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Abstract: HIV establishes a persistent viral reservoir in the brain despite viral suppression in blood
to undetectable levels on antiretroviral therapy (ART). The brain viral reservoir in virally suppressed
HIV+ individuals is not well-characterized. In this study, intact, defective, and total HIV proviral
genomes were measured in frontal lobe white matter from 28 virally suppressed individuals on
ART using the intact proviral DNA assay (IPDA). HIV gag DNA/RNA levels were measured using
single-copy assays and expression of 78 genes related to inflammation and white matter integrity
was measured using the NanoString platform. Intact proviral DNA was detected in brain tissues
of 18 of 28 (64%) individuals on suppressive ART. The median proviral genome copy numbers
in brain tissue as measured by the IPDA were: intact, 10 (IQR 1–92); 3′ defective, 509 (225–858);
5′ defective, 519 (273–906); and total proviruses, 1063 (501–2074) copies/106 cells. Intact proviral
genomes accounted for less than 10% (median 8.3%) of total proviral genomes in the brain, while
3′ and 5′ defective genomes accounted for 44% and 49%, respectively. There was no significant
difference in median copy number of intact, defective, or total proviruses between groups stratified
by neurocognitive impairment (NCI) vs. no NCI. In contrast, there was an increasing trend in intact
proviruses in brains with vs. without neuroinflammatory pathology (56 vs. 5 copies/106 cells,
p = 0.1), but no significant differences in defective or total proviruses. Genes related to inflammation,
stress responses, and white matter integrity were differentially expressed in brain tissues with
>5 vs. +5 intact proviruses/106 cells. These findings suggest that intact HIV proviral genomes persist
in the brain at levels comparable to those reported in blood and lymphoid tissues and increase CNS
inflammation/immune activation despite suppressive ART, indicating the importance of targeting
the CNS reservoir to achieve HIV cure.

Keywords: HIV reservoirs; intact proviral DNA assay; intact proviral genomes; HIV-associated
neurocognitive disorders; neuroinflammation

1. Introduction

HIV establishes a persistent reservoir of infected cells in the brain despite viral sup-
pression in blood to undetectable levels on combination antiretroviral therapy (ART) [1–4].
HIV enters the brain within weeks of acute infection, and early initiation of ART decreases
the size of the CNS viral reservoir [5]. In virally suppressed HIV+ individuals on ART, most
of the infected cells in the brain are myeloid cells (macrophages and microglia); evidence of
latent or low-level productive infection persisting in these myeloid cell reservoirs includes
studies using single-copy PCR assays, in situ detection of HIV RNA/DNA, and quantitative
viral outgrowth assays (QVOA) [6–11]. CD4+ T-cells trafficking into the CNS are another
reservoir of replication-competent HIV in the brain [4,12–14], while astrocytes may harbor
a low-level infection [15].
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HIV DNA and RNA is detected in the brain in the majority of HIV+ individuals
examined at autopsy, including those with viral suppression in blood [1,7,10,11,16–18].
HIV RNA and DNA levels are generally higher in white matter than gray matter, and
variable across neuroanatomical regions [1,6,10,15,17]. Although suppressive ART reduces
plasma and CSF HIV RNA levels to below the limits of detection in most people, higher
HIV RNA levels in CSF compared with plasma are observed in a minority of ART-treated
individuals, a discordance referred to as CSF viral escape [19–21]. These findings highlight
the importance of viral reservoirs in the brain as an obstacle to achieving HIV cure.

Neurocognitive impairment (NCI) remains prevalent among people with HIV despite
suppressive ART [22,23]. Mechanisms underlying HIV-associated neurocognitive disorders
(HAND), which include asymptomatic neurocognitive impairment (ANI), minor neurocog-
nitive disorder (MND), and HIV-associated dementia (HAD), in ART-treated individuals are
multifactorial and include ongoing low-level viral replication in the brain, neuroinflamma-
tion, ART neurotoxicity, cerebrovascular disease, and other factors [2,22–25]. Although HIV
encephalitis (HIVE) is common in untreated HIV+ individuals, it is uncommon in virally
suppressed individuals. Common neuropathological findings in virally suppressed indi-
viduals include mild nonspecific changes such as reactive gliosis, lymphocytic infiltrates,
decreased white matter integrity, and cerebrovascular disease [11,16,22,26,27]. Previous
studies identified gene expression changes in the brains of untreated and ART-treated HIV+
individuals, including upregulation of genes related to inflammation, interferon responses,
stress responses, lipid/energy metabolism, and white matter integrity [11,28–31]. However,
the contribution of intact proviral genomes to gene expression changes and NCI in virally
suppressed individuals remains unclear.

The intact proviral DNA assay (IPDA) is a sensitive multiplex digital droplet PCR
method that was recently developed to quantify intact and defective HIV proviral genomes
in cells and tissues and estimate the size of the replication-competent proviral reser-
voir [32–35]. The IPDA has been validated in published studies which showed correlation
of intact proviral DNA genome copies with other measures of replication-competent HIV
proviruses such as quantitative viral outgrowth assays and detection of integrated HIV
genomes [32,36,37]. IPDA analysis of CD4+ T-cell reservoirs in blood and lymphoid tis-
sues shows that intact proviral genomes are detected in these compartments and the
ratio of intact-to-total proviral genomes range is ~1–12% [32,36–39]. These studies of
intact proviruses are important for evaluating effects of interventions on the size of the
replication-competent viral reservoir and HIV cure.

The brain viral reservoir in virally suppressed HIV+ individuals is not
well-characterized. In a recent study, Cochrane et al. measured intact and defective
HIV proviral genomes in the brain tissue of 18 viremic and 12 virologically suppressed
HIV+ individuals examined at autopsy [18]. Intact proviral genomes were detected in 8
of 10 viremic and 6 of 9 suppressed individuals, with no significant difference between
levels of intact or total proviral DNA in untreated vs. virally suppressed individuals. CNS
myeloid cells were shown to harbor HIV DNA in virally suppressed individuals. Here, we
characterize intact, defective, and total HIV proviral genomes in frontal white matter tissue
from 28 virally suppressed HIV+ individuals on ART and examine relationships between
intact proviral genomes, neuroinflammation, and neurocognitive impairment.

2. Methods
2.1. Cohort Selection and Characterization

HIV+ individuals and age/sex-matched HIV-negative controls with available frozen
autopsy brain tissue collected between 2001 and 2014 were from the National NeuroAIDS
Tissue Consortium (NNTC) sites (Texas NeuroAIDS Research Center, National Neurological
AIDS Bank, Manhattan HIV Brain Bank, and California NeuroAIDS Tissue Network) [40].
All subjects were enrolled with written informed consent and Institutional Review Board
(IRB) approval at each study site. Autopsy tissue samples and clinical data were collected
and coded to protect participants’ confidentiality in accordance with IRB approved pro-
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tocols at the University of Texas Medical Branch Galveston, University of California Los
Angeles, Icahn School of Medicine at Mount Sinai, University of California San Diego, and
Dana Farber Cancer Institute (DFCI protocol 16-273). Eligible HIV+ individuals were aged
40 or older and receiving 3 or more ART drugs for at least 2 years, including the last year
prior to death, with the last plasma viral load (VL) within 12 months prior to death unde-
tectable (<50 copies/mL) or <200 HIV RNA copies/mL and post-mortem interval (PMI)
less than 24 h. Cases with active CNS infections or non-HAND neurodegenerative diseases
were excluded. The following two cases not meeting all eligibility criteria were included:
one case maintained on 2 ART drugs (AZT and 3TC; combivir) with plasma VL suppressed
below 50 copies/mL for more than 3 years, and one case with PMI of 28 h. NCI status
was determined based on HAND diagnoses and neurocognitive T-scores [41–43]. Three
subjects with diagnoses of neuropsychological impairment due to other causes (NPI-O)
were assigned to the unimpaired group because review of available clinical data suggested
low probability of HAND based on neurocognitive T-scores in the normal range and/or
confounding by heavy alcohol use. Brains were removed and examined at the individual
NNTC sites [40], tissue was frozen or formalin-fixed, and gross pathology and histopathol-
ogy evaluated by neuropathologists at each site. Features evaluated included inflammation,
reactive astrocytes, macrophages/microglia, microglial nodules, and decreased myelin.
HIVE scores were defined as: 0 = no or minimal inflammation, 1 = mild to moderate lym-
phocytic inflammation, 2 = microglial nodules, severe lymphocytic inflammation, and/or
leukoencephalopathy [11,26].

2.2. Nucleic Acid Extraction and Brain HIV IPDA and Viral Load Measurements

Total RNA and genomic DNA were extracted from ~30 mg frozen frontal lobe white
matter using the AllPrep DNA/RNA isolation kit according to the manufacturer’s instruc-
tions (Qiagen, Valencia, CA, USA). The IPDA assay was performed by Accelevir Diagnostics
(Baltimore, MD, USA) using 8–12 µg genomic DNA isolated from homogenized frontal
white matter as described [32,36–39]. As reported in Bruner et al. [32], the IPDA consists of
two multiplex ddPCR reactions: the HIV proviral DNA reaction, which distinguishes intact
from defective proviruses, and a second reaction performed in parallel that quantifies DNA
shearing and input diploid cell equivalents. A DNA shearing correction is used to account
for shearing using a DNA shearing index (DSI), and final IPDA results are reported as intact,
defective, or total proviral genome frequencies per million brain cells. Paired samples of
total RNA and genomic DNA from an adjacent region of the same tissue sample were
assayed for HIV gag DNA/RNA levels by the HIV Molecular Monitoring Core (Frederick
National Laboratory for Cancer Research, Frederick, MD, USA) using single-copy gag
assays [11]. Input nucleic acid from 1 to 2 million cell equivalents (0.5–2 µg) was assayed
in 12 replicates for each RNA and DNA sample. DNA cell equivalent-recoveries were
assessed using an hCCR5 assay, which was used to normalize cellular HIV RNA and DNA
viral loads.

2.3. Gene Expression Profiling

Targeted gene expression profiling was performed using NanoString nCounter tech-
nology (NanoString Technologies, Seattle, WA, USA) at the Dana-Farber/Harvard Cancer
Center Molecular Biology core facility as described [11,26]. RNA content and quality (RIN;
RNA integrity number) were evaluated using the Agilent BioAnalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA). The probe set consisted of 78 probes to detect expression of
genes related to inflammation, interferon responses, stress response, myeloid cells, T-cells,
energy metabolism, and white matter integrity that we previously mapped to differentially
expressed genes and co-expression modules in white matter from HIV+ vs. HIV− individ-
uals [11]. Quality control checks were performed using nSolver 3.0 software (NanoString
Technologies, Seattle, WA, USA).
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2.4. Data Analysis

Group differences were evaluated by Wilcoxon rank-sum or Fisher’s exact test for
continuous and categorical variables, respectively (p-values < 0.05). Spearman’s correlation
analyses were performed in R version 4.2.1 (p-values < 0.05). Fold-change (FC) analysis
of gene expression was calculated using Welch’s t-test (p < 0.05) and controlling for false-
discovery rates (FDR < 0.10) estimated by the Benjamini–Hochberg method using the R
package fdrtool (version 1.2.17).

3. Results
3.1. Characteristics of the Study Cohort

A total of 28 HIV+ individuals who were virally suppressed (<200 copies/mL) on
ART within 12 months prior to death were selected from an autopsy cohort of 34 HIV+
individuals previously characterized for frontal white matter viral load and gene expression
profiles in Solomon et al. [11,26]. Demographics, clinical characteristics, and laboratory
data are summarized in Table 1. HIV+ individuals had an overall median age of 56 (IQR
50–60) years, 79% were male, median duration of HIV infection was 17 (IQR 13–22) years,
and median last CD4 count was 288 (IQR 127–437) cells/µL. The last pre-mortem ART
regimen included a protease inhibitor, non-nucleoside reverse transcriptase inhibitor, or
integrase inhibitor in 17 (61%), 7 (25%), and 3 (11%) individuals, respectively.

Neurocognitive evaluations identified 15 HIV+ individuals with NCI, including 4 with
HAD, 2 with MND, and 9 with NPI-O, while the remaining 13 were classified as unimpaired.
NCI and non-NCI groups were similar in age (median 56 and 52 years, respectively), gender
(67% and 92% male), race (33% and 54% white), duration of HIV infection (median 17 and
19 years) and CD4 counts (median 283 and 309 cells/µL), but NCI individuals had lower
neurocognitive T-scores than non-NCI individuals (median 38 vs. 49, p = 0.0002) (Table 1).
Although NCI and non-NCI groups had similar last premortem plasma and CSF VL within
12 or 18 months prior to death, respectively (median 40 copies/mL for both, corresponding
to the lower limit of detection), there was a statistically significant difference or increasing
trend between these groups (p = 0.01 and p = 0.11, respectively).

Given the significant association between NCI status and HIVE scores (p = 0.003), we
also evaluated cohort characteristics by HIVE score (Supplemental Table S1). The HIVE
score identified seven individuals with HIVE score = 1 and 2 with HIVE score = 2, while
the remaining 19 HIV+ individuals had HIVE score = 0. No cases had classic HIVE with
multinucleated giant cells and only one case had microglial nodule encephalitis. HIVE score
1 or 2 and HIVE score 0 groups were similar in age, gender, race, duration of HIV infection,
CD4 counts, and CSF VL, but individuals with HIVE score 1 or 2 had an increasing trend for
plasma VL and significantly lower neurocognitive T-scores than those with HIVE score 0
(p = 0.08 and p = 0.007, respectively).
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Table 1. Clinical and virological characteristics of the study cohort by neurocognitive status.

Variable Total
(n = 28)

No NCI
(n = 13)

NCI
(n = 15) p-Value

Age (years) 55.50 (50.00, 59.50) 52.00 (50.00, 59.00) 56.00 (52.00, 60.00) 0.5182
Male gender, n (%) 22 (78.6) 12 (92.3) 10 (66.7) 0.2351

Race/ethnicity, n (%) 0.5685
White 12 (42.9) 7 (53.8) 5 (33.3)
Black 11 (39.3) 4 (30.8) 7 (46.7)

Hispanic 4 (14.3) 2 (15.4) 2 (13.3)
Other 1 (3.6) 0 (0.0) 1 (6.7)

PMI (hours) 12.00 (5.88, 16.25) 12.00 (6.00, 15.00) 11.00 (6.75, 18.25) 0.9082
Duration of HIV infection (years) 17.00 (13.00, 21.50) 18.50 (10.00, 21.25) 17.00 (14.00, 20.75) 0.7322

CD4 count (cells/µL) 287.50 (126.25, 436.50) 309.00 (128.00, 427.00) 283.00 (126.50, 454.00) 0.8719
CD4 nadir (cells/µL) 98.00 (53.50, 147.50) 78.00 (17.00, 128.00) 98.00 (65.00, 185.00) 0.4201

Plasma VL (copies/mL) * 40.00 (40.00, 40.00) 40.00 (40.00, 40.00) 40.00 (40.00, 77.00) 0.0123
Time between last plasma VL and death (years) 0.40 (0.20, 0.62) 0.40 (0.20, 0.50) 0.40 (0.15, 0.65) 0.7801

CSF VL (copies/mL) * 40.00 (40.00, 40.00) 40.00 (40.00, 40.00) 40.00 (40.00, 137.50) 0.1119
Time between last CSF VL and death (years) 0.30 (0.00, 1.00) 0.20 (0.00, 0.75) 0.35 (0.07, 1.23) 0.6065

Maximum CSF VL in study (copies/mL) 40.00 (40.00, 170.00) 40.00 (40.00, 77,174.00) 40.00 (40.00, 40.00) 0.3102
Neurocognitive T-score 43.80 (37.27, 48.69) 49.14 (47.32, 53.24) 38.08 (36.16, 43.30) 0.0002
HAND diagnosis, n (%) 0.0005

MND 2 (7.4) 0 (0.0) 2 (13.3)
HAD 4 (14.8) 0 (0.0) 4 (26.7)

NPI-O 12 (44.4) 3 (25.0) 9 (60.0)
Normal 9 (33.3) 9 (75.0) 0 (0.0)

HIVE score, n (%) 0.0032
0 19 (67.9) 13 (100.0) 6 (40.0)
1 7 (25.0) 0 (0.0) 7 (46.7)
2 2 (7.1) 0 (0.0) 2 (13.3)

Intact proviruses (cps/106 cells) 10.00 (1.00, 91.96) 5.00 (1.00, 30.00) 13.05 (1.00, 110.74) 0.3831
3′ defective proviruses (cps/106 cells) 508.71 (224.80, 857.78) 530.92 (229.15, 1422.37) 488.60 (205.88, 590.31) 0.3001
5′ defective proviruses (cps/106 cells) 519.09 (273.18, 905.71) 645.03 (280.45, 1191.33) 508.49 (226.47, 686.78) 0.4472

Total proviruses (cps/106 cells) 1063.93 (501.28, 2074.33) 1180.74 (502.72, 2779.76) 1024.07 (445.79, 1495.22) 0.6617
HIV gag DNA (cps/106 cells) 8.71 (4.72, 13.13) 5.00 (3.59, 8.75) 9.67 (8.40, 14.36) 0.0527
HIV gag RNA (cps/106 cells) 7.45 (1.51, 27.92) 7.92 (1.12, 25.28) 6.98 (2.32, 31.08) 0.8755

All data are median [interquartile range] unless otherwise indicated. p values for two group comparisons were cal-
culated using Fisher’s exact test for categorical variables or Wilcoxon rank sum test for continuous variables. CSF
VL within 18 months prior to death was not available for 15 individuals. HAND diagnosis was not available for
1 individual. * 22/28 (79%) and 11/13 (85%) were undetectable at <=40 copies/ml in plasma and CSF, respectively;
all individuals with detectable values (41–200 copies/ml) were in the NCI group. Abbreviations: ART, antiretro-
viral therapy; HAD, HIV-associated dementia; HAND, HIV-associated neurocognitive disorder; HIVE, HIV
encephalitis; MND, mild neurocognitive disorder; NCI, neurocognitive impairment; NPI-O, neuropsychological
impairment attributable to other causes; PMI, post-mortem interval; VL, viral load.

3.2. IPDA Analysis and HIV DNA and RNA Brain Viral Load

IPDA analysis was performed on DNA isolated from frozen brain tissue (frontal
white matter) of 28 HIV+ individuals. We selected the frontal lobe because this region is
commonly used in studies that analyze brain viral load [1,7,10,11,16–18]. Single-copy HIV
DNA and RNA VL assays detecting an HIV gag target were performed on DNA/RNA
isolated from an adjacent region of the same tissue sample [1]. A summary of the intact,
defective, and total proviral copy number measured by IPDA and HIV gag DNA and RNA
VL in brain tissue of 28 HIV+ individuals is shown in Table 1 and Figure 1. The median
proviral genome copy numbers per 106 cells in brain tissue as measured by IPDA were
as follows: intact, 10 (IQR 1–92); 3′ defective, 509 (IQR 225–858); 5′ defective, 519 (IQR
273–906); and total proviruses, 1063 (501–2074) copies/106 cells. Intact proviral genomes
were detected at >1 copy per 106 cells in frontal white matter in 18 of 28 individuals (64%),
while 3′ defective and 5′ defective proviral genomes were detected in all 28 individuals.
Total proviral genome value was calculated by summing intact, 3′ defective, and 5′ defective
proviral genomes; intact proviral genomes accounted for less than 10% (mean 1.8%, median
8.3%; n = 28) of total proviral genomes in the brain of most individuals, while 3′ and 5′

defective genomes accounted for 44% and 49%, respectively. Median HIV gag DNA was 8.7
(IQR 4.7–13.1) copies/106 cells and HIV gag RNA was 7.5 (IQR 1.5–27.9) copies/106 cells.
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To evaluate relationships between intact, defective, or total proviruses and neu-
rocognitive or neuroinflammation status, we compared results from IPDA and viral
load analysis between groups stratified by NCI or HIVE score (Figure 1, Table 1, and
Supplemental Table S1). There was no significant difference in median copy number
of intact proviruses (13 vs. 5 copies/106 cells, p = 0.4), 3′ defective proviruses (489 vs.
531 copies/106 cells, p = 0.3), 5′ defective proviruses (509 vs. 645 copies/106 cells, p = 0.4),
or total proviruses (1024 vs. 1181 copies/106 cells, p = 0.7) between groups stratified by
NCI vs. no NCI, respectively. Brain HIV gag DNA trended toward higher levels in NCI
(9.7 vs. 5.0 copies/106 cells, p = 0.05), but HIV gag RNA was not significantly different
(7.0 vs. 7.9 cps/106 cells, p = 0.9) between NCI vs. non-NCI groups. A summary of provi-
ral copy numbers measured by IPDA and HIV DNA and RNA VL values among the
28 HIV+ individuals stratified by HIVE score is shown in Supplemental Table S1. There
was an increasing trend in intact proviruses (56 vs. 5 copies/106 cells, p = 0.1) in HIVE
score 1 or 2 (n = 9) vs. HIVE score 0 (n = 19) groups, but no significant differences in 3′

defective proviruses (508 vs. 516 copies/106 cells, p = 0.5), 5′ defective proviruses (559
vs. 469 copies/106 cells, p = 0.7), or total proviruses (1189 vs. 991 copies/106 cells, p =
0.9) (Supplemental Table S1). Brain HIV gag DNA VL was higher in HIVE score 1 or
2 vs. HIVE score 0 groups (median 13.0 vs. 7.1 copies/106 cells, p = 0.02), while there was
no difference in brain HIV gag RNA VL (2.8 vs. 12.0 copies/106 cells, p = 0.6). We also
evaluated groups by last CD4 count <350 (n = 18) vs. ≥ 350 (n = 10). Intact proviruses
showed a trend toward higher levels in the CD4 count ≥350 vs. <350 group (median 35
vs. 3 copies/106 cells, respectively, p = 0.06), while total proviruses were similar (median
1102 vs. 1047 copies/106 cells, respectively, p = 0.7) (Figure 1). These results suggest that
neuroinflammation but not NCI is associated with higher levels of intact proviruses in
HIV+ individuals on suppressive ART.
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Figure 1. IPDA analysis of HIV proviruses in brain tissue from 28 HIV+ individuals on ART.
Log10 copy number (standardized to 106 cells) of proviral genomes defined as intact (blue), 3′ de-
fective (green), 5′ defective (yellow), or total (sum of intact, 3′ defective, and 5′ defective; red) was
measured in autopsy brain tissue (frontal white matter) from HIV+ individuals on ART (n = 28) (top
left). Log10 copy number of intact and total proviruses in groups by neurocognitive impairment
(NCI, n = 15) vs. no neurocognitive impairment (No NCI, n = 13), last CD4 count <350 (n = 18) vs. last
CD4 count ≥350 (n = 10), or HIVE score 0 (n = 19) vs. HIVE score 1 or 2 (n = 9) (top right and bottom
panels). Horizontal bars represent medians, boxes span the interquartile range (IQR), and whiskers
extend to extreme data points within 1.5 times the IQR.
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3.3. Correlation Analysis of Intact Proviruses versus Total Proviruses or Gag DNA Levels

Next, we used Spearman’s rank correlation to assess the relationship between log10
intact proviruses and log10 total proviruses or log10 gag DNA in brain tissue among
all 28 HIV+ individuals (Figure 2A), or the 18 HIV+ individuals with detectable intact
provirus copies (>1 intact copy per 106 cells) (Figure 2B). There was a positive correlation
between log10 intact provirus and log10 total provirus copy number (r = 0.5, p = 0.007
and r = 0.53, p = 0.02 for n = 28 and n = 18 HIV+ individuals, respectively). We also
observed a positive correlation between the log10 intact provirus copy number and log10
gag DNA copy number (r = 0.35, p = 0.071 and r = 0.38, p = 0.12 for n = 28 and n = 18
HIV+ individuals, respectively), but not log10 RNA copy number (r = 0.19, p = 0.93). These
findings suggest that intact proviruses are predictive of total proviruses in brain tissue
from HIV+ individuals on suppressive ART. In contrast, there was only a weak correlation
between log10 intact proviruses and HIV gag DNA levels and no significant correlation
between log10 intact proviruses and HIV gag RNA levels in brain tissue.
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Figure 2. Correlation analysis of intact versus total HIV provirus or gag DNA levels in brain tissue
from HIV+ individuals on ART. (A) Correlation between log10 intact provirus copy number and
log10 total provirus copy number or log10 gag DNA copy number (standardized to 106 cells) in brain
tissue (frontal lobe white matter) among 28 HIV+ individuals. (B) Correlation analysis as described in
sensitivity analysis (A) restricted to 18 HIV+ individuals with detectable intact proviruses (>1 intact
copy per 106 cells). Spearman’s rho and p-values are shown.

3.4. Gene Expression Profiles Stratified by Level of Intact Proviruses in Brain Tissue

We compared white matter gene expression profiles between groups stratified by intact
proviruses >5 copies vs. <=5 copies per 106 cells in brain tissue from the 28 HIV+ individuals
on ART. Differential expression analysis was conducted on a target set of 78 genes mapping
to 7 co-expression modules including differentially expressed genes that we previously
identified in brain tissue from 34 HIV+ individuals on ART vs. 24 HIV- controls using
the NanoString platform [11,26]. These co-expression modules represent seven functional
categories: inflammation/interferon response, stress response, myeloid cells, MHC-1,
T-cells, oligodendrocytes, and oxidative phosphorylation/energy metabolism.
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First, we compared expression of these 78 genes between HIV+ (n = 28) and HIV−
(n = 20) individuals matched for age and sex. Most of these genes (68/78) showed in-
creased expression in white matter from HIV+ individuals compared to HIV- controls,
while several oxidative phosphorylation/energy metabolism (PARK2, SREBF1, SREBF2,
TXNIP) and oligodendrocyte (OLIG1, MAG, MOG) genes showed decreased expression
(Supplemental Table S2). Among the 78 genes, 44 genes were differentially expressed
(p < 0.05 and FDR < 0.10), and 10 genes showed modest differences (p < 0.1 and FDR < 0.15)
between HIV+ vs. HIV- individuals. As expected, results for most of these differentially
expressed genes were consistent with expression profiles in Solomon et al. [11,26].

We further analyzed differential expression of these 78 genes in groups stratified
by level of intact proviruses in brain tissue >5 copies vs. ≤5 copies per 106 cells (n = 16
and n = 12, respectively). A total of 19 of 78 genes met non-stringent criteria of FC > 1.3
and unadjusted p-value < 0.2 (Supplemental Table S2). Differential expression of these
19 genes between groups stratified by level of intact proviruses per 106 cells in brain tissue is
shown in Figure 3. These genes are related to inflammation and interferon responses (n = 5;
CXCL10, IFITM1, SIGLEC1, IRF1, FCGR2A), stress responses (n = 4; CASP1, CHOP, IL1B,
HMOX1), T-cells (n = 2; CD3D, CD8A), oligodendrocytes (n = 2; MBP, OLIG1), myeloid
cells (n = 3; CCL2, CD163, TREM1), and oxidative phosphorylation/energy metabolism
(n = 3; NCOR2, SREBF1, SREBF2). Among the 19 genes, 7 genes (CD163, CHOP, FCGR2A,
IL1B, NCOR2, OLIG1, SREBF2) were significantly different (p < 0.05), 5 genes (CCL2,
HMOX1, MBP, SREBF1, TREM) showed modest differences (p < 0.1), and 7 genes (CASP1,
CD3D, CD8A, CXCL10, IFITM1, IRF1, SIGLEC1) showed trends for differential expression
between groups stratified by intact proviruses >5 vs. ≤5 copies per 106 cells (p < 0.2). The
majority of differentially expressed genes (14/19) showed modest increases in expression
in white matter with >5 vs. ≤5 intact provirus copies per 106 cells. In contrast, expression
of energy- and lipid metabolism-related genes (SREBF1, SREBF2) and oligodendrocyte-
associated genes (OLIG1, MBP) showed modest decreases in expression in white matter
with >5 vs. ≤5 intact provirus copies per 106 cells. These results suggest an association
between intact proviruses and changes in expression of genes related to neuroinflammation,
stress responses, and white matter integrity.

Given modest differences in the preceding analyses, we further analyzed white matter
gene expression profiles of the two groups stratified by level of intact proviruses in compar-
ison to a group of HIV- individuals. Supplementary Figure S1 shows differential expression
of the 19 genes related to neuroinflammation and white matter integrity in brain tissue
from the 28 HIV+ individuals stratified by intact proviruses per 106 cells >5 vs. ≤5 copies
(n = 16 and n = 12, respectively) in comparison to 20 HIV- controls. Most of these genes
(12/19) showed increased expression in HIV+ individuals in both groups compared to
HIV- individuals. In contrast, expression of energy metabolism-related genes (SREBF1,
SREBF2) and oligodendrocyte-associated genes (OLIG1, MBP) was higher in HIV- controls
compared to HIV+ individuals with intact proviruses >5 copies per 106 cells, albeit lower
than HIV+ individuals with intact proviruses ≤5 copies per 106 cells. Most of these genes
(13/19) showed significant differences (p < 0.05) between HIV+ individuals with intact
proviruses >5 copies per 106 cells vs. HIV- individuals, while fewer genes (4/19) had
significant differences between HIV+ individuals with intact proviruses ≤5 copies per
106 cells vs. HIV- individuals.
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Figure 3. Differential expression of genes related to neuroinflammation and white matter integrity
in groups stratified by level of intact proviruses in brain tissue from 28 HIV+ individuals on ART.
Differential gene expression in brain tissue (frontal white matter) from 28 HIV+ individuals stratified
by frequency of intact proviruses per 106 cells in brain tissue >5 copies vs. ≤5 copies per 106 cells
(n = 12 and n = 16, respectively). Horizontal bars represent medians, boxes span the interquartile
range (IQR), and whiskers extend to extreme data points within 1.5 times the IQR. p-values calculated
using Welch’s t-test.

4. Discussion

This is the largest study to date using the IPDA to measure intact, defective, and total
HIV proviral genomes in brain tissue from virally suppressed HIV+ individuals on ART.
Intact proviral genomes were detected in frontal white matter in the majority (64%) of HIV+
individuals on suppressive ART, with a median intact proviral genome copy number of
10 copies/106 cells (IQR 1–92). These intact proviral genome copy numbers in brain tissue
are in a similar range to those previously reported in blood and lymphoid tissues [32,36–39].
Our findings are consistent with Cochrane et al. [18], who reported intact proviral genome
copy numbers of 4.6 and 12.7 intact copies/106 cells in brain tissue from viremic and virally
suppressed individuals, respectively. We found that the level of intact proviral genomes
correlated positively with total proviral genomes and HIV gag DNA, but not HIV gag
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RNA in brain tissue, most likely because intact proviral genomes represent both latent and
replicating viruses. Intact proviral genomes accounted for less than 10% (median 8.3%) of
total proviral genomes in brain of most individuals. As reported by others [18,32,36,39],
most proviruses were 3′ or 5′ defective proviruses, accounting for ~44% and 49% of total
proviral genomes, respectively. This finding has potential biological significance because
defective proviruses are still capable of producing viral proteins such as Tat, Nef, and Env,
which are potentially neurotoxic [2,22] and may therefore contribute to HAND in some
virally suppressed individuals. However, the regulation of viral transcriptional activity in
the brains of HIV+ individuals on ART is multifactorial and complex, which may partially
explain why most of our findings did not correlate directly with NCI [2].

Although we detected slightly higher HIV gag DNA levels in HIV+ individuals with
NCI vs. no NCI, there was no significant difference in median copy number of intact,
defective, or total proviruses or HIV RNA levels between groups stratified by NCI vs. no
NCI. In contrast, HIVE score 1 or 2 (predominantly mild-to-moderate lymphocytic inflam-
mation) was associated with higher gag DNA levels (p = 0.02) and increasing trend for
intact proviruses (p = 0.1), but no significant difference in the level of defective or total
proviruses. Thus, intact proviral genomes were more closely related to neuroinflammation
than NCI status in virally suppressed individuals on ART. Furthermore, 5 of 6 cases with
myelin pallor vs. 11 of 22 cases without myelin pallor had >5 intact proviruses/106 cells
in frontal white matter (83% vs. 50%; Fisher’s exact test p = 0.14). While classic HIVE
with multinucleated giant cells, microglial nodules, and myelin loss was not seen in these
virally suppressed cases, microgliosis, lymphocytic infiltration, and white matter abnor-
malities can contribute to NCI [11,13,14,16,23,26,27,44]. These findings, together with the
observation that neuroinflammatory pathology was more frequent among individuals
with NCI (p = 0.003), suggest that presence of replication-competent HIV and associated
CNS inflammation/immune activation are likely factors contributing to an inflammatory
subtype of HAND in some individuals on suppressive ART [12–14,45,46].

Genes related to inflammation, stress responses, and white matter integrity were differentially
expressed in brain tissues with >5 vs. ≤5 intact proviruses/106 cells. These genes are associated
with inflammation and interferon responses (CXCL10, IFITM1, SIGLEC1, IRF1, FCGR2A), stress
responses (CASP1, CHOP, IL1B, HMOX1), T-cells (CD3D, CD8A), myelin/oligodendrocytes
(MBP, OLIG1), myeloid cells (CCL2, CD163, TREM1), and lipid/energy metabolism (NCOR2,
SREBF1, SREBF2). Consistent with prior studies [11,26,28–30,47,48], genes related to inflam-
mation/interferon response, stress response, myeloid cells, and T-cells were upregulated in
HIV+ individuals vs. HIV- controls, while genes related to white matter/oligodendrocytes
were downregulated. Many of these gene expression changes were augmented in brain
tissues with >5 vs. ≤5 intact proviruses/106 cells when compared with HIV- controls.
Our finding that expression of genes related to inflammation and macrophage/microglial
activation was higher in brain tissues with >5 intact proviruses/106 cells is consistent with
previous studies indicating that low-level HIV infection of the CNS induces neuroinflamma-
tion and myeloid cell activation [1,11,12,16,27,31,48]. Downregulation of lipid/cholesterol
metabolism-related genes in brain tissues with >5 vs. ≤5 intact proviruses/106 cells is
relevant for the white matter abnormalities frequently observed in aviremic HIV+ individ-
uals [16,23,44] because these genes are important for myelination [49–51].

Limitations of this study include heterogeneity of the study cohort, including timing
of ART initiation, duration of viral suppression on ART, type of ART regimen, subset with
NPI-O, and comorbidities. Additionally, there were gaps in time between the last plasma
VL and death; some individuals may have stopped taking ART drugs near the time of
death. Moreover, we did not measure ART drug concentrations in brain tissue samples.
HIV+ individuals had a median duration of HIV infection of 17 years, and autopsies were
performed between 2001 and 2014. As such, these individuals received many different
ART regimens; the majority were on protease inhibitors and a minority on integrase
inhibitors at the last visit prior to death. Although all participants had multiple plasma
VL measurements in the years before death, only 14 had one or more CSF VL. For brain
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IPDA, HIV gag DNA/RNA assays, and gene expression profiling, only a single anatomical
site (frontal white matter) was tested for each subject, which can lead to sampling bias.
Mismatches between HIV sequences in target sequences and primers used for amplification
can also lead to detection bias. NanoString is a multiplex approach to digital counting of
mRNAs, but has a lower dynamic range compared to RNAseq. Due to the heterogeneous
cell types in brain tissue, we could not attribute changes specifically to any particular cell
type. The gene expression profiles were only indicative, as we did not have sufficient
statistical power to detect modest differences in expression among 78 genes. Future studies
using single-cell technologies and contemporary cohorts are needed to further define
cellular reservoirs of HIV in the brain and associated gene expression changes [31,52–54].

5. Conclusions

This study used the IPDA to evaluate the brain viral reservoir in virally suppressed
HIV+ individuals and evaluate relationships between intact proviruses and NCI, neu-
roinflammatory pathology, and gene expression profiles. Our findings suggest that intact
proviral genomes are present in the brain in the majority of HIV+ individuals at levels
comparable to those reported in blood and lymphoid tissues, despite suppressive ART.
We further demonstrate that intact proviral genome levels are more closely related to
neuroinflammation than NCI status and associate with differential expression of genes
related to neuroinflammation and white matter integrity in virally suppressed individuals.
These findings highlight the importance of targeting the CNS viral reservoir to achieve
an HIV cure. Further studies of larger cohorts on contemporary ART regimens and using
single-cell technologies to evaluate viral reservoirs and associated gene expression changes
will be important to gain better mechanistic understanding of the relationship between
replication-competent proviruses and inflammatory pathologies in the brain and other
anatomical sites.
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https://www.mdpi.com/article/10.3390/v15041009/s1, Figure S1: Differential expression of genes
related to neuroinflammation and white matter integrity in brain tissue from 28 HIV+ individuals on
ART groups stratified by HIV status and level of intact proviruses; Table S1: Clinical and virological
characteristics of the study cohort by HIVE score; Table S2: Differential expression analysis of 78 genes
mapping to interferon response, stress response, oxidative phosphorylation, MHC-I upregulation,
and cell-type marker clusters.
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