual screening (VS), a pharmacophore model was created upon assessment
of the common binding pattern. To this end, we inspected the known binding modes
of four commercial influenza virus N1 inhibitors (oseltamivir, zanamivir, peramivir, and
laninamivir). Sialic acid was also included in the study as it constitutes the natural compo-
nent of host cell membranes, which is recognized as substrate by the viral neuraminidase
enzyme. Also under scrutiny was structurally related DANA (Figure S1). In addition, a
complete ADMET profile was generated for the two proposed drug-like hits on theoreti-
cal ground.

2. Materials and Methods
2.1. Computer Programs

The following computer programs and web-based general tools were used in this
study: Vega ZZ [13], Pubchem at https://pubchem.ncbi.nlm.nih.gov/ (first accessed on
24 April 2013) [14], Autodock v. 4.2 with AutoDock tools (ADTs) [15], Discovery Studio
v. 4.0 [16], and OpenBabel [17]. In addition, two specialized tools were used for the VS and
ADMET profiling of VS hits: Molecular Operating Environment [18] and ADMET predictor
v. 7.1 [19] at https://www.simulations-plus.com (first accessed on 29 August 2014).

The Brookhaven Protein Data Bank at http://www.rcsb.org/pdb (first accessed on
5 September 2013) [20] was visited to download the target structure N1 [21]. Moreover,
we retrieved crystallized structures of the liganded N2 complex with sialic acid (PDB
entry: 2BAT) [22], oseltamivir (PDB entry: 3CL0) [23], zanamivir (PDB entry: 3TI5) [24],
laninamivir (PDB entry: 3TI4) [24], peramivir (PDB entry: 4MWV) [25], and substrate-
like DANA (PDB entry: 2HTR) [26] as reference ligands with known binding modes
and activities.

The water-accessible surface of the N1 active site was calculated at 4.5 Å and potential
binding patterns with characteristic chemical properties (features) within the site were
identified, i.e., surface locations to form hydrogen bonds, salt bridges, polar regions, and
hydrophobic pockets.

The study design embraced four main procedures: (1) pharmacophore modeling,
(2) drug-like dataset screening, (3) affinity docking, and (4) pharmacokinetic profiling.

1. To determine the pharmacophore patterns, we studied binding mode specificities
and structure–activity relationships (SAR) of hitherto known 3D structure complexes
between influenza virus neuraminidase targets and sialic acid substrates or four
reference antiviral drugs (oseltamivir, zanamivir, laninamivir, and peramivir) to
generate 1D, 2D, and 3D fingerprints used as filters during virtual screening (VS).

2. We also aimed to carry out VS on drug-like compounds by 1D, 2D, and 3D finger-
prints. The method facilitates a fully automated (unsupervised) selection of drug-like
candidates. To this end, 1-, 2-, or 3D filters have to be predefined or are built-in search
tools [27–30]. The input data collection comprises a total of 660,961 small organic
molecules (SOMs) [18]. It is composed of basic commercial structures for next-step
experimental lead optimization and scaffold diversification upon identifying selected
VS hits.

3. The ligand affinities were then calculated to target for the selected VS hits by molecu-
lar docking. The self- or back-docking of reference inhibitors compares their predicted
poses and affinities with observed (crystallographic) data and validates the computa-
tional study, besides docking new molecules to target. The molecular affinities were
compared to the viral neuraminidase target by molecular docking each of the follow-
ing ligands: natural substrates, sialic acid, reference drugs, and VS hits. Interaction
energies and affinities were quantitated by means of the inhibition constant (Ki), and
the results of the computed affinities were compared with experimental Ki values of
reference drugs from the literature.

4. For ADMET profiling, smile codes were created for the VS hits and ADMET data were
assessed using ADMET Predictor software.

https://pubchem.ncbi.nlm.nih.gov/
https://www.simulations-plus.com
http://www.rcsb.org/pdb
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2.2. Virtual Screening

The search for new candidate drugs through VS can be carried out with in-house
molecular databases or public virtual chemical libraries, both of which may store large
amounts of molecules and biological metainformation [31]. Alternatively, researchers took
a closer look at natural sources for agents against the flu [32]. Here, a commercial substance
library with a total of 660,961 chemicals was screened [18]. To cope with the sheer number
of data entries, a stepwise approach was established with four search levels by applying
different data-type complexity and filtering conditions (Figure 1).
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Figure 1. Schematic workflow of the virtual screen. This strategy filters over half a million substances
of variable sizes and compositions. Positive and negative controls were manually added to the virtual
library for screening. Due to funding limitations, only 2 out of 30 candidates could be experimentally
examined for antiviral potency (0.005%, n = 660,961 initial entries). Both hits received patents as
promising therapeutic leads. They constitute under-substituted scaffolds and are labeled AAmol and
Fmol for short 103.

i. Based on molecular overall features, thousands of chemical substances were elim-
inated by of their size (molecular weight), lipophilicity (log P), and toxicity (toxic
groups, SMILES patterns). Such screening methods are termed one-dimensional
(1D) filters.

ii. All molecules which passed the 1D filter were filtered through topological searches
for 2D binding patterns.

iii. Utilizing active conformations of known ligands at the binding site, a pharmacophore
3D filter was designed and a conformational database of the remaining substances
was searched for spatial matches (hits) of atoms, groups, or properties (acidic, basic,
polar, nonpolar, ionic, H-bond etc.).

iv. Finally, the few 3D filter hits were screened by docking simulations, also sometimes
called 4D filtering.

Molecular fingerprints are 2D or 3D binding patterns with numeric thresholds to
determine whether dataset molecules pass or fail these 2D or 3D filters. We used the chemo-
metric feature known as the Tanimoto coefficient to group or cluster similar molecules in
case they exceeded the established similarity threshold (cf. user guide [18]).

To verify if VS can successfully discriminate between target binders and non-binders,
we applied retrospective virtual screening: we enriched our dataset with a small num-
ber of compounds with known antiviral activities (positive controls) or non-activities
(negative controls, also known as decoys). A total of ten positive controls were included: 2-
deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA), oseltamivir, peramivir, zanamivir,
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laninamivir, sialic acid, BANA113, BANA106, BCX1898, and G20. The first six were ex-
tracted from the aforementioned PDB files whereas the remaining four were taken from a
published source [33]. In addition, 23 negative controls were added from PubChem [14].
First, the following numerical descriptors were calculated for the positive controls: molec-
ular weight; hydrogen bond acceptors (HBAs); hydrogen bond donors (HBDs); acidic,
basic, and hydrophobic atoms; and rotatable bonds (RB). Next, we searched PubChem for
compounds with descriptor values similar to the positive controls but without reported
activities against the neuraminidases of the influenza A virus.

The preparation for retrospective and prospective 2D virtual screening required
four steps: (i) the removal of binding-irrelevant molecular components; (ii) protona-
tion/deprotonation at physiological pH; (iii) the calculation of Gasteiger partial charges;
and (iv) the calculation of TGD-type fingerprints.

The preparation procedures used for the virtual compound library—the Molecular
Operating Environment (MOE) database for retrospective and prospective 3D virtual
screening—differed only in the last step to calculate ligand conformations, whereby a
stochastic algorithm was used under the MOE’s default force field MMFF94x [18]. Its
applicability range not only covers drug-like molecules but also proteins. Three parameters
were set as follows: (i) residual strain energy limits at the local minimum: 10 kcal/mol;
(ii) the maximum number of conformations per molecule: 1000; and (iii) the root mean
square distance (RMSD) threshold to remove duplicates: 0.15.

2.3. Molecular Docking

The target biomolecule was prepared for docking by removing undesired moieties
from the crystal input structure using SPDBV. The protein’s atom partial charges on all
amino acid atoms were computed using the Gasteiger approach of ADT.

All ligand models for docking were preprocessed under Vega ZZ in order to assign
correct bond orders, hybridizations, hydrogen atoms, atom types (Tripos), and partial
charges (Gasteiger), and the protonation/deprotonation state at pH 7.

For flexible ligand docking, default program settings were used under the Lamarckian
genetic algorithm, except for the number of runs (256), elitism (3), and the highest precision
level (25,000,000). The numerous peptide bonds were held rigid in their natural trans
configuration, i.e., they were not allowed to rotate.

2.4. ADMET Profiling

After screening and docking, pharmacokinetic characterization was carried out for
the final candidates. Their experimentally confirmed antiviral activities are reported
elsewhere [34].

Their 3D structures were converted into the SMILE code or mol file format under
Vega ZZ, which were then used as input data for the ADMET predictor™ tool. The user
manual describes the “expanded applicability domain” after including an in-house dataset
from Bayer™. The improvements in the tool became evident “in prospective predictivity of
S+ pKa certainly reflect [the tool´s] expanded applicability domain” [“ . . . ” cited from the
ADMET predictor manual, 23 July 2014, version 7.1].

3. Results
3.1. Binding Pattern and Pharmacophore Modeling

The selected biomolecular target was the three-dimensional structures of the influenza
A virus neuraminidase, corresponding to the viral strain A/Vietnam/1203/2004 (H5N1).
As reference binders for target screening and docking, we retrieved the published crystal
structures of four N1 inhibitor drugs in the complex with the target protein: zanamivir,
oseltamivir, peramivir, and laninamivir (Table 1). In addition, the crystal complex of the
N1 target with natural substrate sialic acid was also retrieved from the Protein Data Bank
(PDB). Specifically, we inspected the following related PDB entries: 3CL2, 2HU0, 3B7E,
3CKZ, 2HTU, 2HTW, 2HTR, and 3NSS.
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Table 1. Input data from the human influenza A virus for 3D model generation from experimentally
observed crystal structures of the reference target protein and ligands. Asterisk (*): the target primary
sequence corresponds to a single-point mutant Iso223Val (I223V) or (**) His274Tyr (H274Y). As an
off-scope effect, these changing amino residues also give knowledge about published resistance
mechanisms [21].

Extracted
3D-Structure PDB Code Types of Molecules and Viruses Resolution

(Å); Year Ref.

Neuraminidase
(target protein) 5NZ4 OS—liganded neuraminidase N1;

unidentified strain; (*) 2.2; 2018 [21]

Sialic Acid (SA) 2BAT SA—N2 complex; influenza A
virus; A/Tokyo/3/1967 (H2N2) 2; 1992 [22]

Oseltamivir (OS) 3CL0
OS—N1 complex; influenza A

virus; influenza A virus; A/Viet
Nam/1203/2004 (H5N1) (**)

2.2; 2008 [23]

Zanamivir (ZA) 3TI5
ZA—N1 complex; influenza A
virus; A/California/04/2009

(H1N1)
1.9; 2011 [24]

Peramivir (PE) 4MWV
PE—N9 complex; influenza H7N9

virus; human-infecting variant
from avian origin

2.0; 2013 [25]

Laninamivir
(LA) 3TI4

LA—N1 complex; influenza A
virus (A/California/04/2009

(H1N1)
1.6; 2011 [24]

DANA 2HTR DANA—N8 complex; influenza A
virus (unspecified strain) 2.5; 2006 [26]

The fundamental tenet of (quantitative) structure–activity relationships declares that
similar chemical structures reflect similar biological activities, although so-called activity
cliffs create exceptions to the rule [35,36]. Therefore, we analyzed the binding modes at
atomic scale of all five reference ligands from Table 1 (Figure 2).
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All reference inhibitor modes of binding are fairly similar to the natural substrate
sialic acid (Table 2). In the Supplemental Material (SM), we document all details on ligand–
receptor interaction patterns (Table S1), which are in line with literature describing essential
residue active conformations for ligand recognition [37]. To be more precise, ionic (and
polar) head group atoms of Glu276, Glu277, Arg292, Asn294, and Ser246 mark the location
of a large cavity. A smaller hydrophobic pocket is surrounded by Arg224 and Ala248. A
larger pocket encompasses hydrophilic and hydrophobic residues Glu119, Asp151, Arg152,
and Glu227. A fourth, negatively charged pocket is composed of residues Arg118, Arg292,
and Arg371 (Figure S1).

Table 2. Synopsis of neuraminidase amino acids which interact with the five reference binders and the
two hits. Residue numbering scheme adopted from PDB entry 3CL0. Residues are grouped to reflect
their spatial packing and ordered from ionic to nonpolar. Abbr.: 3OHprop = tri-hydroxy-propyl;
BB = peptide backbone; IA = interaction.

Residue Sial ac. DANA Osel Zana Pera Lani AAmol Fmol

Arg118 -COO (-) -COO (-) -COO (-) -COO (-) -COO (-) -COO (-) BB amide BB amide

Arg292 -COO (-) -COO (-) -COO (-) -COO (-) -COO (-) -COO (-) -COO (-) -COO (-)

Arg371 -COO (-) -COO (-) -COO (-) -COO (-) -COO (-) -COO (-) acetamido BB amide

Arg152 acetamido acetamido acetamido acetamido acetamido acetamido -COO (-) -COO (-)

Arg224 -
tri-

hydroxy-
propyl

- - - - -COO (-) -COO (-)

Glu276
tri-

hydroxy-
propyl

tri-
hydroxy-
propyl

-
tri-

hydroxy-
propyl

- - - -

Glu277 - - - guanidino Guanidino guanidino - -

Glu119 - - -NH3 (+) guanidino Guanidino guanidino - -

Asp151;
-CH-

not OO

2-hydroxy
on oxane

ring;
- -NH3 (+);

none
guanidino;

none

guanidino;
2-hydroxy

on
cyclopentane

guanidino;
none

amido;
-S-CH3

piper-
azinyl;
none

Ser246 - -
[no IA
with

alkyl ]

tri-
hydroxy-
propyl

-
2,3-dihydroxy-

1-methoxy
propyl

- -

Asn294
tri-

hydroxy-
propyl

same as left
but Gly294
on N2 prot.

-
tri-

hydroxy-
propyl

-
2,3-dihydroxy
−1-methoxy

propyl
- -

Tyr347 -COO (-) - - - acetamido -

Tyr406 ether-O-
in oxane

ether-O-
in pyran – ether-O-

in pyran - ether-O-
in pyran - -

Val149
Ile 427
Pro431

- - - - - - phenyl
di-

methyl-
phenyl

Ala248 -
[no IA tri-
hydroxy-
propyl ]

-alkyl - 2-
ethylbutyl - - -

The X-ray structure of the neuraminidase subtype N2 with co-crystallized sialic acid
indicates that the substrate binds the enzyme in a considerably deformed conformation
due to strong ionic salt- and hydrogen-bonding energies exercised through the substrate’s
anionic carboxylate group. The latter is in contact with three cationic side chains of Arg118,
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Arg282, and Arg371. The N-acetyl group, attached to ring atom C5, maintains polar and
nonpolar contact with Arg152, Trp178, and Ile 222. These interactions help anchor the
substrate to the active site. The C4-OH group of sialic acid hydrogen bonds with the
negatively charged Glu119, Glu227, and Asp151. In docking simulations of the natural
substrate sialic acid, we analyzed the pivotal interactions in the N1 target active site.
Remarkably, there is a concert of strong salt bridges and elaborated networks of polar
hydrogen bonds between the ligand’s anionic carboxylate group and three cationic arginine
residues (Arg118, Arg282, and Arg371). In addition, a fourth arginine Arg152 interacts with
the substrate’s acetamide group. The stabilizing noncovalent hydrogen bond is formed
between anionic glutamate Glu276 and two hydroxyl groups on Carbon atomsC8 and C9
of the ligand´s triol side chain. Of note, Glu276 is conserved in N1 and N2.

It is evident that all five sialic acid analogues share an aliphatic ring, a carboxylic
group, an acetamide, and hydroxyl groups or other oxygenated functions for hydrogen
bond networking. These findings were merged with other findings into the 2D and 3D
fingerprint (pharmacophore) models. Figure S1 exemplifies the graphical analysis for
oseltamivir. Based on the calibration results, pharmacophore model 24 was chosen to
perform the prospective 3D virtual screening. Stereochemical drawings of the reference
ligands (Figure S2) were aligned (superposition) to generate 3D pharmacophore models
(Figure 3; shown in detail in Figure S4). This allowed us to discriminate all 10 active
molecules from the 23 inactive decoys. Moreover, model 24 obtained the best metrics score
during evaluation.
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protonation siteson the tertiary and secondary amine groups on the piperazine ring. At physiological
pH one is protonated while the carboxyl group is deprotonated. Two inlays show the structural 2D
drawings of AAmol (below) and Fmol (above). The color coding for H, O, N, and S atoms: white, red,
blue, or yellow, respectively. Carbon atoms are beige (AAmol) and light blue (Fmol).

3.2. D Filtering (2D Fingerprint Design)

Several fingerprint models were constructed from the two-dimensional features of
the following ligands: sialic acid (2BAT), oseltamivir (3CL0), peramivir (2HTU), zanamivir
(2B7E), and DANA (2HTR). The fingerprint filter is two-dimensional, so the conformations
of the molecules and the RMSD between them were not included. The molecules were
processed, as indicated in the Methods section. Subsequently, the 2D typed graph distance
(TGD) fingerprints of the chosen molecules were calculated.
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During retrospective virtual screening, all fingerprint models were constructed and
underwent repeated rounds until an optimized outcome from the control test set was
achieved. Finally, one best-scoring model was selected, i.e., that with the highest hit rate to
discriminate between the active and inactive compounds.

3.3. D Filtering (3D Fingerprint Design)

To determine the essential set of 3D structural features to include in the pharmacophore
models, the reference ligands underwent superposition operation, the RMSD values were
calculated, and the overlapping features were deemed pivotal. These “frequently con-
served” ligand substructures were merged to formulate the pharmacophoric models such
that the several initial models were extracted from the co-crystallized ligands (with PDB
codes): sialic acid (2BAT), oseltamivir (3CL0, 2HU0), peramivir (2HTU), zanamivir (2B7E),
and sialic-acid-related DANA (2HTR). Since 3D substructures had been extracted from (3D)
crystal data, all binding-relevant features could be located in 3D spaces (i.e., hydrophobic,
anionic, and cationic chemical substructures) or hydrogen bond donor or acceptor (HBD
or HBA, respectively) groups. Again, pharmacophore models were repeatedly evaluated
against the enriched dataset by retrospective virtual screening. The model with the best
activity vs. nonactivity discrimination capacity (model number 24) was finally selected.

3.4. Prospective 2D VS

The final 2D fingerprint model was applied to screen the 2D data-type version of the
MOE database [18]. This approach reduced the original ~105 chemical entities of the MOE
database to a smaller set by a 2D filter, which runs many thousand-fold faster than 3D
filtering (Figure 1).

3.5. Prospective 3D VS

Pharmacophore model 24 was applied as a 3D filter to screen the 2D VS hits in order
to obtain a final set of ~101 candidates after clustering. To this end, the conformation of the
lowest RMSD value with respect to its underlying pharmacophore model was computed
for each 3D hit. Specifically, the TAT-type fingerprint of each 3D hit was calculated. The
hits were lumped together using the Tanimoto coefficient, and the molecules that exceeded
an arbitrary 85% similarity threshold to other candidates (with an identity match set to
100%) were not included for further study.

Fully automated multi-step VS led to a considerable data size reduction (Figure 1).
After screening, two molecules of the 30 remaining were of limited presence in academic
literature, and thus were worthy of further scrutiny. Hence, the molecular docking of
30 candidates against the viral target led to two high-scoring candidates (Fmol and AAmol).
We kept their nicknames: AA stands for two amino acids and F stands for the other
(dimethyl-) phenyl group (written in Spanish as “Fenil”) (Figure 3). In collaboration with
a biomedical research center (CIBIOR, Metepec, PU, Mexico), they were experimentally
validated as active inhibitors and published together with other inhibitors from studies on
drug repurposing or structure–activity relationships [34].

AAmol, with the chemical name (N-acetyl-phenylalanyl)-methionine, possesses two
amide bonds. It is a dipeptide derivative (Phe and Met), has a total charge of −1 as it takes
a deprotonated carboxylate form in water at pH 7, and interacts with arginine residues
at the binding site. Its molecular mass is 337 Daltons; with an estimated log P = 1.2; a
polar surface area of 183 Å2; a non-PSA of 441.9 Å2; a HBA = 4; HBD = 2; highly flexible
conformations (12 rotatable bonds); and a commercial vendor: Chembridge # 6429718. A
recent review outlined the fundamental principles concerning peptide inhibitors against the
flu [38]. One 24-residue-long oligopeptide binds NA with a micromolar inhibition constant
(Ki = 0.29 mM), and a much smaller octapeptide was designed as a strong nanomolar binder
at the active site where oseltamivir appears, showing one-digit micromolar inhibition
activity in the cell tests. In this context, AAmol, with only two amide bonds, is an even
smaller H1N1 NA inhibitor than all the other reported peptides (4 to 24 residues long) [38].
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Fmol, or 3-[(2,5-dimethyl phenyl) carbamoyl]-2-(piperazin-1-yl) propanoic acid, has
two rings and also contains a monoanionic carboxylate group to interact with the cationic
active site arginine residues. The piperazine ring possesses two potential protonation sites
and exists as a di-cationic species in strongly acidifying media, but the monocationic form
dominates under cellular conditions. With a mono-anionic and cationic center, it is a sort of
zwitterion at pH 7, with a molecular weight = 306 Daltons; a log P = −3.4; a polar surface
area = 142 Å2; a non-PSA of 427.9 Å2; a PSA-to-non-PSA ratio = 1:3; a HBA = 4; a HBD = 3;
flexible conformations (seven rotatable bonds); and a commercial vendor: Life Chemicals
F1278-0516.

3.6. Virtual Library Performance under Fingerprint Model Number 24

Starting with 660,961 entries in the MOE database, the 2D screening yielded 4853 hits
(0.7% of the drug library), whose subsequent conformational calculations were then further
virtually screened through the 3D fingerprint filter (for details, cf. Tables S2–S6 concerning
dataset test characteristics, control structures and decoys, dataset enrichment metrics,
further metrics on positional fit by RMSD, as well as pharmacophore modeling and thus
the associated performance).

In order to score and evaluate the post-3D-filter hits they were docked against the
influenza A virus N1 neuraminidase receptor. For this post-screening ranking by docking
scores only a numeric evaluation of the hits was requested. Specifically, an inspection of
conformational space and steric requirements was not intended for that stage. The study
did not focus on the search for favorable positions or conformations (since the 3D filter
yields very specific steric, electronic, and spatial conformations), but rather on the ranking
of selected hits.

Successful self- or back-docking tests gave reason to assume that the blind docking
of unknown active conformations of the hit ligands will be faithful and biochemically
meaningful (Figure S1 and Table S1). Validation took place with reference ligands extracted
from liganded crystal structures (with the following PDB codes): sialic acid (2BAT), os-
eltamivir (3CL0), oseltamivir (2HUO), peramivir (2HTU), zanamivir (2B7E), and substrate
analog DANA (2HTR). The hits were blind-docked and ranked. The computed inhibition
constant of oseltamivir (Ki = 0.007 µM) lies within the experimental range reported with
PDB entry 3CL0 (0.0001 to 0.008 µM). We add another proof of concept that uses Ki values
for our docking approach (for details on docking precision, see the Discussion section
below). The docked ligand successfully reproduces specific contacts from the experimental
structure—between the acetamido function and conserved arginine Arg152—despite the
changes in docked overall positions which could be expected from scaffold hopping in our
analyses (Figure S1) [39].

3.7. Ligand–Target Docking

The 3D models were curated in the Vega ZZ program [13], and their ionization states
were estimated. A total charge of −1 can be attributed to both AAmol and Fmol (each
with one carboxylate group), while a zwitter form (+1/−1) was ascribed to Fmol, i.e., an
additional tertiary ammonium next to the carboxylate function. At pH 7, the piperazinyl
ring is a mixture of monoaninic > neutral >> dianionic species following the rule of thumb
for the dissociation of (diluted) weak acids or bases: pKa-pH yields the % concentration
for neutral bases (or deprotonated corresponding acidic forms, respectively). At that stage
of work, partial charges were loaded by the Gasteiger approach under Vega ZZ and the
Tripos force field atom types assigned prior to saving in the mol2 file format.

All five reference models could be successfully docked back into their crystal poses
(Tables 1 and 2). For sialic acid (PDB entry: 2BAT), no experimental binding affinities have
been published, but experimental affinity data of the four others have been included in their
PDB entries. The experimental binding constants ranged from 0.1 to 817 nM for oseltamivir
(PDB entry: 3CL0) and from 0.5 to 12 nM for zanamivir (PDB entry: 3TI5). Their computed
best-scoring values from our docking studies lie in the same one-to-three-digit nanomolar
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range (7.5 nM to 363.7 nM). Reported experimental IC50 values of peramivir (PDB entry:
4 MWV) and laninamivir (PDB entry: 3TI4) were 0.4 nM and 0.947 nM, respectively, which
can be compared to their computed nanomolar inhibitory constants of 109.9 nM and
743.1 nM For the two hits under scrutiny, AD4 found the following affinities: (i) AAmol
with a lower one-to-two-digit micromolar range; and (ii) Fmol with an upper nanomolar
range, with the lowest Ki of 0.1 mM and an average value of 0.8 mM for the most populated,
best-scoring (first) cluster. For more details, see the Discussion section below. The final
poses of the blind docking of AAmol and Fmol were compared to the reference complexes
(Figures 4 and 5).
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Figure 4. Structural binding model of AAmol (beige), with co-crystalized oseltamivir (grey) for
reference. The cavity entry lies to the right hand coming from the foreground. Color coding for the
stick models: red, blue, and yellow for O, N, and S atoms, respectively; beige or grey for carbon atoms
of AAmol or oseltamivir, respectively; hydrogen atoms are omitted. The water-accessible protein
surface is also colored: light blue for hydrophilic (polar) residues, orange for hydrophobic (nonpolar),
and white for intermediate polarity.
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Figure 5. Structural models of binding modes for AAmol (beige), Fmol (pink), and co-crystalized
oseltamivir (grey) for reference. Top-down view into the binding cavity. The viewing angle from
Figure 4 is tilted 90◦ for orthogonal viewing. Coloration is shown in Figure 4.

Figure 4 illustrates the equivalent role of three structural features which are shared by
AAmol and oseltamivir. They effectively occupy the same cavity locations: (i) acetamido;
(ii) alkyl-ether (-CH2-O-CH2-) and alkyl thioeter (-CH2-S-CH2-); and (iii) anionic carboxy-
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late groups (-COO(−)). In the figure, both acetamide side chains (i) lie to the rear (topmost).
The methyl group on AAmol (beige) is not visible, occluded by the acetamido group of
oseltamivir which lies in the front. In the middle, both O/S-ether bridges (ii) are fully
visible. The methyl-thioether group belongs to AAmol in the front (foremost, sulfur atom
in yellow). Intriguingly, the three atoms of both carboxyl groups (iii) are in almost perfect
superposition, presumably reflecting their role in ligand recognition as they help bind to
the same cationic residues (Table 2), though only one oxygen atom from each of the COO(−)

groups can be seen (two overlapping rightmost red O atoms). CH-rich (aliphatic) substruc-
tures on both ligands squeeze to the left into the hydrophobic area. The extended lipophilic
pocket remains unoccupied by both binders (cf. Val149, Ile 427, and Pro431 in Table 2).
Figure 5 complements Figure 4 in additionally presenting Fmol and a top-down view on
the entire carboxyl group. Their three atoms (-COO) appear perfectly aligned (Table 2). In
the mid-section, the alkyl ether (oseltamivir) and thioether (AAmol) are fully visible as
well. To the cavity’s side wall, N- and O-free alkyl parts on all ligands meet with more
neutral residues (white surface), while the deeper, more hydrophilic rear (bluish surface)
provides for more affinity for N- and O-rich substructures. The cavity entry coincides with
the viewer’s perspective. Fmol’s dimethylphenyl ring extends between two hydrophobic
areas in the forefront. In this way, it partly occupies the extended lipophilic pocket with
Val149, Ile 427, and Pro431 (Table 2).

The interacting amino acids at the binding site of N1 were inspected in the 3D models
with the docked poses and displayed in a 2D scheme (Figures 6 and 7). In particular,
AAmol’s docking shows that its acetamido group—which is part of the pharmacophore
model—is correctly recognized by the Arg152 of the N1 protein target (Figure 6) [39].
Intriguingly, in Fmol, this amide bond is stabilized by a strong pi-electronic resonance
effect since its nitrogen atom also belongs to the aromatic system of the dimethyl phenyl
aniline substructure. Considering the latter as a sidechain and the remaining molecule part
as the scaffold, the amide group orientation appears reversed to better fit into the cavity
(Figures 5 and 7).
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Figure 6. Schematic representation (left) and graphical display (right) of N1 binding site with docked
AAmol (beige ball-and-stick model). The cavity entry lies to the foreground left. Color code for the
stick models: pink, red, and blue indicates C, O, and N atoms, respectively; grey ribbons represent
the protein backbone; residue hydrogen atoms are omitted; additional colors are shown in Figure 4.
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3.8. ADMET Profiling

This theoretical pharmacokinetic profiling step was carried out as a post-screening
evaluation of hits for early candidate attrition. In the context of long and costly drug
research and development projects (R&D), in silico profiling studies are routinely carried
out (Table 3).

Table 3. Estimated pharmacokinetic data for AAmol and Fmol. Abbreviations: BBB, blood–brain
barrier; CYP, cytochrome P450 enzymes; MRTD, id, atom number of substrate; lethal doses; perm,
permeability; sol, solubility % (m/m); Vd, volume of distribution; w, water. Asterisk (*): even in
its neutral form, Fmol remains hydrophilic, so its log P value becomes negative. Its intramolecular
prototropy causes a zwitterionic form with total charges of +1 and −1 formally summating to zero.
In contrast, AAmol can appear in a buffered solution as an undissociated (neutral) species with a
positive log p value whichreflects its overall lipophilicity.

Name Acidic
pKa

MlogP (Neutral
Form) logD (ionized) Perm Skin Solu w

AAmol 3.8 1.0 −1.6 6.85 0.9

Fmol 11.3; 4.0 −1.6 (*) −1.4 (*) 0.01 4.6

Name pH in w BBB_Filter Vd in L/Kg RuleOf5 CYP_1A2

AAmol 3.24 Low 0.22 0 No (96%)

Fmol 6.89 Low 0.54 0 No (96%)

Name CYP_2C8 CYP_2C8 (id) CYP_2C9 CYP_risk TOX_MRTD

AAmol Yes (73%) S19(992); C20(869);
C4(828) No (56%) 0 Above_3.16

Fmol No (92%) NonSubstrate No (98%) 0 Above_3.16

Name TOX_hERG TOX_ER TOX_rat TOX_skin TOX_biodeg

AAmol No (95%) Nontoxic 2066.07 Nonsensit.
(75%) No (63%)

Fmol No (95%) Nontoxic 941.78 Nonsensit.
(85%) No (96%)
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4. Discussion
4.1. Implications and Limitations for Drug Screening

Computational molecular simulation methods have ushered a new area of drug R&D
in academia and industry. In silico approaches are popular, but currently generalized and
in need of improvement. They are not intended to replace in vitro, ex vivo, or in vivo
studies, but, rather, they should be understood as complementary tools within the drug
discovery cycle. Pharmacophore modeling—specifically, molecular dataset screening for
hits and blind docking of hitherto unknown target binders—is one such in silico approach
which was validated herein by elaborated protocols, namely (i) analyzing binding patterns
of published crystal complexes, (ii) fine-tuning of 2D and 3D filters and dataset enrichment
with active controls and decoys, and (iii) back docking trials of crystalized ligand-target
complexes. Bioassay results have been published to confirm the micromolar antiviral
activities of our final candidates.

In general terms, VS saves time, material, human, and financial resources. However,
this cutting-edge approach requires pre-existing information on drugs, compound libraries,
and biomolecular receptors on an atomic scale. In short, as with any screen, the results are
only as comprehensive as its inputs.

Although the filters used during VS had been selected after testing in the presence of
known active and inactive control structures in order to perform a more selective screen,
not finding hits with nanomolar target affinity does not necessarily jeopardize success,
as high potency ought not to be expected in VS campaigns in general. Pragmatically, the
ultimate goal of VS is to find hits or lead compounds for further research and validation
by means of distinguishing between non-binders and binders—not necessarily between
strong and weak binders (cf. pitfall (i) below).

To the best of our abilities, this VS study concept is designed to avoid known pit-
falls [40]. In particular, we worked around the following setbacks:

Pitfall (i): the success criteria of VS are insufficiently defined; solution (i): focusing on
new scaffolds rather than high target affinities, which would be improved in a subsequent
step of scaffold derivatization (drug profiling with design, synthesis, and testing).

Pitfall (ii): variable water-mediated binding interactions; solution (ii): in analogy with
the situation illustrated in Figure S1 Panel B with reference ligand zanamivir in interaction
with a water moiety, we present the water-mediated AAmol interaction in Figure 6 with
the graphical display of AAmol as a N1 binder.

Pitfall (iii): the rigorous and prospective validation of VS protocols; solution (iii): chal-
lenging our pharmacophore models with positive and negative control molecules in a
virtual test library (Table S3).

Pitfall (iv): overcautious approaches to ‘drug-likeness’; solution (iv): disregarding
the “rule of five”, which is a retro-perspective result of averaged values on a drug sample
(statistics), though it is not a prospective rule which must be followed (i.e., selection bias).
As a direct result, Fmol is an unprecedent case of an aromatic-ring-bearing compound
that is not seen on hitherto known N1 inhibitors. Moreover, the acetamido side chain still
conserved on AAmol was incorporated into a larger substructure and its orientation was
inverted to enhance cavity fitting (Figure 3).

Pitfall (v): one-at-a-time approach; solution (v): limited binding pattern complexity
(2D or 3D filter definition) upon the application of a single active compound for pharma-
cophore generation.

Pitfall (vi): meaningless binding pattern selection for pharmacophore design; solution
(vi): testing the filter capacity to discriminate between active and inactive control molecules.
The former should appear in the hit list VS, while the latter should not, as also shown in
solution (iii).

Pitfall (vii): the data size and structural variety do not reflect an appropriate variety of
chemical spaces; solution (vii): the VS aimed to find new under-substituted scaffolds. Thus,
possible hits with structural variations were searched in a chemical landscape of over half a
million simple small organic compounds, as also shown in solution (i).
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4.2. Implications and Limitations for Ligand–Target Docking

Upon agonist or substrate binding, certain receptor types—such as nuclear steroid
hormones, glucocorticoid receptors, or Cyp P450 enzymes—unfold side chains, backbones,
or even domains in a phenomena called an induced fit [41]. In response to AD4’s treatment
of flexible ligands and rigid body receptors, authors have proposed to act of docking apo-
forms and various liganded complexes to account for spatial differences [42–44]. Others
have used molecular dynamics to adopt new conformations by educated guessing [45,46].
None of the cited solutions were followed here for a two-fold reasoning: (i) the hits are all
smaller in size than the six reference ligands; and (ii) the binding patterns of hits are merely
a subset of those observed in the corresponding crystal complexes (Table 1). As such, no
conformational rearrangements were needed.

AD4 computes free binding energies (∆G) as a crude approximation from linear
scaling on rotatable bonds of the entropy term (∆S). The tool converts these thermody-
namic estimates into inhibition constants (Ki) by applying the thermodynamics formula
Ki = eˆ[∆G/(R*T) ]. Moreover, Ki values are not always close to IC50 values, which depend
on the substrate concentration in the assay. The estimated Ki value for the endogenous sialic
acid substrate lies in a two-digit micromolar range. Referring to the reference compounds,
their micromolar Ki values all lie in one-digit ranges of the best-scoring clusters.

For AAmol, the experimentally determined inhibitor constant was published with
a Ki value of 15 mM [34]. The best value in our docking simulation for AAmol was
Ki = 0.001 mM, with an average value for Ki of 0.12 mM, which is approximately a 100-fold
overestimation of potency. With regard to calculation precision vs. experimental data,
the docking program tutorial states that the numeric results are merely crude estimates
in a wider 100-fold imprecision range (corroborated by private messages from Autodock
scientist Prof. Dr. Stefano Forli, Dept. of Comp Biol, Scripps Research Institute, La Jolla,
CA, USA)—a fact which is overlooked all too often by published AD4 studies which claim
that their numeric result lies in excellent keeping with assay data as a misleading “proof of
concept”. Our proof-of-concept stems from the fact that the acetamido group on AAmol is
recognized, as reported by the crystal complexes.

For Fmol, only a IC50 value was measured against N2, not N1. Given the experimental
settings, the IC50 data of Fmol are not directly comparable to the Ki values. Of note,
IC50 does not reflect directly binding affinities, but could be set on an equal footing by
the Cheng–Prusoff equation, which is, unluckily, in need of additional experimentally
determined parameters.

4.3. Implications and Limitations for ADMET Modeling

The predicted numerical results from ADMET profiling are crude estimates. The
program’s artificial neural network architecture has come under criticism due to variable
degrees of reliability. The latter depends on the applicability range of each ADMET param-
eter, which, in turn, is given by the training set for calibration, i.e., adjusting the outcome
to some experimental (measured) endpoint. To complicate reliability, even closely related
structures—e.g., warfarin and phenprocoumon—fall short of expectations (an unpublished
pitfall during our phenprocoumon research [47]). One explanation for ill-behaving cases
(pitfalls) is that overfitting tends to increment the prediction power, and in the same time
narrows the applicability range to only those entries of the underlying training set used dur-
ing data fitting. As a direct consequence, a trade-off must be arranged for an “in-between
solution. Stray outliers lie in the nature of this method. At the essence of the pros and cons
discussion here, it is safe to presume that VS results do not foresee pharmacokinetic issues
with absorption, distribution, metabolism, excretion, or toxicity.

5. Conclusions

More than half a million small organic compounds from a commercial dataset were
virtually filtered in four stages. One-, two-, and three-dimensional pattern filters were
utilized and verified by enriching the dataset with molecules of known activity or inactivity,
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until the screen could distinguish between the active and inactive controls. A final (4D)
filter was imposed with a ligand–enzyme docking for the best-performing hits from the
virtual screen. Two such top-ranked substances underwent successful patent filing (details
on the experimental validation having been published elsewhere). In line with the present
study design and choice of input data, novel lead compounds were used with simple
under-substituted scaffolds of micromolar target affinities, representing a promising future
of ongoing R&D cycles of synthetic derivation and biochemical testing to develop stronger
and more specific target binders.

6. Patents

The two concluded national patents have the following identification numbers: (i) for
AAmol: MX/E/2017/039727, IMPI no. 352708 (2018); (ii) for Fmol: MX/E/2017/034353,
IMPI no. 352709 (2018).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15051056/s1. Figure S1: Reference ligand interaction. Figure S2:
Stereochemical drawing of natural substrates with the five reference ligands. Figure S3: Ligand
superposition for pharmacophore construction. Figure S4: Pharmacophore model. Table S1: Os-
eltamivir interaction. Table S2: Library test characteristics. Table S3: Control structures. Table S4:
Enrichment factors. Table S5: Positional evaluation (RMSD). Table S6: Pharmacophore models. Table
S7: Performance evaluation [48,49].
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