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Abstract: Molecular HIV cluster data can guide public health responses towards ending the HIV
epidemic. Currently, real-time data integration, analysis, and interpretation are challenging, leading
to a delayed public health response. We present a comprehensive methodology for addressing
these challenges through data integration, analysis, and reporting. We integrated heterogeneous
data sources across systems and developed an open-source, automatic bioinformatics pipeline that
provides molecular HIV cluster data to inform public health responses to new statewide HIV-1
diagnoses, overcoming data management, computational, and analytical challenges. We demonstrate
implementation of this pipeline in a statewide HIV epidemic and use it to compare the impact of
specific phylogenetic and distance-only methods and datasets on molecular HIV cluster analyses.
The pipeline was applied to 18 monthly datasets generated between January 2020 and June 2022 in
Rhode Island, USA, that provide statewide molecular HIV data to support routine public health case
management by a multi-disciplinary team. The resulting cluster analyses and near-real-time reporting
guided public health actions in 37 phylogenetically clustered cases out of 57 new HIV-1 diagnoses. Of
the 37, only 21 (57%) clustered by distance-only methods. Through a unique academic-public health
partnership, an automated open-source pipeline was developed and applied to prospective, routine
analysis of statewide molecular HIV data in near-real-time. This collaboration informed public health
actions to optimize disruption of HIV transmission.

Keywords: molecular HIV clusters; phylogenetics; molecular epidemiology; HIV transmission
networks; contact tracing; near-real-time data integration

1. Background

The HIV epidemic is an ongoing global public health burden and novel methods
are needed to disrupt transmission. Analyzing genomic HIV data to guide public health
response is one of the four pillars to end the US epidemic [1]. HIV-1 sequences routinely
collected during clinical care for drug resistance testing can also be used to phylogenetically
estimate viral evolution across individuals [2].

The real HIV transmission network among individuals is unknown. Public health
agencies often engage in contact tracing to establish social networks among recently diag-
nosed individuals in order to identify and reach social contacts who may be infected but are
undiagnosed [3]. Even incomplete social network data serves as a proxy for the real trans-
mission network, providing relevant information to guide public health response. Similarly,
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phylogenetic relationships among sequences provide another independent source of infor-
mation about social networks towards identifying undiagnosed or diagnosed-out-of-care
individuals [4,5].

While much research has focused on phylogenies of molecular HIV data in academic
settings [6], often long after sequenced individuals were diagnosed with HIV, there has
been little investigation of the “real-time” employment of phylogenetics to assist with a
public health response to newly diagnosed cases [7]. Poon et al. provided such information
to British Columbia public health officials in near-real-time via automated phylogenetic
analyses and monthly reports to public health, detecting and halting a transmitted drug
resistance outbreak [8].

The paucity of such studies is likely due to challenges of integrating phylogenetic
analysis into routine public health response, particularly in real-time [9]. First, phylogenetic
analyses employ computationally expensive optimization methods, such as maximum
likelihood and Bayesian inference, to search over a vast combinatorial space of possible phy-
logenies. Implementing these methods typically requires specialized computing clusters
that are not readily available to public health agencies and analyses can take days or weeks
to converge. Second, the availability of raw sequence data for analysis, longitudinally and
in near-real-time, requires robust data management processes and expertise. Third, results
of phylogenetic analysis (typically trees, confidence metrics, and sequence clustering) by
themselves do not imply any specific action and must be analyzed, reported, integrated,
and interpreted to guide a public health response, also in near-real-time. Finally, it is
unclear whether phylogenetic analysis is necessary or whether computationally cheaper
approaches based only on genetic distance are sufficient to inform a public health response.

This paper addresses these challenges through demonstration of an automated data
management and bioinformatics pipeline, which has augmented the public health response
to new HIV diagnoses in Rhode Island (RI). The pipeline is the result of a unique multi-
disciplinary partnership between the RI Department of Health (RIDOH) and academic
researchers, who developed and used these tools in near-real-time to facilitate routine
collaboration, case management, and a prospective study of re-interviewing newly HIV-
diagnosed individuals who are members of molecular clusters [9].

2. Methods

The automated pipeline development steps included identification and curation of
statewide databases, sequence quality control (QC) and analysis, datasets integration,
summary reports, and data use for routine case management to inform near-real-time
public health actions.

2.1. State-Wide HIV Databases

To integrate molecular HIV data with public health activities, three databases were
collated and combined: (1) clinical database; (2) sequence database; (3) several public
health databases.

The main source of clinical data is from The Miriam Hospital Immunology Center
in Providence, RI, and its associated Immunology Center Database (ICDB). The Brown
University Medical School affiliated Immunology Center is the largest HIV center in the
state, providing comprehensive care for most (>80%) people with HIV, approximately
2000 upon this writing. The ICDB was created in 2003 for patient monitoring, Ryan
White program reporting, and research. Since 2003, it evolved from manual data entry to
integration with electronic medical records. Currently, HIV-specific data collection modules
are created within Epic (the electronic medical record system) to download demographic,
clinical, and laboratory data on Immunology Center patients.

The sequence database has curated all HIV-1 pol sequences from commercial laboratories
conducting clinical care resistance testing at the Center since 2003. This prospective process
has been augmented with monthly additions of non-Immunology Center sequences to
complete a state-wide dataset that includes newly diagnosed and sequenced individuals.
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The public health databases are maintained by RIDOH and contain contact tracing
records, available sequence data, and laboratory results for all patients in the state, including
those not treated at the Immunology Center.

2.2. Sequence QC and Analyses

Once newly generated, statewide, monthly sequences become available, sequences are
analyzed by SQUAT principles [10] using the Sierra web service of the Stanford University
HIV Drug Resistance Database [11] to identify sequences that contain >5% stop codons,
G-to-A hypermutation, unusual mutations, and exact edit pairwise distance (0 when sites
share the same nucleotides or ambiguities, or 1 otherwise) among new sequences and
between them and historical sequences. Potentially problematic sequences and those of
the same subtypes and <0.5% edit distance were flagged for further examination. HIV-
1 subtype and drug resistance mutations were also identified in this process. Since all
historical sequences were previously reviewed, only newly added sequences are included
in the monthly QC report.

Once new sequence datasets pass QC, the pipeline identifies whether the most re-
cently added sequences from new index cases are in molecular clusters. For this purpose,
index cases are defined as HIV RI diagnoses within the past 6 months with an available
new sequence. The pipeline performs multiple sequence alignment of the earliest single
sequence per patient using MAFFT (version 7.313) [12]. It trims sites with 98% or more
gaps in alignment using a custom R script. It also adds four HIV-1 group O sequences
(GenBank accession numbers L20587, L20571, AY169812, AJ302647) to the alignment as
outgroups in phylogenetic analyses.

For inclusivity, and since there is no consensus on which molecular epidemiology meth-
ods should be used, the pipeline performs phylogenetic analyses using several methods
and parameters. The phylogenetic and clustering methods we used were based on a com-
prehensive comparative study, which is discussed in detail in prior work [13]. For brevity,
we summarized the resulting methods from the comparative study, in which we compared
both “strict” and “relaxed” cluster definitions. Here, we implemented relaxed parameters
to favor false positive over false negative clusters and maximize available information. The
pipeline implements the following five phylogenetic methods and cluster-defining param-
eters (bootstrap support and pairwise distance thresholds) from our comparative study:
RAxML [14] (version 8.2.12; 80% bootstrap support; 4.5% genetic distance), IQ-TREE [15] in
ultrafast bootstrap mode (version 2.0.4; 95% bootstrap support; 3.0% genetic distance), Fast-
Tree [16] (version 2.1.10; 80% bootstrap support; 4.5% genetic distance), FastTree with the
alternative likelihood ratio test (version 2.1.10; 90% aLRT support; 3.0% genetic distance),
and MEGA [17] (version 10.1.8; maximum-likelihood method; 80% bootstrap support; 4.5%
genetic distance). Clusters are identified according to these parameters using ClusterPicker
(version 1.2.3) [18].

In addition to phylogenetic analysis, the pipeline performs distance-only sequence
clustering using HIV-TRACE (version 0.4.4) with the following two distance parame-
ters: [19]. (1) 0.5%, recommended by the U.S. Centers for Disease Control and Prevention
(CDC) [20] and by the HIV-TRACE authors for rapidly growing clusters [19]; and (2) 1.5%,
determined by HIV-TRACE authors as best supported by previous research on the relation-
ship between genetic distance and epidemiologically connected transmissions [19]. The
distance parameter of 1.5% is calibrated with the findings from our previous comparative
study that HIV-TRACE at a 1.5% distance threshold identified a comparable number of
overall clusters as the phylogenetic methods and parameters described above [13]. The
pipeline also identified CDC-defined “clusters of concern,” as HIV-TRACE clusters with a
maximum 0.5% pairwise distance and three or more individuals diagnosed in the previous
12 months [21].

Lastly, in addition to comparing clustering methods, the pipeline compared clustering
between a statewide dataset and an Immunology-Center-only subset, assessing the impact
of an increased sampling density.
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2.3. Data Integration

Once sequence analyses were completed, data from the three database sources (clinical,
sequence, and public health) were joined with anonymized identifiers into a single inte-
grated dataset. This dataset contains statewide sequences, demographics (e.g., gender, sex
at birth, race, ethnicity, country of birth, home zip code), HIV diagnosis and last-negative
dates, HIV risk factors, clinical data (e.g., illegal substance use, mental illness), laboratory
data (e.g., CD4 and viral load), and contact tracing information (e.g., interview dates and
numbers of named partners). The integrated dataset is cumulatively aggregated over time.

2.4. Report Generation

Each pipeline component automatically generates reports. After the QC reports de-
tailed above, the phylogenetic analyses generate individual-level reports, summarizing
clustering, demographics, and clinical information of newly generated sequences. For each
index case sequence that clusters, a detailed report provides the phylogenetic clade contain-
ing the cluster and the most recent ancestor node alongside a summary of demographics
and clinical information for cluster members. This visualization is implemented with
custom R scripts using the ggtree and treeio packages [22,23]. A population-level report
is also generated, providing statewide-level clustering summaries with a visualization of
cluster growth over time, showing cluster membership of new and prior index cases.

2.5. Case Management

The pipeline is run monthly as new sequences are obtained and reports are generated
for routine case management discussions between the RIDOH and academic partners,
including clinicians, epidemiologists, disease intervention specialists, bioinformaticians,
data managers, statisticians, virologists, evolutionary biologists, and public health staff.
The pipeline reports guide discussions of each index case that is part of a molecular cluster
by any of the five phylogenetic methods or HIV-TRACE, using either the statewide or
Immunology Center dataset. This inclusive ensemble approach allows for comparison
of clustering methods while minimizing false negatives and ensuring inclusion in public
health interventions of cases with evidence of clustering by any method. The prospective
evaluation of this intervention is ongoing; see details in a published study design [9].

The pipeline is available in an open-source software package from https://github.
com/kantorlab/hiv-real-time-phylogeny (accessed on 12 March 2023). This study was
approved by, and a consent waiver was obtained from, the Institutional Review Board at
The Miriam Hospital, Providence, RI; and the RIDOH.

3. Results
3.1. Database and Sequence QC

At the 18th and latest pipeline analysis, the statewide dataset included 4290 pol se-
quences from 2440 patients. Of the 4290 sequences in the statewide dataset, 4140 sequences
from 2316 patients were part of the Immunology Center subset. Thus, the statewide dataset
added 150 sequences for 124 individuals. Of those 124, 53 were cared for in RI outside of
the Immunology Center.

The pipeline QC process before study initiation identified 51 sequence pairs with
pairwise genetic distance <0.5% that were resolved through manual review, leading to one
excluded sequence that was identical to another sequence and may have been misattributed.
Upon this resolution, ongoing monthly QC processes explored and flagged any QC or
distance issues. The manual review burden for these QC steps was relatively low, occurring
in only two out of 18 datasets. No sequences were flagged for stop codon, hypermutation,
or unusual mutation criteria, indicating an expected good sequence quality.

3.2. Bioinformatic Pipeline

In the latest pipeline run, both HIV-TRACE analyses ran for ~15 min, while the
five phylogenetic methods required between 4 min (FastTree) and 54 h (MEGA). The
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pipeline had a peak usage of 72 concurrent computer cores with 216 GB total memory,
representing 0.5% of the 13,688 cores available on the computer cluster. Two previously
tested phylogenetic methods (PhyML and IQ-TREE with regular bootstrapping) were
excluded because of excessive runtimes presenting challenges for near-real-time analyses.

Table 1 summarizes the monthly counts of new index cases in RI and compares
numbers of clustered index cases by method and dataset. Overall, 37 (65%) of 57 new
HIV cases were identified as clustered by any method. These cases were selected for
intervention and discussed in case management meetings. Of 37 clustered cases, 21 (57%)
were identified by HIV-TRACE and 16 (43%) were detected exclusively by. All clusters
identified by HIV-TRACE were also identified by at least one phylogenetic method. Minor
differences in counts occurred between the statewide and Immunology Center datasets
in four of the five phylogenetic methods and in three of the 18 datasets (bold/green in
Table 1). These discrepancies included five individuals, three identified exclusively by the
statewide dataset and two identified exclusively by the Immunology Center subset.

Table 1. Clustering of new HIV cases in RI by dataset number, dataset sampling density (statewide
versus Immunology Center), and clustering method.

Dataset Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

Index Cases 1 1 1 5 6 5 5 5 3 5 0 3 3 3 0 2 5 4 57
Clustered in Statewide Dataset:

Any Phylogenetic Method 1 1 1 2 5 2 4 1 2 2 0 3 2 3 0 2 3 3 37
RAxML 1 1 1 2 5 2 4 1 2 2 0 3 2 3 0 2 3 2 36
IQ-Tree 1 1 1 1 5 2 3 1 2 1 0 2 2 1 0 2 3 2 30
FastTree 1 1 1 1 4 2 4 1 2 1 0 3 2 2 0 2 3 3 33

FastTree (ALRT) 1 1 1 1 5 2 3 1 2 1 0 2 1 1 0 2 3 2 29
MEGA 1 1 1 2 5 2 4 1 2 1 0 3 2 2 0 2 3 1 33

HIV-TRACE (1.5%) 1 1 1 1 4 2 1 1 2 0 0 1 0 1 0 2 3 0 21
CDC Cluster of Concern (0.5%) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Only by Phylogenetic Methods 0 0 0 1 1 0 3 0 0 2 0 2 2 2 0 0 0 3 16

Clustered in Immunology Center Subset:
Any Phylogenetic Method 1 1 1 2 5 2 4 1 2 2 0 3 2 3 0 2 3 3 37

RAxML 1 1 1 2 5 2 4 1 2 2 0 3 2 3 0 2 3 2 36
IQ-Tree 1 1 1 1 5 2 3 1 2 1 0 2 2 2 0 2 3 2 31
FastTree 1 1 1 1 4 2 4 1 2 0 0 3 1 2 0 2 3 3 31

FastTree (ALRT) 1 1 1 1 5 2 3 1 2 1 0 2 1 2 0 2 3 2 30
MEGA 1 1 1 2 5 2 4 1 2 1 0 3 1 2 0 2 3 1 32

HIV-TRACE (1.5%) 1 1 1 1 4 2 1 1 2 0 0 1 0 1 0 2 3 0 21
CDC Cluster of Concern (0.5%) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Only by Phylogenetic Methods 0 0 0 1 1 0 3 0 0 2 0 2 2 2 0 0 0 3 16

Notes: Green cells are those that differ between the statewide datasets and the Immunology Center subsets.

3.3. Reports and Case Management

After dataset integration, individual and population reports were automatically gen-
erated and served as a basis for monthly case management discussions of the academic
and public health teams. Figure 1 illustrates a summary report of monthly new sequences
in a single table that displays integration of sequence, clinical, and public health data to
guide case management. This initial report includes specific methods used, as well as
information on the nine new sequences available that month. Of these nine, three fit the
index case definition and of these, two were members of a phylogenetic cluster, and one
was a distance-only cluster.
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Figure 1. Title: Integrated report for monthly academic-public health case management meetings.
Legend: An example of the summary page from automated monthly reports generated by the pipeline
is illustrated here with synthetic data to protect patient privacy. The table summarizes demographic
and clinical data of all nine newly available RI sequences in the past month, their index case status,
and their cluster analysis outcomes that are relevant to the monthly case management meeting of
new HIV diagnoses in the state. Numbers in green and gray in parentheses indicate comparison to
the prior month. Missing values are indicated by ‘-’. Viral load is in copies/mL, approximated. MSM,
men who have sex with men; DRMs, drug resistance mutations; SDRMs, surveillance drug resistance
mutations. Notes: All information shown in this table is synthetic and for illustrative purposes only.
No information from real patients is shown.

Next, individual phylogenetic clusters of all new index cases who cluster are discussed
and determinations regarding interventions are considered. Figure 2 shows an example
of a specific growing cluster in the latest dataset, for which clustering differed between
phylogenetic and distance-only methods. A cluster from the 12th dataset, which included
index cases D, E, and F from datasets 12, 9, and 7, respectively, grows to a larger cluster
in the 18th dataset by the addition of new index case A. This phylogenetic cluster, with
100% bootstrap support, now also includes cases B, C, and G. This cluster is identified by
all phylogenetic methods but not by the distance-only method, since cases A, B, C, and
G all have pairwise distances in HIV-TRACE that are above the 1.5% distance thresholds.
Had it clustered by HIV-TRACE at the 0.5% distance threshold, the cluster would have
met the criteria for a “cluster of concern” and would have been reportable to the CDC. In
its current state, this cluster, which might indicate rapid growth and some public health
concern, was identified by the pipeline and discussed in the case management meeting.
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Figure 2. Title: A growing cluster with differential detection between phylogenetic and distance-only
methods. Legend: The figure shows a comparison between a phylogenetic cluster (panel (a)) and a
HIV-TRACE cluster graph (panel (b)) for those same cases. The 100% bootstrap supported (red 100)
cluster in panel a (red box) contains a new index case from dataset 18 (A, red); three prior index cases
from datasets 7, 9, and 12 (D–F, blue), which formed a cluster in the analysis of dataset 12 by both
phylogenetic methods and HIV-TRACE at the 0.5% threshold; and previously un-clustered cases B,
C, and G. Panel (a) also shows the nearest non-clustered case (H). The HIV-TRACE distance-based
cluster graph in panel (b) of the same cases demonstrates that only cases D, E, and F remain part
of the cluster in dataset 18 (blue edges). Cases A, B, C, and G are not clustered by HIV-TRACE as
their pairwise distances (gray edges) are larger than distance thresholds established by the Centers
for Disease Control and Prevention (CDC). Notes: Branch lengths in (a) are scaled by the estimated
substitutions per site in the phylogeny, while edge thicknesses in (b) are scaled by the TN93 pairwise
genetic distance calculated by HIV-TRACE. Phylogenetic bootstrap support (out of 100 bootstrap
replicates) is shown in small text next to splits in the tree in (a) and the split with bootstrap support
of 100 that defines the cluster is highlighted with a red dot.

Population-level summary statistics allowing longitudinal overview of the RI epidemic
demonstrated that 1176 (48%) of the 2440 individuals in the 18th statewide dataset were in
molecular HIV clusters and seven individuals were in CDC clusters of concern.

Lastly, the pipeline generates a visual summary of the evolving HIV molecular cluster
membership in RI across monthly reporting (Figure 3; in the actual reports the X axis
denotes exact diagnosis dates). Each horizontal line represents a cluster throughout its
lifespan and dots represent individual members by their HIV-1 diagnosis date. Red dots
represent current index cases that were individually discussed in the 18th (most recent)
case management meeting. Blue dots represent index cases from prior months, allowing
for visual exploration of cluster growth. Clusters containing both red and blue dots are of
special concern since they may indicate active cluster growth, informing discussions and
the urgency of public health intervention.
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Figure 3. Title: Visual representation of HIV cluster growth in RI. Legend: This figure illustrates
one visual output of the automated pipeline that is used in monthly academic-public health case
management discussions. Each row represents one cluster’s lifespan according to years of HIV
diagnosis of its members (X axis). Red dots indicate new index HIV cases in the current month. Blue
dots indicate new HIV index cases in the prior 18 datasets. Gray dots indicate cluster members who
were diagnosed prior to the start of the study. For patient privacy concerns, we use the rank ordering
of diagnosis dates instead of the exact dates.

4. Discussion

The integration of phylogenetic analysis into a routine public health response to HIV
is a complex, multi-step, and multi-disciplinary process. By assembling a diverse team
of experts in public health, contact tracing, clinical care, infectious diseases, database
management, sequence analysis, phylogenetics, statistics, and laboratory testing, we have
developed and implemented an automated bioinformatics pipeline to analyze statewide
HIV-1 sequence data prospectively and routinely. This process informs case management,
guides public health interventions, and allows for prospective evaluation of the benefits
of phylogenetic information in the design of public health interventions to disrupt HIV
transmission in near-real-time.

Despite substantial recent progress in generating genomic data that informs clinical
care, the timely and effective integration of heterogeneous data sources, such as genomic
and clinical data, for use by health organizations remains a significant challenge [24].
Such data usually exist in separate databases and systems, managed by different agencies
or organizations. A recent criticism has called for modernizing public health data and
surveillance systems in the U.S. and facilitating better data sharing between health care
organizations and public health agencies [25]. The pipeline we developed to integrate
molecular epidemiology and traditional public health praxis in near-real-time is a small
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step towards the goal of using integrated heterogeneous data sources to improve health
outcomes. An important prerequisite of this achievement is our cross-disciplinary team’s
extensive efforts to aggregate and integrate RI data from clinical, sequence, and public
health databases. Through our collaboration, we identified the relevant datasets and
developed methods to enable their anonymous integration across systems. This process,
which links wet laboratory, bioinformatics, analytical, and public health data, is essential to
enable a statewide dataset that can be optimally used to disrupt HIV transmission.

Automation is essential for ensuring that analysis results are consistently prepared
to meet the rapid pace of routine public health case management in accordance with end-
the-HIV-epidemic concepts. Therefore, significant engineering efforts have gone into the
development of the pipeline, which we have released as an open-source package for other
public health teams to use and learn from. Our pipeline incorporates four features that,
to our knowledge, are not available in previous approaches to automating HIV cluster
analysis. First, we incorporated a flagging step prior to analysis to explore sequence quality.
Second, we implemented multiple clustering methods, both phylogenetic and distance-
only [13]. Third, we identified clustered individuals using an ensemble of these methods [9].
Fourth, we summarized clustering results using simple visual representations designed to
facilitate routine real-time case management discussions with public health officials.

Other studies have investigated specific outbreaks in which cluster information was
provided to public health officials. Examples include the 2015 outbreak of transmitted
HIV drug resistance in British Columbia, Canada [8]; a 2015 HIV outbreak in Indiana,
USA, linked to intravenous drug use that was investigated by the state health department
and the CDC, where phylogenetic analysis guided contact tracing to identify 536 contacts
among an initial cluster of 11 new HIV cases [26]; and a 2015–2016 CDC-led cluster analysis
using distance-only methods that identified a growing cluster of new cases in Texas, USA,
revealing a larger putative transmission network [27]. In contrast, the automated pipeline
presented here allows such investigations to be performed and discussed routinely and in
near-real-time. As clustering analyses become more widely used for HIV prevention, the
usability and replicability of analytic methods and software will be increasingly important.
Though traditionally distance-only methods are less computationally intensive and easier
to use than phylogenetic methods, access to tools such as our automated pipeline might
help lower the learning curve and remove obstacles to phylogenetic analysis, while also
facilitating replicability.

In the comparison of clustering methods incorporated into the pipeline based on our
prior work [13], we found that the ensemble of five commonly used phylogenetic methods
identified 76% more clustered cases than the distance-only method alone. No clusters
were identified solely by the distance-only method and phylogenetic methods alone were
sufficient to identify all 37 new HIV cases selected for case management discussion. Based
on these findings, it is reasonable to speculate that phylogenetic inference may be more
beneficial than distance-based inference; however, caution should be advised in making
such deductions, specific goals should be considered, and the benefits of each approach
should be evaluated. Determining the public health benefits of identifying more clusters is
a current need that we and others are actively addressing [9].

Since there is a single large clinic in the RI (the Immunology Center), we were able to
study the difference in cluster identification between a clinic-based subset (which is simpler
to assemble) versus a statewide dataset. The lack of major differences suggests that good
sampling, approximately 80% in our case, of the state’s people living with HIV may provide
sufficient data for overall cluster analysis. However, even in the small state of RI, of the
additional 124 cases in the statewide dataset, 62 (50%) were part of clusters not observed
in the Immunology Center subset. Although the size of RI may be a limitation in terms of
assessing scalability of such findings, having a high, even if not full, statewide sequence
sampling density is likely beneficial. How robust these findings are for larger jurisdictions
and the eventual benefit of this improved cluster identification for public health remains
to be seen [7]. Moreover, clustering is not always consistent and not all clusters are equal,



Viruses 2023, 15, 737 10 of 12

as we recently reported [28]. Sequence addition can also result in reduction of clusters
(e.g., dataset 14 where an additional cluster was detected in the Immunology Center
subset relative to the statewide dataset), justifying careful interpretation and the need for
longitudinal accumulation and analyses of cluster data.

Several potential limitations of our work and their implications should be noted. First,
while the approach presented here works in the small state of RI, there may be logistical
and scaling challenges with more sequences and longer analysis runtimes in a larger state
or country. The availability of compute cores is less of an obstacle than the scalability of
the phylogenetic algorithms themselves, as our analysis used only 0.5% of the capacity
of the local compute cluster in RI, and national scientific computing centers have orders
of magnitude greater compute capacity. Future work should investigate phylogenetic
methods that reduce analysis time by, for example, using tools with less computation
time (e.g., FastTree) or updating an existing phylogeny with new sequences instead of
recalculating a new phylogeny. Related research on estimating “mega-phylogenies” for
broadly sampled taxa and genes in evolutionary biology studies may hold insights for
scaling HIV-1 phylogenies [29]. Second, as a small state, RI has been able to initiate
contact tracing with every index case, which may not be feasible in larger jurisdictions
where prioritization is essential [30]. The pipeline we have developed could help such
prioritization policies and should be evaluated in such settings. Third, our data are only
for new cases diagnosed within RI, even though infection may have occurred in another
state or the individual may have moved out-of-state after diagnosis. Cluster analysis of
out-of-state data might help improve the coordination of public health responses across
jurisdictions. Fourth, the pipeline is currently designed for HIV-1 pol Sanger sequences
obtained through routine clinical care. Enhancing the pipeline with “deeper” sequence data
available through next-generation sequencing (NGS) technologies and exploring if and
how the additional resolution of within-patient viral diversity improves cluster inference
should be investigated [31]. Lastly, as in all studies of molecular HIV clusters, the true
transmission networks among HIV cases are unknown, and in this regard, the limitations
of this pipeline in evaluating which clustering method is best at recovering information
from the true network should be recognized.

5. Conclusions

In an academic-public health partnership, to evaluate the incorporation of HIV molec-
ular epidemiology into routine public health response, we have developed an open-source
bioinformatics pipeline, overcoming challenges with data integration and management,
computational scalability, analysis methodology, automation, and reporting. Applying
this pipeline to 18 successive monthly datasets with newly diagnosed HIV cases informed
routine case management in near-real-time and enabled realistic population- and individual-
based representation of the statewide epidemic and its growth. Our multi-disciplinary
approach facilitated evidence-based discussions and case management to disrupt HIV
transmission in RI. Results from the pipeline have enabled an ongoing prospective study to
evaluate the benefits of molecular epidemiology for planning public health responses to
the ongoing and ever-challenging HIV epidemic [9], a priority of the U.S. Department of
Health and Human Services [1].
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