Multifactorial White Matter Damage in the Acute Phase and Pre-Existing Conditions May Drive Cognitive Dysfunction after SARS-CoV-2 Infection: Neuropathology-Based Evidence
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Global Findings
3.2. Specific Alterations
3.2.1. Inflammatory Changes (Figure 1)
Olfactory Bulb | Hippocampus | Cortical Areas Global | Basal Ganglia Global | Medulla Oblongata | Cerebellum Global | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CD8 | HLA-DR | CD20 | CD8 | HLA-DR | CD20 | CD8 | HLA-DR | CD20 | CD8 | HLA-DR | CD20 | CD8 | HLA-DR | CD20 | CD8 | HLA-DR | CD20 | |
SARS-CoV-2 | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma |
Case 1 | na | na | na | +/0 | +++/+++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | na | na | na | na | na | na |
Case 2 | +/+ | ++/++ | 0/0 | ++/i | +++/++ | 0/0 | ++/0 | +++/+++ | i/0 | +/0 | ++/++ | 0/0 | ++/+ | +++/+++ | i/0 | ++/i | +++/++ | 0/0 |
Case 3 | +/++ | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/+ | 0/0 | ++/++ | ++/++ | 0/0 | ++/+ | ++/++ | 0/0 |
Case 4 | i/0 | +++/+++ | i/0 | +/+ | +++/++ | i/0 | +/0 | +++/+++ | i/0 | +/0 | +++/+++ | i/0 | +/++ | +++/+++ | 0/0 | +/0 | +++/+++ | 0/0 |
Case 5 | +/++ | +++/+++ | 0/0 | +/0 | +++/++ | 0/0 | +/0 | +++/++ | 0/0 | +/0 | +++/++ | 0/0 | +/++ | +++/+++ | +/0 | +/0 | +++/++ | 0/0 |
Case 6 | +/+ | ++/++ | 0/0 | +/0 | +++/++ | 0/0 | +/0 | +++/++ | 0/0 | +/0 | ++/++ | 0/0 | ++/++ | +++/++ | 0/0 | +/0 | +++/++ | 0/0 |
Case 7 | +/+ | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | +/+ | 0/0 | ++/++ | +++/++ | i/0 | +/0 | ++/++ | 0/0 |
Case 8 | i/i | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 |
Case 9 | i/0 | ++/++ | 0/0 | i/0 | +++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | +++/+++ | 0/0 | i/0 | ++/++ | 0/0 |
Case 10 | na | na | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 |
Case 11 | +/0 | ++/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | ++/+ | i/0 | +/0 | +/+ | 0/0 | +/0 | ++/+ | 0/0 | +/0 | ++/+ | 0/0 |
Case 12 | +/+ | ++/++ | 0/0 | +/0 | +++/++ | 0/0 | +/0 | +++/+++ | i/0 | +/0 | ++/++ | 0/0 | +/+ | ++/++ | 0/0 | +/0 | +++/+++ | 0/0 |
Case 13 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 |
Case 14 | i/0 | ++/++ | 0/0 | +/0 | ++/++ * | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | +++/+++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 15 | i/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 16 | i/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/+ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/+++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 17 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 |
Case 18 | i/0 | ++/++ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | i/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 19 | +/0 | ++/++ | i/0 | +/0 | +++/++ | i/0 | +/0 | +/+ | 0/0 | +/0 | ++/++ | 0/0 | ++/+ | +++/+++ | 0/0 | +/0 | +++/++ | 0/0 |
Case 20 | +/0 | +/+ | i/0 | +/0 | ++/+ | 0/0 | +/0 | +/+ | i/0 | +/0 | +/+ | i/0 | +/0 | ++/++ | 0/0 | +/0 | ++/+ | 0/0 |
Case 21 | +/+ | ++/++ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | ++/++ | ++/++ | 0/0 | +/0 | +/+ | 0/0 |
Case 22 | +/++ | ++/++ | 0/0 | +/0 | ++/+ | +/0 | +/0 | +/+ | 0/0 | +/0 | ++/++ | +/+ | +/i | ++/+ | i/0 | ++/0 | ++/+ | i/0 |
Case 23 | i/0 | ++/++ | 0/0 | +/0 | ++/+ | +/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 24 | i/0 | ++/++ | 0/0 | +/0 | ++/+ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 25 | +/0 | ++/++ | 0/0 | +/0 | +++/++ | 0/0 | +/0 | +++/+++ | 0/0 | +/0 | +++/+++ | 0/0 | +/0 | +++/+++ | 0/0 | +/0 | +++/+++ | 0/0 |
Case 26 | i/0 | +/+ | 0/0 | i/0 | ++/+ | 0/0 | i/0 | +/+ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | i/0 | +/0 | ++/++ | 0/0 |
Case 27 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | +/+ | 0/0 | i/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 28 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/+ | 0/0 | +/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 |
Case 29 | i/0 | ++/++ | 0/0 | +/0 | ++/+ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 |
Case 30 | +/i | ++/++ | 0/0 | i/0 | +++/+++ | 0/0 | i/0 | +++/+++ | 0/0 | i/0 | +++/+++ | 0/0 | +/+ | +++/+++ | 0/0 | +/+ | +++/+++ | 0/0 |
Case 31 | i/0 | +/++ | 0/0 | i/0 | ++/+ | 0/0 | i/0 | +/+ | 0/0 | i/0 | +/+ | 0/0 | i/0 | ++/++ | 0/0 | i/0 | ++/+ | 0/0 |
Case 32 | +/+ | ++/++ | 0/0 | ++/++ | +++/+++ | 0/0 | ++/+ | ++/++ | 0/0 | ++/+ | +++/+++ | 0/0 | +/+ | +++/+++ | 0/0 | +/0 | ++/++ | 0/0 |
H1N1 | ||||||||||||||||||
Case 1 | na | na | na | +/0 | ++/+ | 0/0 | i/0 | ++/+ | 0/0 | +/0 | +/+ | 0/0 | +/0 | +/++ | 0/0 | i/0 | +/+ | 0/0 |
Case 2 | na | na | na | +/0 | +/++ | 0/0 | i/0 | +/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 3 | na | na | na | +/0 | +/+ | 0/0 | i/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 | +/i | +/++ | 0/0 | i/0 | +/+ | 0/0 |
3.2.2. White Matter Pathology (Figure 2)
White Matter Supratentorial | White Matter Cerebellum | |||||
---|---|---|---|---|---|---|
CD8 | HLA-DR | CD20 | CD8 | HLA-DR | CD20 | |
Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | Perivascular/Parenchyma | |
Case 1 | +/0 | ++/+++ | 0/0 | na | na | na |
Case 2 | +/++ | ++/+++ | 0/0 | ++/i | +++/++ | 0/0 |
Case 3 | +/0 | ++/+++ | 0/0 | ++/+ | ++/++ | 0/0 |
Case 4 | +/0 | ++/+++ | i/0 | +/0 | +++/+++ | 0/0 |
Case 5 | +/0 | +++/++ | 0/0 | +/0 | +++/++ | 0/0 |
Case 6 | i/0 | ++/+++ | 0/0 | +/0 | +++/++ | 0/0 |
Case 7 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 8 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 |
Case 9 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 |
Case 10 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 |
Case 11 | +/0 | +/+ | 0/0 | +/0 | ++/+ | 0/0 |
Case 12 | +/0 | ++/+++ | 0/0 | +/0 | +++/+++ | 0/0 |
Case 13 | +/0 | +/+ | 0/0 | +/0 | +/+ | 0/0 |
Case 14 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 15 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 16 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 17 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 |
Case 18 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 19 | +/0 | ++/++ | 0/0 | +/0 | +++/++ | 0/0 |
Case 20 | +/0 | ++/+ | i/0 | +/0 | ++/+ | 0/0 |
Case 21 | +/0 | ++/++ | 0/0 | +/0 | +/+ | 0/0 |
Case 22 | +/0 | ++/+ | 0/0 | ++/0 | ++/+ | i/0 |
Case 23 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 24 | +/0 | ++/++ | 0/0 | +/0 | ++/++ | 0/0 |
Case 25 | +/0 | +++/++ | 0/0 | +/0 | +++/+++ | 0/0 |
Case 26 | +/0 | ++/+ | 0/0 | +/0 | ++/++ | 0/0 |
Case 27 | +/0 | ++/+ | 0/0 | +/0 | ++/++ | 0/0 |
Case 28 | +/0 | ++/+ | 0/0 | i/0 | ++/++ | 0/0 |
Case 29 | i/0 | ++/++ | 0/0 | i/0 | ++/++ | 0/0 |
Case 30 | i/0 | +++/+++ | 0/0 | +/+ | +++/+++ | 0/0 |
Case 31 | i/0 | +/+ | 0/0 | i/0 | ++/+ | 0/0 |
Case 32 | +/0 | +++/+++ | 0/0 | +/0 | ++/++ | 0/0 |
3.2.3. Vascular Pathology (Figure 3A, Table 4 and Table 5)
3.2.4. Pre-Existing Neurodegenerative Pathology (Figure 3B, Table 4)
3.2.5. Other
Pathology (n = 32) | n° of Cases (%) |
---|---|
Vascular | |
Small vessel disease, pre-exisiting | 11 (34%) |
Large territorial infarct | 7 (22%) |
Vascular thrombosis | 4 (12.5%) |
Vasculitis/endotheliitis | 0 |
Diffuse hypoxic–ischemic damage | 13 (40%) |
Acute hemorrhage | 1 (3%) |
Inflammation | |
Olfactory neuritis | 8 (25%) |
Brainstem encephalitis micronodular | 10 (31%) |
Cranial nerve neuritis | 2 (6%) |
Encephalitis | 0 |
Myelitis | 0 |
Meningitis/ependymitis/plexitis | 0 |
Peripheral neuritis | 0 |
Myositis | 0 |
Vasculitis/endotheliitis | 0 |
White matter pathology | |
Hemorrhagic leukoencephalopathy | 1 (3%) |
Diffuse leukoencephalopathy/microglial activation | 32 (100%) |
ADEM | 0 |
Neurodegenerative changes preexisting | |
ADNC | 10 (32%) |
PART | 5 (16%) |
ARTAG | 2 (6%) |
Lewy bodies | 3 (9%) |
TDP-43 proteinopathy | 2 (6%) |
Argyrophilic grain disease | 6 (18%) |
Other | |
Fulminant Herpes simplex encephalitis | 1 (3%) |
Acute traumatic brain injury | 1 (3%) |
Case | Age | Sex | Inflammation | Vascular Pathology/Other | Neurodeg Pathology |
---|---|---|---|---|---|
Case 1 | 88 | F | - | SVD, lacunar infarct | ADNC A2B3C2, LATE |
Case 2 | 79 | M | Olfactory neuritis, micronodular brainstem encephalitis, cranial nerve neuritis | Patchy acute hypoxic–ischemic neuronal damage | PART II, ARTAG |
Case 3 | 80 | F | Olfactory neuritis, micronodular brainstem encephalitis | - | ADNC A3B3C2 + CAA |
Case 4 | 62 | F | micronodular brainstem encephalitis | Hemorrhagic leukoencephalopathy | iLBD 3, PART II |
Case 5 | 69 | M | Olfactory neuritis, micronodular brainstem encephalitis, cranial nerve neuritis | Incidental cavernoma frontal | ADNC A3B2C2 + CAA |
Case 6 | 79 | M | Olfactory neuritis, micronodular brainstem encephalitis | Laminar occipital cortical necrosis older bilat (Morel) | AgD II |
Case 7 | 58 | M | Olfactory neuritis | SVD | - |
Case 8 | 71 | F | - | Patchy acute hypoxic–ischemic neuronal damage, SVD | AgD I |
Case 9 | 58 | M | - | Severe diffuse posthypoxic–postischemic pan encephalopathy with dural sinus thrombosis and meningeal vessel thrombosis; brainstem hemorrhage (Duret) | ADNC A1B0C0 |
Case 10 | 80 | M | - | Old infarct cerebellum, SVD | LBD 4, ADNC A2B1C2 |
Case 11 | 80 | F | - | Old lacunar infarct pons, SVD, patchy acute hypoxic–ischemic neuronal damage | iLBD 1, PART III |
Case 12 | 66 | M | Olfactory neuritis, micronodular brainstem encephalitis | Acute cortical laminar necrosis occipital and parietal | - |
Case 13 | 54 | M | - | Subacute infarct cerebellum | - |
Case 14 | 97 | F | - | SVD | ADNC A3B3C3 + CAA |
Case 15 | 71 | F | - | SVD, patchy acute hypoxic–ischemic neuronal damage | PART II |
Case 16 | 57 | F | Micronodular brainstem encephalitis | Patchy acute hypoxic–ischemic neuronal damage | PART II |
Case 17 | 81 | M | - | Patchy acute hypoxic–ischemic neuronal damage | ADNC A3B1C1 |
Case 18 | 73 | M | - | - | ADNC A1B1C1, AgD I |
Case 19 | 64 | M | Micronodular brainstem encephalitis | Small thrombus meningeal vessels frontal | ARTAG |
Case 20 | 66 | M | Micronodular brainstem encephalitis | Acute partly hemorrhagic cortical infarcts cingulum and parietal ctx | - |
Case 21 | 38 | M | Olfactory neuritis, micronodular brainstem encephalitis | Diffuse acute hypoxic–ischemic neuronal damage, CO intoxication | - |
Case 22 | 34 | M | Olfactory neuritis | Patchy acute hypoxic–ischemic neuronal damage | - |
Case 23 | 72 | M | - | Old SDH and SAB, patchy acute hypoxic–ischemic neuronal damage | - |
Case 24 | 52 | F | - | Perivascular fibrosis (systemic sclerosis known) | - |
Case 25 | 64 | M | Mild hypothalamus | Multiple bilateral old cortical laminar necrosis and cerebellar necrosis; sinus vein thrombosis | AgD III |
Case 26 | 86 | M | - | Hemorrhagic infarcts frontal and frontobasal, vascular thrombosis | AgD I, LATE, ADNC A2B1C1 |
Case 27 | 62 | F | - | Severe venous congestion and SAB occipital | ADNC A2B0C1 + CAA |
Case 28 | 82 | F | - | SVD, acute traumatic SDH + SAB + acute hypoxic damage + diffuse axonal injury | AgD II, ADNC A3B2C2 |
Case 29 | 67 | F | - | Old thalamic lacunar infarct, SVD, metabolic gliosis | ADNC A1B0C0 |
Case 30 | 49 | M | - | Multiple subacute infarcts cingulum, amygdala, occipitomental, pons, medulla dorsolateral, cerebellum; Wernicke-like changes (alcohol abuse) | - |
Case 31 | 21 | M | - | Patchy acute hypoxic–ischemic neuronal damage | - |
Case 32 | 57 | F | HSV-related encephalitis | Red neurons in encephalitis regions |
3.2.6. H1N1-Infected Cases (Table 2)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, K.; Chan, D.; Watermeyer, T. The cognitive consequences of the COVID-19 epidemic: Collateral damage? Brain Commun. 2020, 2, fcaa069. [Google Scholar] [CrossRef] [PubMed]
- Yachou, Y.; El Idrissi, A.; Belapasov, V.; Ait Benali, S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: Understanding the neurological manifestations in COVID-19 patients. Neurol. Sci. 2020, 41, 2657–2669. [Google Scholar] [CrossRef]
- Travi, G.; Rossotti, R.; Merli, M.; D’Amico, F.; Chiappetta, S.; Giussani, G.; Panariello, A.; Corradin, M.; Vecchi, M.; Raimondi, A.; et al. Neurological manifestations in patients hospitalized with COVID-19: A retrospective analysis from a large cohort in Northern Italy. Eur. J. Neurosci. 2021, 53, 2912–2922. [Google Scholar] [CrossRef]
- Al-Sarraj, S.; Troakes, C.; Hanley, B.; Osborn, M.; Richardson, M.P.; Hotopf, M.; Bullmore, E.; Everall, I.P. Invited Review: The spectrum of neuropathology in COVID-19. Neuropathol. Appl. Neurobiol. 2021, 47, 3–16. [Google Scholar] [CrossRef]
- Maiese, A.; Manetti, A.C.; Bosetti, C.; Del Duca, F.; La Russa, R.; Frati, P.; Di Paolo, M.; Turillazzi, E.; Fineschi, V. SARS-CoV-2 and the brain: A review of the current knowledge on neuropathology in COVID-19. Brain Pathol. 2021, 31, e13013. [Google Scholar] [CrossRef]
- Kantonen, J.; Mahzabin, S.; Mäyränpää, M.I.; Tynninen, O.; Paetau, A.; Andersson, N.; Sajantila, A.; Vapalahti, O.; Carpén, O.; Kekäläinen, E.; et al. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathol. 2020, 30, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Solomon, I.H.; Normandin, E.; Bhattacharyya, S.; Mukerji, S.S.; Keller, K.; Ali, A.S.; Adams, G.; Hornick, J.L.; Padera, R.F., Jr.; Sabeti, P. Neuropathological Features of COVID-19. N. Engl. J. Med. 2020, 383, 989–992. [Google Scholar] [CrossRef]
- Mehta, S.; Bhandari, S.; Mehta, S. Brain autopsies in fatal COVID-19 and postulated pathophysiology: More puzzling than a Rubik’s cube. J. Clin. Pathol. 2021, 74, 612–613. [Google Scholar] [CrossRef]
- Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Glatzel, M.; Hagel, C.; Matschke, J.; Sperhake, J.; Deigendesch, N.; Tzankov, A.; Frank, S. Neuropathology associated with SARS-CoV-2 infection. Lancet 2021, 397, 276. [Google Scholar] [CrossRef]
- Nasrallah, M.P.; Mourelatos, Z.; Lee, E.B. Neuropathology associated with SARS-CoV-2 infection. Lancet 2021, 397, 277. [Google Scholar] [CrossRef] [PubMed]
- Egervari, K.; Thomas, C.; Lobrinus, J.A.; Kuhlmann, T.; Brück, W.; Love, S.; Crary, J.F.; Stadelmann, C.; Paulus, W.; Merkler, D. Neuropathology associated with SARS-CoV-2 infection. Lancet 2021, 397, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Reichard, R.R.; Kashani, K.B.; Boire, N.A.; Constantopoulos, E.; Guo, Y.; Lucchinetti, C.F. Neuropathology of COVID-19: A spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020, 140, 1–6. [Google Scholar] [CrossRef]
- Kirschenbaum, D.; Imbach, L.L.; Rushing, E.J.; Frauenknecht, K.B.M.; Gascho, D.; Ineichen, B.V.; Keller, E.; Kohler, S.; Lichtblau, M.; Reimann, R.R.; et al. Intracerebral endotheliitis and microbleeds are neuropathological features of COVID-19. Neuropathol. Appl. Neurobiol. 2021, 47, 454–459. [Google Scholar] [CrossRef]
- Lou, J.J.; Movassaghi, M.; Gordy, D.; Olson, M.G.; Zhang, T.; Khurana, M.S.; Chen, Z.; Perez-Rosendahl, M.; Thammachantha, S.; Singer, E.J.; et al. Neuropathology of COVID-19 (neuro-COVID): Clinicopathological update. Free Neuropathol. 2021, 2, 2. [Google Scholar] [PubMed]
- Thakur, K.T.; Miller, E.H.; Glendinning, M.D.; Al-Dalahmah, O.; Banu, M.A.; Boehme, A.K.; Boubour, A.L.; Bruce, S.S.; Chong, A.M.; Claassen, J.; et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 2021, 144, awab148. [Google Scholar] [CrossRef]
- Deigendesch, N.; Sironi, L.; Kutza, M.; Wischnewski, S.; Fuchs, V.; Hench, J.; Frank, A.; Nienhold, R.; Mertz, K.D.; Cathomas, G.; et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 2020, 140, 583–586. [Google Scholar] [CrossRef]
- Fisicaro, F.; Di Napoli, M.; Liberto, A.; Fanella, M.; Di Stasio, F.; Pennisi, M.; Bella, R.; Lanza, G.; Mansueto, G. Neurological Sequelae in Patients with COVID-19: A Histopathological Perspective. Int. J. Environ. Res. Public Health 2021, 18, 1415. [Google Scholar] [CrossRef]
- Manca, R.; De Marco, M.; Ince, P.G.; Venneri, A. Heterogeneity in Regional Damage Detected by Neuroimaging and Neuropathological Studies in Older Adults With COVID-19: A Cognitive-Neuroscience Systematic Review to Inform the Long-Term Impact of the Virus on Neurocognitive Trajectories. Front. Aging Neurosci. 2021, 13, 646908. [Google Scholar] [CrossRef]
- Hosp, J.A.; Dressing, A.; Blazhenets, G.; Bormann, T.; Rau, A.; Schwabenland, M.; Thurow, J.; Wagner, D.; Waller, C.; Niesen, W.D.; et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 2021, 144, 1263–1276. [Google Scholar] [CrossRef]
- Altuna, M.; Sanchez-Saudinos, M.B.; Lleo, A. Cognitive symptoms after COVID-19. Neurol. Perspect. 2021, 1 (Suppl. S1), s16–s24. [Google Scholar] [CrossRef]
- Hixon, A.M.; Thaker, A.A.; Pelak, V.S. Persistent visual dysfunction following posterior reversible encephalopathy syndrome due to COVID-19: Case series and literature review. Eur. J. Neurol. 2021, 28, 3289–3302. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.M.; Gilbert, A.R.; Bieniek, K.F.; Richardson, T.E. COVID-19 Patients with CNS Complications and Neuropathologic Features of Acute Disseminated Encephalomyelitis and Acute Hemorrhagic Leukoencephalopathy. J. Neuropathol. Exp. Neurol. 2021, 80, 628–631. [Google Scholar] [CrossRef]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef]
- Heming, M.; Li, X.; Räuber, S.; Mausberg, A.K.; Börsch, A.L.; Hartlehnert, M.; Singhal, A.; Lu, I.N.; Fleischer, M.; Szepanowski, F.; et al. Neurological manifestations of COVID-19 feature T cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid. Immunity 2021, 54, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Bartley, C.M.; Chow, R.D.; Ngo, T.T.; Jiang, R.; Zamecnik, C.R.; Dandekar, R.; Loudermilk, R.P.; Dai, Y.; Liu, F.; et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neuro-logical symptoms. Cell Rep. Med. 2021, 2, 100288. [Google Scholar] [CrossRef]
- Etter, M.M.; Martins, T.A.; Kulsvehagen, L.; Pössnecker, E.; Duchemin, W.; Hogan, S.; Sanabria-Diaz, G.; Müller, J.; Chiappini, A.; Rychen, J.; et al. Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: A prospective cross-sectional study. Nat. Commun. 2022, 13, 6777. [Google Scholar] [CrossRef]
- Bonetto, V.; Pasetto, L.; Lisi, I.; Carbonara, M.; Zangari, R.; Ferrari, E.; Punzi, V.; Luotti, S.; Bottino, N.; Biagianti, B.; et al. Markers of blood-brain barrier disruption increase early and persistently in COVID-19 patients with neurological manifestations. Front. Immunol. 2022, 13, 1070379. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Gomes, M.; Kruglov, A.; Durek, P.; Heinrich, F.; Tizian, C.; Heinz, G.A.; Pascual-Reguant, A.; Du, W.; Mothes, R.; Fan, C.; et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat. Commun. 2021, 12, 1961. [Google Scholar] [CrossRef]
- Bernard-Valnet, R.; Perriot, S.; Canales, M.; Pizzarotti, B.; Caranzano, L.; Castro-Jiménez, M.; Epiney, J.-B.; Vijiala, S.; Salvioni-Chiabotti, P.; Anichini, A.; et al. Encephalopathies associ-ated with severe COVID-19 present neurovascular unit alterations without evidence for strong neuroinflammation. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1029. [Google Scholar] [CrossRef]
- Fernández-Castañeda, A.; Lu, P.; Geraghty, A.C.; Song, E.; Lee, M.H.; Wood, J.; Yalçın, B.; Taylor, K.R.; Dutton, S.; Acosta-Alvarez, L.; et al. Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain. Cell 2022, 185, 2452–2468. [Google Scholar] [CrossRef] [PubMed]
- Daroische, R.; Hemminghyth, M.S.; Eilertsen, T.H.; Breitve, M.H.; Chwiszczuk, L.J. Cognitive Impairment after COVID-19-A Review on Objective Test Data. Front. Neurol. 2021, 12, 699582. [Google Scholar] [CrossRef] [PubMed]
- Buyanova, I.S.; Arsalidou, M. Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Front. Hum. Neurosci. 2021, 15, 662031. [Google Scholar] [CrossRef]
- MacLean, M.A.; Kamintsky, L.; Leck, E.D.; Friedman, A. The potential role of microvascular pathology in the neurological manifestations of coronavirus infection. Fluids Barriers CNS 2020, 17, 55. [Google Scholar] [CrossRef]
- Gutierrez Amezcua, J.M.; Jain, R.; Kleinman, G.; Muh, C.R.; Guzzetta, M.; Folkerth, R.; Snuderl, M.; Placantonakis, D.G.; Galetta, S.L.; Hochman, S.; et al. COVID-19-Induced Neurovascular Injury: A Case Series with Emphasis on Pathophysiological Mechanisms. SN Compr. Clin. Med. 2020, 2, 2109–2125. [Google Scholar] [CrossRef]
- Jaunmuktane, Z.; Mahadeva, U.; Green, A.; Sekhawat, V.; Barrett, N.A.; Childs, L.; Shankar-Hari, M.; Thom, M.; Jäger, H.R.; Brandner, S. Microvascular injury and hypoxic damage: Emerging neuropathological signatures in COVID-19. Acta Neuropathol. 2020, 140, 397–400. [Google Scholar] [CrossRef]
- Keller, E.; Brandi, G.; Winklhofer, S.; Imbach, L.L.; Kirschenbaum, D.; Frontzek, K.; Steiger, P.; Dietler, S.; Haeberlin, M.; Willms, J.; et al. Large and Small Cerebral Vessel Involvement in Severe COVID-19: Detailed Clinical Workup of a Case Series. Stroke 2020, 51, 3719–3722. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, R.; Ferrante, L.E. Long-term recovery after critical illness in older adults. Curr. Opin. Crit. Care 2022, 28, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Jellinger, K.A.; Riederer, P.; Strobel, S.; Monoranu, C.M.; Tappe, D. No Metagenomic Evidence of Causative Viral Pathogens in Postencephalitic Parkinsonism Following Encephalitis Lethargica. Microorganisms 2021, 9, 1716. [Google Scholar] [CrossRef] [PubMed]
- Bulfamante, G.; Bocci, T.; Falleni, M.; Campiglio, L.; Coppola, S.; Tosi, D.; Chiumello, D.; Priori, A. Brainstem neuropathology in two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung. J. Neurol. 2021, 268, 4486–4491. [Google Scholar] [CrossRef] [PubMed]
- Bulfamante, G.; Chiumello, D.; Canevini, M.P.; Priori, A.; Mazzanti, M.; Centanni, S.; Felisati, G. First ultrastructural autoptic findings of SARS -CoV-2 in olfactory pathways and brainstem. Minerva Anestesiol. 2020, 86, 678–679. [Google Scholar] [CrossRef] [PubMed]
- Montini, F.; Martinelli, V.; Sangalli, F.; Callea, M.; Anzalone, N.; Filippi, M. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) after SARS-CoV-2 pneumonia. Neurol. Sci. 2021, 42, 4373–4375. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021, 24, 168–175. [Google Scholar] [CrossRef]
- Aschman, T.; Mothes, R.; Heppner, F.L.; Radbruch, H. What SARS-CoV-2 does to our brains. Immunity 2022, 55, 1159–1172. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhang, Y.; Tan, B.H. What can cerebrospinal fluid testing and brain autopsies tell us about viral neuroinvasion of SARS-CoV-2. J. Med. Virol. 2021, 93, 4247–4257. [Google Scholar] [CrossRef] [PubMed]
- Serrano, G.E.; Walker, J.E.; Tremblay, C.; Piras, I.S.; Huentelman, M.J.; Belden, C.M.; Goldfarb, D.; Shprecher, D.; Atri, A.; Adler, C.H.; et al. SARS-CoV-2 Brain Regional Detection, Histopathology, Gene Expression, and Immunomodulatory Changes in Decedents with COVID-19. J. Neuropathol. Exp. Neurol. 2022, 81, 666–695. [Google Scholar] [CrossRef]
- Poloni, T.E.; Medici, V.; Moretti, M.; Visonà, S.D.; Cirrincione, A.; Carlos, A.F.; Davin, A.; Gagliardi, S.; Pansarasa, O.; Cereda, C.; et al. COVID-19-related neuropathology and microglial activation in elderly with and without dementia. Brain Pathol. 2021, 31, e12997. [Google Scholar] [CrossRef]
- Pröbstel, A.K.; Schirmer, L. SARS-CoV-2-specific neuropathology: Fact or fiction? Trends Neurosci. 2021, 44, 933–935. [Google Scholar] [CrossRef]
- Schmidbauer, M.; Budka, H.; Ambros, P. Herpes simplex virus (HSV) DNA in microglial nodular brainstem encephalitis. J. Neuropathol. Exp. Neurol. 1989, 48, 645–652. [Google Scholar] [CrossRef]
- Cosentino, G.; Todisco, M.; Hota, N.; Della Porta, G.; Morbini, P.; Tassorelli, C.; Pisani, A. Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: A critical systematic review. Eur. J. Neurol. 2021, 28, 3856–3865. [Google Scholar] [CrossRef]
- Remmelink, M.; De Mendonça, R.; D’Haene, N.; De Clercq, S.; Verocq, C.; Lebrun, L.; Lavis, P.; Racu, M.L.; Trépant, A.L.; Maris, C.; et al. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Crit. Care 2020, 24, 495. [Google Scholar] [CrossRef] [PubMed]
- Budka, H. Flaviviruses 1. General Introduction and Tick Borne Encephalitis. In Infections of the Central Nervous System: Neuropathology and Genetics; Chrétien, F., Wong, K.T., Sharer, L.R., Keohane, C., Gray, F., Eds.; International Society of Neuropathology (ISN) Book Series Pathology and Genetics; Wiley: Hoboken, NJ, USA, 2020; Chapter 14; pp. 131–146. [Google Scholar]
- Kreye, J.; Reincke, S.M.; Prüss, H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat. Rev. Immunol. 2020, 20, 645–646. [Google Scholar] [CrossRef] [PubMed]
- Budka, H. HIV-Related Dementia: Pathology and Possible Pathogenesis. In The Neuropathology of HIV Infection; Scaravilli, F., Ed.; Springer: London, UK, 1993; pp. 171–185. [Google Scholar]
Age | Sex | Clinical Diagnosis | Cause of Death | Disease Duration | Days in ICU | Neurological Symptoms | Vascular Risk Factors | Additional co-Morbidities | Treatments | SARS-CoV-2 PCR Positivity | |
---|---|---|---|---|---|---|---|---|---|---|---|
Case 1 | 88 | Female | na | na | na | na | na | na | na | na | na * |
Case 2 | 78 | Male | COVID-19 pneumonia | Cardiovascular failure | 56 | 48 | Did not regain consciousness after stop of narcotics | Diabetes, hypertension, obesity, atrial fibrillation | Dilatative cardiomyopathy, arteriosclerosis | Remdesivir | blood, perianal, trachea, larynx |
Case 3 | 79 | Female | COVID-19 pneumonia | Pulmonary thrombosis, pulmonary bleeding, Sepsis | 18 | 11 | None | Hypertension, obesity | - | Kaletra, cortisone, 3 doses reconvalescent plasma, remdesivir | Larynx |
Case 4 | 62 | Female | COVID-19 pneumonia | Respiratory failure | na | 63 | Critical illness polyneuropathy/myopathy, reduced vigilance, EEG diffuse slowing | Atrial fibrillation, arterial hypertension | Suspicion of latent tuberculosis | Cortisone; positive EBV PCR- Ganciclovir | na * |
Case 5 | 68 | Male | COVID-19 pneumonia | Multi-organ failure | 31 | 27 | Agitation, confusion, aggression, psychosis | Diabetes, hypertension, obesity | Pulmonary emphysema, steatosis hepatis, arteriosclerosis | Kaletra, remdesivir, cortisone, Roactemra, 3 doses reconvalescent plasma | larynx, trachea |
Case 6 | 78 | Male | COVID-19 pneumonia | Multi-organ failure | 28 | 25 | Did not regain consciousness after stop of narcotics, anisocoria, meningismus, tetraparesis | Arterial hypertension, atrial fibrillation | Pulmonary emphysema, arteriosclerosis, chronic kidney injury, prostate hyperplasia, hyperuricemia | Reconvalescent plasma, Roactemra, dialysis | trachea, larynx |
Case 7 | 57 | Male | COVID-19 pneumonia | Respiratory failure | 5 | 0 | None | Arterial hypertension, obesity | Steatosis hepatis | None | naso-pharynx |
Case 8 | 71 | Female | COVID-19 pneumonia | Multi-organ failure secondary to respiratory failure due to pneumonia | 10 | 4 | na | Arteriosclerosis | Myotonic dystrophy type 2, steatosis hepatis, asthma | Cortisone, remdesivir | naso-pharynx |
Case 9 | 58 | Male | COVID-19 pneumonia | Sinus thrombosis | 26 | 7 | Seizures, coma | Chronic kidney failure, arteriosclerosis | Pulmonary emphysema | None | trachea, naso-pharynx |
Case 10 | 80 | Male | COVID-19 pneumonia | Respiratory failure | 7 | 0 | Anxiety disorder, somnolence due to psychopharmaceuticals | Arterial hypertension, arteriosclerosis, acute on chronic kidney disease | Humerus fracture left arm | Ceftriaxone, hydroxychloroquine, zinc | na * |
Case 11 | 80 | Female | COVID-19 pneumonia | Cardiorespiratory failure | 3 | 3 | None | Cardiac insufficiency (NYHA IV), diabetes, arterial hypertension, arteriosclerosis | - | None due to rapid cardiac deterioration | na * |
Case 12 | 66 | Male | COVID-19 pneumonia | Multi-organ failure, hypoxic encephalopathy | 42 | 35 | Impaired consciousness of unknown origin, potentially due to hypoxic encephalopathy | Arterial hypertension, hypercholesterinemia | Status post transient ischemic attack 2014 | Cortisone, remdesivir; EBV, HSV and Aspergillus infection | na * |
Case 13 | 54 | Male | COVID-19 pneumonia, mucormycosis with pulmonary infarction | Respiratory failure | 24 | 18 | None | Obesity, arterial hypertension, hypertrophic left ventricle | Myelodysplastic syndrome, secondary acute myeloid leukemia with chemotherapy and complete hematologic remission, bone marrow hypoplasia, signs of dysplastic hematopoiesis in the peripheral blood | Tocilizumab | na * |
Case 14 | 96 | Female | Rib fractures, hemothorax, and COVID-19 pneumonia | Respiratory failure | na | na | na | Arterial hypertension, hypertensive cardiomyopathy, pulmonary hypertension | - | None | naso-pharynx |
Case 15 | 71 | Male | COVID-19 pneumonia | Multi-organ failure secondary to respiratory failure due to pneumonia with interstitial fibrosis | 24 | 15 | Ageusia, agitation | Arterial hypertension | Arteriosclerosis, steatosis hepatis, cholecystolithiasis | Cortisone, remdesivir | trachea, naso-pharynx, bronchial |
Case 16 | 56 | Female | COVID-19 pneumonia | Hemorrhagic shock after ECMO implantation | 15 | 12 | None | Diabetes, obesity | Status post thyroid carcinoma | Cortisone, remdesivir | naso-pharynx, trachea |
Case 17 | 81 | Male | Unclear, postoperative multi-organ failure | Multi-organ failure | na | 1 | None | Intermittent atrial fibrillation | IPMN of the pancreas | None | na * |
Case 18 | 73 | Male | COVID-19 pneumonia | Cardiogenic shock after ECMO implantation | 16 | 11 | None | Arterial hypertension, hypercholesterinemia | - | Cortisone, remdesivir | naso-pharynx, trachea |
Case 19 | 63 | Female | COVID-19 pneumonia | Respiratory failure | 1 | 0 | None | Arterial hypertension, obesity, arteriosclerosis | Chronic venous insufficiency, steatosis hepatis | None | naso-pharynx |
Case 20 | 65 | Male | COVID-19 pneumonia | Respiratory failure | 36 | 26 | Hemiparesis right side (onset 1 November 2021) | Obesity, sleep apnea syndrome, arterial hypertension, diabetes | Steatosis hepatis | Cortisone | naso-pharynx |
Case 21 | 38 | Male | Not applicable (death at home) | Carbon monoxide poisoning | na | 0 | na | None | - | None | naso-pharynx post mortem |
Case 22 | 33 | Male | Cardiac arrest | Cardiovascular failure | 7 | 0 | None | None | - | None | naso-pharynx |
Case 23 | 71 | Male | COVID-19 pneumonia | Multi-organ failure | 71 | 57 | None/prolonged weaning | Diabetes, arterial hypertension, PAOD, hyperlipidemia | Status post TIA | Cortisone | naso-pharynx |
Case 24 | 52 | Female | COVID-19 pneumonia | Cardiogenic shock due to myocarditis, death during new cannulation of ECMO | 12 | 5 | None | Obesity | Scleroderma | Cortisone | naso-pharynx |
Case 25 | 64 | Male | Sepsis | Multi-organ failure | na | 34 | Coma, therapy-resistant status epilepticus | Arteriosclerosis, arterial hypertension, obesity, chronic kidney disease, hypercholesterinemia, nicotine abuse | Alcohol abuse, steatosis hepatis, chronic pancreatitis, pulmonary edema and congestion, hypothyroidism, hyperuricemia, pericarditis | None | naso-pharynx |
Case 26 | 86 | Male | Cardiac arrest | Diffuse myocardial ischemia | na | 0 | Delirium | Arteriosclerosis, arterial hypertension | Prostate hyperplasia, status post meningioma resection left frontal lobe 9 days before death | Cortisone | naso-pharynx |
Case 27 | 62 | Female | COVID-19 pneumonia | Respiratory failure | 14 | 4 | na | None | - | Cortisone | naso-pharynx |
Case 28 | 82 | Female | Subdural hematoma | Subdural hematoma | 8 | 0 | Coma, anisocoria | Atrial fibrillation | Anxiety disorder | None | naso-pharynx |
Case 29 | 67 | Female | Not applicable (death at home) | Cardiovascular failure | na | 0 | na | Arterial hypertension, atrial fibrillation | Chronic kidney failure | None | naso-pharynx post mortem |
Case 30 | 49 | Male | Progressive stroke | Cardiovascular failure | 61 | 12 | Stroke with visual disturbance, gait disturbance, dysphagia, dysarthria, aphasia, agitation, reduced vigilance | Diabetes, arterial hypertension | Chronic kidney disease, schizoaffective disorder | Cortisone | naso-pharynx |
Case 31 | 21 | Male | Myocardial infarction | Acute myocardial infarction | na | 0 | Epileptic seizure | Obesity | Purpura Schönlein–Henoch | None | naso-pharynx |
Case 32 | 57 | Female | COVID-19 pneumonia | Cardiorespiratory failure | na | na | na | Arteriosclerosis | Invasive mammary carcinoma | na | na * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelpi, E.; Klotz, S.; Beyerle, M.; Wischnewski, S.; Harter, V.; Kirschner, H.; Stolz, K.; Reisinger, C.; Lindeck-Pozza, E.; Zoufaly, A.; Leoni, M.; Gorkiewicz, G.; Zacharias, M.; Haberler, C.; Hainfellner, J.; Woehrer, A.; Hametner, S.; Roetzer, T.; Voigtländer, T.; Ricken, G.; Endmayr, V.; Haider, C.; Ludwig, J.; Polt, A.; Wilk, G.; Schmid, S.; Erben, I.; Nguyen, A.; Lang, S.; Simonitsch-Klupp, I.; Kornauth, C.; Nackenhorst, M.; Kläger, J.; Kain, R.; Chott, A.; Wasicky, R.; Krause, R.; Weiss, G.; Löffler-Rag, J.; Berger, T.; Moser, P.; Soleiman, A.; Asslaber, M.; Sedivy, R.; Klupp, N.; Klimpfinger, M.; Risser, D.; Budka, H.; Schirmer, L.; Pröbstel, A.-K.; Höftberger, R. Multifactorial White Matter Damage in the Acute Phase and Pre-Existing Conditions May Drive Cognitive Dysfunction after SARS-CoV-2 Infection: Neuropathology-Based Evidence. Viruses 2023, 15, 908. https://doi.org/10.3390/v15040908
Gelpi E, Klotz S, Beyerle M, Wischnewski S, Harter V, Kirschner H, Stolz K, Reisinger C, Lindeck-Pozza E, Zoufaly A, Leoni M, Gorkiewicz G, Zacharias M, Haberler C, Hainfellner J, Woehrer A, Hametner S, Roetzer T, Voigtländer T, Ricken G, Endmayr V, Haider C, Ludwig J, Polt A, Wilk G, Schmid S, Erben I, Nguyen A, Lang S, Simonitsch-Klupp I, Kornauth C, Nackenhorst M, Kläger J, Kain R, Chott A, Wasicky R, Krause R, Weiss G, Löffler-Rag J, Berger T, Moser P, Soleiman A, Asslaber M, Sedivy R, Klupp N, Klimpfinger M, Risser D, Budka H, Schirmer L, Pröbstel A-K, Höftberger R. Multifactorial White Matter Damage in the Acute Phase and Pre-Existing Conditions May Drive Cognitive Dysfunction after SARS-CoV-2 Infection: Neuropathology-Based Evidence. Viruses. 2023; 15(4):908. https://doi.org/10.3390/v15040908
Chicago/Turabian StyleGelpi, Ellen, Sigrid Klotz, Miriam Beyerle, Sven Wischnewski, Verena Harter, Harald Kirschner, Katharina Stolz, Christoph Reisinger, Elisabeth Lindeck-Pozza, Alexander Zoufaly, Marlene Leoni, Gregor Gorkiewicz, Martin Zacharias, Christine Haberler, Johannes Hainfellner, Adelheid Woehrer, Simon Hametner, Thomas Roetzer, Till Voigtländer, Gerda Ricken, Verena Endmayr, Carmen Haider, Judith Ludwig, Andrea Polt, Gloria Wilk, Susanne Schmid, Irene Erben, Anita Nguyen, Susanna Lang, Ingrid Simonitsch-Klupp, Christoph Kornauth, Maja Nackenhorst, Johannes Kläger, Renate Kain, Andreas Chott, Richard Wasicky, Robert Krause, Günter Weiss, Judith Löffler-Rag, Thomas Berger, Patrizia Moser, Afshin Soleiman, Martin Asslaber, Roland Sedivy, Nikolaus Klupp, Martin Klimpfinger, Daniele Risser, Herbert Budka, Lucas Schirmer, Anne-Katrin Pröbstel, and Romana Höftberger. 2023. "Multifactorial White Matter Damage in the Acute Phase and Pre-Existing Conditions May Drive Cognitive Dysfunction after SARS-CoV-2 Infection: Neuropathology-Based Evidence" Viruses 15, no. 4: 908. https://doi.org/10.3390/v15040908