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Abstract: Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic
diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide
and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic
viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and
even cure of cancers in animal models. In a broader meaning, vaccine development against infectious
diseases and various cancers has been considered as a type of gene therapy. Especially in the case
of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S
have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use
Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic
diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-
thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies
in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and
therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic,
neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-
based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian
cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease,
and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for
human use.

Keywords: viral vector; gene therapy; cancer; chronic disease; vaccines; preclinical models; clinical
trials; approved drugs

1. Introduction

Gene therapy has been defined as the supplementation, correction, or modification
of malfunctional genes by functional equivalents for therapeutic correction of the ab-
sence or reduced levels of gene expression activity [1]. A broader definition considers
oligonucleotide- [2] and RNA interference (RNAi)-based gene silencing [3], immunother-
apy, especially cancer immunotherapy, and vaccine development as gene therapy [4]. More
recently, stem cell technologies [5], chimeric antigen receptor (CAR) T-cell therapy [6], and
Clustered Regularly Interspaced Short Palindromic (CRISPR) [7], providing unprecedent
possibilities for gene replacement and gene editing, have also received gene therapy status.

Viral vectors have played a central role in gene therapy because of their superior
gene delivery capacity compared to non-viral vectors. Moreover, the virus-based trans-
gene expression, depending on the needs, for both short-term and long-term duration
can be achieved. For example, for cancer gene therapy, short-term high-level transgene
expression is advantageous, whereas for chronic diseases such as hemophilia, long-term
transgene expression is necessary. However, the application of viral vectors requires a
higher biosafety level compared to non-viral vectors due to the risk of spread of virus
progeny, especially in the case of using replication-competent and oncolytic viruses. Other
factors of importance are the regulation and termination of transgene expression. The
history of gene therapy has been impacted by some tragic events, which was a setback
for its proclaimed status as “the medicine of the future”. Although the retrovirus-based
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treatment of children with X-linked severe combined immunodeficiency (SCID-X1) was
successful, the insertion of the therapeutic gene into the LMO2 proto-oncogene region
of the genome led to the development of leukemia in a few patients [8]. In another case,
inadequate planning and execution of clinical protocols for adenovirus-based treatment of
the non-life-threatening ornithine transcarbamylase (OTC) deficiency resulted in the death
of an 18-year-old patient [9]. These two incidents in the 1990s had a dramatic impact on
the field of gene therapy, which put it more or less on hold until a renaissance occurred in
recent years. However, during the years, efforts to develop more efficient and safer viral
vectors continued, which has facilitated the return of gene therapy to the front of innovative
drug and vaccine development. Although enormous progress has also been made in the
area of non-viral vectors and their applications in gene therapy, the focus in this review
is uniquely on viral vector systems and their utilization in preclinical studies and clinical
trials.

2. Viral Vector-Based Delivery

Different types of viral vectors based on both DNA and RNA viruses have been
engineered for gene therapy applications (Figure 1). The choice of vector is, to a large
extent, affected by the disease indication, and need of short-term expression for acute
diseases such as infectious diseases and cancers, and long-term expression required for
chronic diseases. In the former case, high-level transient expression from replication-
deficient viral vectors can provide therapeutic efficacy [10]. In the latter case, long-term
expression is often achieved by extrachromosomal presence or chromosomal integration of
the viral vector/transgene for extended therapeutic activity. Typically, replication-deficient
and non-integrating vector systems are only capable of providing long-term transgene
expression in post-mitotic tissues. In any viral vector-based gene therapy application, safety
is of utmost importance [11]. Obviously, long-term treatment and presence of viral vector
and/or transgene sequences in the host genome demands special requirements related
to integration site, control of expression levels, and pharmacokinetics of the therapeutic
product. In the context of cancer gene therapy, oncolytic viruses, which specifically replicate
in tumor cells leading to their killing, have been evaluated as such, or as delivery vectors
for anti-tumor genes both in vitro and in vivo [12]. A comprehensive description of various
types of viral vectors is presented below and summarized in Table 1.

2.1. Adenovirus Vectors

Since the advent of gene transfer in mammalian cells, adenoviruses (Ad) vectors have
been commonly used as viral delivery vehicles [13]. They are non-enveloped viruses pos-
sessing a double-stranded DNA (dsDNA) genome with a packaging capacity of up to 7.5 kb
foreign DNA. However, Ad shuttle vectors have been engineered for accommodation of up
to 14 kb of foreign DNA [14]. The first-generation Ad vectors were hampered by strong
immunogenicity despite removal of the E1/E3 genes from the genome [15]. However, the
immunogenicity has been reduced significantly in replication-deficient second- and third
generation Ad vectors [16]. High-capacity third-generation adenovirus (HC-Adv) vectors,
also known as helper-dependent gutless vectors, have the capacity to accommodate up
to 37 kb of foreign DNA [17]. Moreover, replication-competent oncolytic adenoviruses
have been developed for specific replication in tumor cells, resulting in the killing of tumor
cells [18]. The engineering of packaging cell lines has facilitated large-scale GMP-grade Ad
vector production [19]. Ad vectors provide persistent extrachromosomal transgene expres-
sion lasting for at least one year despite no integration into the host genome [20]. Moreover,
a follow-up study in non-human primates showed transgene expression, although reduced
to 10% of peak values, up to 7 years without any long-term adverse effects [21].
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Figure 1. Viral vector expression systems. (A) Expression systems engineered for adenoviruses (Ad), 

simian virus 40 (SV40), vaccinia virus (VV), reoviruses, adeno-associated viruses (AAV), and herpes 

simplex viruses (HSV). (B) Viral vector systems for retro-and lentiviruses (RV), Semliki Forest virus 

(SFV), measles viruses and vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and 

coxsackieviruses A (CVA). dsDNA, double-stranded DNA, dsRNA, double-stranded RNA, ssDNA, 

single-stranded, DNA, ssRNA, single-stranded RNA, ssRNA+, ssRNA of positive polarity, ssRNA-
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Figure 1. Viral vector expression systems. (A) Expression systems engineered for adenoviruses (Ad),
simian virus 40 (SV40), vaccinia virus (VV), reoviruses, adeno-associated viruses (AAV), and herpes
simplex viruses (HSV). (B) Viral vector systems for retro-and lentiviruses (RV), Semliki Forest virus
(SFV), measles viruses and vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and
coxsackieviruses A (CVA). dsDNA, double-stranded DNA, dsRNA, double-stranded RNA, ssDNA,
single-stranded, DNA, ssRNA, single-stranded RNA, ssRNA+, ssRNA of positive polarity, ssRNA-,
ssRNA of negative polarity.

2.2. Adeno-Associated Virus Vectors

The small non-enveloped single-stranded DNA (ssDNA) adeno-associated virus (AAV)
can only accommodate 4 kb of foreign DNA [22], although, the packaging capacity has
been improved by constructing fragmented, overlapping, or trans-splicing Dual AAV
vectors [23,24]. AAV vectors generally do not cause toxic or pathogenic responses. However,
repeated administration of AAV vectors has generated strong immune responses, reducing
the efficacy of delivery and transgene expression [25]. This problem has been addressed
by applying different AAV serotypes for each AAV re-administration. An alternative
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approach has been to utilize exosome-associated AAV (Exo-AAV), which has supported
the application of reduced AAV doses resulting in reduced immune responses against the
AAV capsid protein [26]. Moreover, Exo-AAV8 vectors have demonstrated long-term liver-
directed gene transfer [27]. AAV vectors can transduce both dividing and non-dividing cells
and usually remain in an extrachromosomal state, although integration of AAV-delivered
genes into the host genome has been reported [28]. In fact, 30-fold higher AAV integration
frequency was obtained by the introduction of 28S ribosomal DNA homology sequences in
AAV vectors, which might contribute to superior treatment of genetic diseases [29].

2.3. Herpes Simplex Virus Vectors

The large herpes simplex viruses (HSV) are enveloped dsDNA viruses, which cause
latent infection in neural ganglia [30]. The engineering of HSV expression vectors has
resulted in long-lasting transgene expression [31]. The linear HSV forms a circularized
viral episome in the nucleus and remains extrachromosomal without integration [32]. HSV
vectors have an excellent capacity of accommodating more than 30 kb of foreign DNA [33].
Engineered HSV amplicons are able to package 150 kb of foreign genetic material [34].
However, HSV vectors have been associated with relatively strong cytopathogenicity,
which has been addressed by the deletion of non-essential genes in the HSV genome [35].
Furthermore, the introduction of micro-RNA sequences (miR-145) in the HSV ICP27 gene
has generated oncolytic HSV vectors, which can selectively reduce cell proliferation in
non-small cell lung cancer (NSCLCs) cells [36]. Efficient HSV packaging systems have
been engineered, such as the helper virus-free system for the HSV amplicon using an
ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome (BAC) [37].

2.4. Retrovirus and Lentivirus Vectors

The enveloped single-stranded RNA (ssRNA) retroviruses (RVs) possess a packaging
capacity of 8 kb of foreign sequences [38]. The special feature of RVs comprises their reverse
transcriptase activity, which allows the production of dsDNA copies of the RNA genome
for integration into the host genome [39]. The chromosomal integration is advantageous
for long-term transgene expression, although random integration has been of concern,
even resulting in leukemia development in treated SCID-X1 patients [8]. For this reason,
self-inactivating γRV (SIN-γRV) vectors have been engineered, which have proven safe
with no cases of adverse integration or leukemia observed in clinical trials [40]. However,
adenosine deaminase deficient severe combined immunodeficiency (ADA-SCID) seems
to differ from other inherited immunodeficiencies, as insertional oncogenesis is rare after
γRV treatment [41]. For example, none of the 10 patients in a clinical study developed
leukemia [42], and among a total of 50 ADA-SCID patients treated with γRV, only one
showed clinical evidence of leukemia [43]. Packaging cell lines have also been engineered
for RV vectors to support large-scale production of GMP-grade materials [44]. One serious
limitation of gene therapy applications for RV vectors is their capability to only transduce
dividing cells and not non-dividing cells.

In contrast, lentivirus (LV) vectors, which also belong to the family of retroviruses,
can transduce both dividing and non-dividing mammalian cells [45]. Otherwise, LV
vectors share the same features with RVs of an ssRNA genome and a capacity of carrying
8 kb of foreign genetic material. Importantly, LV vectors show low cell cytotoxicity and
due to their ”semi-random” chromosomal integration provide improved biosafety for
clinical applications, although some adverse events and insertional oncogenesis have been
reported [46]. For example, modification of integration of human immunodeficiency virus-1
(HIV-1) by the fusion of the C-terminal HIV integrase-binding region of the LEDGF/p75
protein to the N-terminal chromodomain of heterochromatin protein-1 alpha (HP1 alpha)
reduced the number of integration events [47]. Expression systems for non-human LV
vectors such as simian immunodeficiency virus (SIV) [48], feline immunodeficiency virus
(FIV) [49], and equine infectious anemia virus (EIAV) [50] have been engineered. LV
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producer cell lines have been designed to support large-scale production [51]. However,
the low titers obtained, and residual toxicity have compromised their utilization [51].

2.5. Alphavirus Vectors

Alphaviruses are enveloped viruses with an ssRNA genome of positive polarity and
a packaging capacity of 8 kb of foreign genetic material [52,53]. The positive polarity
of alphaviruses allows the direct translation of viral RNA in the host cell cytoplasm. Al-
phaviruses possess a special feature of RNA self-replication, which generates extreme levels
of transgene expression. The nature of expression is transient due to the rapid degradation
of the alphavirus ssRNA. Alphavirus vectors can be used as recombinant particles, naked or
liposome encapsulated RNA replicons, or plasmid DNA-based replicons [54]. Expression
systems have been developed for Semliki Forest virus (SFV) [55], Sindbis virus (SIN) [56],
and Venezuelan equine encephalitis virus (VEE) [57]. Moreover, naturally occurring on-
colytic M1 viruses [58] and engineered oncolytic SFV vectors [59] have been used for cancer
therapy.

2.6. Flavivirus Vectors

Similar to alphaviruses, flaviviruses are enveloped ssRNA viruses of positive polarity
and therefore possess the feature of self-replicating RNA, providing high levels of transient
transgene expression and the flexibility of using recombinant viral particles, RNA replicons
and DNA replicons [60]. The packaging capacity of flaviviruses is approximately 6 kb.
Kunjin virus (KUN) [60], West Nile virus (WNV) [61], Dengue virus (DENV) [62], tick-borne
encephalitis virus (TBEV) [63], yellow fever virus (YFV) [64], and Zika virus (ZIKV) [65]
have been subjected to the engineering of expression systems. In support of large-scale
KUN [66] and TEBV [63] vector production, packaging cell lines have been engineered.

2.7. Measles Virus Vectors

The enveloped measles viruses (MVs) carry an ssRNA genome of negative polarity [67].
For this reason, the MV RNA first needs to be copied as a positive strand RNA template for
self-replication of RNA in the host cytoplasm before being translated [68]. Approximately
6 kb of foreign genetic material can be introduced into MV vectors. Technologies for reverse
genetics [69] and packaging cell lines [70] have been established. Oncolytic MV strains
such as MV Hu-191 [71] and MV Schwartz [72] have also been used for cancer therapy.

Table 1. Examples of viral vectors used for gene therapy applications.

Virus Genome Insert Size Advantages and Limitations

Adenovirus
Ad5 dsDNA <7.5 kb Broad host range (dividing and non-dividing cells) [13]
Ad26 Excellent packaging capacity of HC-Adv [17]
ChAd Persistent expression, no chromosomal integration [20]

HC-AdV 37 kb Strong immunogenicity [14], reduced for gutless Ad [16]
Oncolytic Ad vectors for tumor targeting and killing [18]

Pre-existing immunity in humans [13]
Packaging cell lines for large-scale GMP production [19]

AAV
AAV2, 3 ssDNA 4 kb Relatively broad host range [22]
AAV5, 6 Limited packaging capacity [22] improved by Dual AAV vectors [23,24]

AAV8, 9 Strong immune response after AAV re-administration, which could be
reduced by re-administration with different AAV serotypes [25]

Dual AAV Exo-AAV vectors have reduced immunogenicity, providing liver-targeted
transgene expression [26,27]

Exo-AAV Generally, AAV remains in an extrachromosomal state [28]
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Table 1. Cont.

Virus Genome Insert Size Advantages and Limitations

HSV

HSV-1 dsDNA >30 kb Broad host cell range [31], excellent [33], extreme for HSV amplicons [34]
foreign DNA packaging capacity

HSV-2 Long-lasting transgene expression from extrachromosomal circular HSV
DNA [32]

HSV amplicons 150 kb Deletion of non-essential HSV genome reduces cytotoxicity [35]
Engineering of oncolytic HSV by introduction of miR145 [36]

Engineering of helper virus-free packaging system [37]

γ-Retrovirus
MMSV ssRNA 8 kb Restricted host range, only dividing cells [38]
MSCV Good packaging capacity of foreign genetic material [38]

SIN-γRV Chromosomal integration due to reverse transcriptase activity [39]
Random integration causing leukemia [8]

Targeted integration with self-inactivating vector [40]
Packaging cell lines for large-scale production [44]

Lentivirus
HIV-1 ssRNA 8kb Broad host range, including non-dividing cells [45]
HIV-2 Good capacity to accommodate foreign genetic material [45]

SIV Non-random chromosomal integration [46]
FIV Non-human LV vectors available [47–50]

EIAV Producer cell lines engineered for LV vectors [51]

Alphavirus
SFV, SIN, ssRNA 8 kb Extremely broad host range, risk of neurovirulence [52]
VEE, M1 Good packaging capacity [53]

RNA self-replication leading to extreme transgene expression [52]
Low immunogenicity of alphaviruses [52]

Transient expression not applicable for chronic diseases, but good for acute
diseases and vaccines [52]

Flexibility to use viral particles, RNA and DNA replicons for delivery [54]
Oncolytic alphaviruses for cancer therapy [58,59]

Flavivirus
KUN, WNV, ssRNA 6 kb Broad host range, relatively good packaging capacity [60]
DENV, TBEV RNA self-replication leading to high transgene expression [60]

YFV, ZIKV Flexibility to use viral particles, RNA and DNA replicons for delivery [60]
Efficient packaging cell lines for KUN [66] and TBEV [63]

Measles virus
MV ssRNA 6 kb Broad host range, relatively good packaging capacity [67]

Positive strand RNA template needed for translation [68]
Development of reverse genetics [69] and packaging cell lines [70]

Oncolytic MV strains for cancer therapy [71,72]

Rhabdovirus
VSV ssRNA 6 kb Broad host range, relatively good packaging capacity [73]

RABV Positive strand RNA template needed for translation [73]
Maraba Reverse genetics systems [74]

Oncolytic rhabdoviruses for cancer therapy [75,76]
Vaccinia-free packaging cell lines [77]

NDV
NDV ssRNA 4 kb Broad host range, modest packaging capacity [78]

Reverse genetics systems available [79]
Oncolytic NDV for killing of tumor cells [79]
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Table 1. Cont.

Virus Genome Insert Size Advantages and Limitations

Poxvirus dsDNA >30 kb
VV Broad host range [80]

Avipox Excellent packaging capacity [80]
Tumor-selective replication-competent VV [81]

Picornavirus
CVA21 ssRNA 6 kb Relatively broad host range [82]
CVB3 Relatively good packacking capacity despite the small size [82]
PV-1 No chromosomal integration [82]

Applications for gene therapy and vaccines [83,84]

Reovirus
Reovirus-3 dsRNA ND Oncolytic activity in different types of cancer cells [85]

Reoviruses replicate preferentially in Ras activated tumor cells [86]
Combination therapy with radio-, chemo-, and immunotherapy [87]
Endoplasmic reticular stress-mediated apoptosis in cancer cells [88]

Polyoma virus
SV40 dsDNA 17.7 kb Superb packaging capacity of 17.7 kb for SV40 with small genome [89]

Vero cell-based SV40 packaging system [90]
Inhibition of tumor cell progression [91]

AAV, adeno-associated virus; Ad, adenovirus; CVA21, coxsackievirus A21; CVB3, coxsackievirus B3; DENV,
Dengue virus; dsDNA, double-stranded DNA; dsRNA, double-stranded RNA; Exo-AAV, exosome-associated
AAV; FIV, feline immunodeficiency virus; HC-Adv, high-capacity Ad gutless vector; HIV, human immunod-
eficiency virus; HSV, herpes simplex virus; KUN, Kunjin virus; M1, oncolytic alphavirus; MMSV, Moloney
murine sarcoma virus; MSCV, murine stem cell virus; ND, not determined; NDV. Newcastle disease virus; PV-I,
poliovirus-1; SFV, Semliki Forest virus; SIN, Sindbis virus; SINγRV, self-inactivating gamma retrovirus; SIV,
simian immunodeficiency virus; ssDNA, single-stranded DNA; ssRNA, single-stranded RNA; TBEV, tick-borne
encephalitis virus; VEE, Venezuelan equine encephalitis virus; VV, vaccinia virus; WNV, West Nile virus; YFV,
yellow fever virus; ZIKV, Zika virus.

2.8. Rhabdovirus Vectors

Also, rhabdoviruses are enveloped ssRNA viruses with a negative-stranded genome [73].
Reverse genetics methods have been applied for the generation of rhabdovirus expression
systems [74]. Generally, 6 kb of foreign sequences can be accommodated in rhabdovirus
vectors [73]. Expression systems have been engineered for rabies virus (RABV) [92], vesic-
ular stomatitis virus (VSV) [93], and Maraba virus [94]. The majority of the oncolytic
rhabdovirus vectors are based on VSV [75] and Maraba virus [76]. Moreover, vaccinia-free
packaging cell lines have been established for VSV [77].

2.9. Newcastle Disease Virus Vectors

The enveloped negative-stranded ssRNA Newcastle disease virus (NDV) has a limited
packaging capacity of only 4 kb of foreign genetic material [78]. However, this has not been
a major issue as NDV vectors possess oncolytic activity and specifically replicate in tumor
cells, resulting in efficient cell killing and tumor eradication [95]. Oncolytic NDV vectors
have been used for cancer therapy in both preclinical animal models and clinical trials [76].
Reverse genetics have also been used for the NDV-73 T strain to modify the cleavage site of
the fusion (F) protein, which decreased the pathogenicity in chicken without reducing the
potency of tumor cell killing [96].

2.10. Poxvirus Vectors

Poxviruses are large, enveloped dsDNA viruses [80], which show an outstanding pack-
aging capacity of more than 30 kb of foreign DNA. Among poxviruses, vaccinia virus (VV)
vectors have been frequently used for prophylactic and therapeutic applications in the fields
of infectious diseases and cancers [97]. Engineering of tumor-selective replication-proficient
VV vectors has proven an attractive approach for cancer therapy [81]. In the context of
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avian poxviruses such as the non-replicating avipox virus, good biosafety standards have
been achieved for non-avian species [98].

2.11. Picornavirus Vectors

The small non-enveloped picornaviruses contain an ssRNA genome and are capable
of introducing up to 6 kb of foreign genetic material despite their small size [81]. Both
coxsackievirus A21 (CVA21) [82] and the attenuated coxsackievirus B3 (CVB3) [83] have
proven useful for gene therapy and vaccine development. Expression systems have also
been engineered for the PV-1 poliovirus [84].

2.12. Reovirus Vectors

The enveloped dsRNA reoviruses possess oncolytic activity, showing killing of differ-
ent types of cancer cells [85]. It has been documented that reoviruses replicate preferentially
in tumor cells with activated genes of the Ras family or Ras-signaling pathway, which
can be found in 60–80% of human malignancies [86]. Reovirus vectors have been demon-
strated to invoke immune stimulation for reversing tumor-induced immunosuppression
and promotion of anti-tumor immune responses [99]. Reoviruses have also been combined
with radiotherapy, chemotherapy, immunotherapy, and surgery for cancer treatment [87].
Moreover, reovirus serotype 3 (Reolysin®) induces endoplasmic reticular stress-mediated
apoptosis in in vivo models of pancreatic cancer [88].

2.13. Polyoma Virus Vectors

Although, the small non-enveloped dsDNA viruses possess a genome of only 5 kb,
for example, the simian virus 40 (SV40) can package 17.7 kb of foreign DNA [89]. Packag-
ing of virus-like particles (VLPs) containing no SV40 wildtype sequences can be carried
out in vitro. Additionally, Vero cell-based packaging systems have been engineered for
SV40 [90]. SV40 vectors have demonstrated successful delivery of anti-viral agents, DNA
vaccines, suicide, chemoprotective, and anti-angiogenic genes for successful inhibition of
tumor cell progression [91].

3. Gene Therapy Applications

Due to the many gene therapy studies conducted with viral vectors, it is only possible
to provide an overview here through examples from preclinical studies and clinical trials
for various diseases. The examples are selected to cover most disease indications using
different types of viral vectors without indicating any preference of vector choice. The
findings are also summarized in Tables 2–5.

3.1. Cancer

Different types of cancers have been frequently targeted by viral vector-based gene
therapy and immunotherapy, and the potentially straightforward tumor killing with no
need for long-term transgene expression. In addition to intratumoral administration,
tumor targeting by specifically designed vectors [100], utilization of tumor-specific promot-
ers [101], and application of oncolytic viruses [9] have been tested (Table 2).

Table 2. Preclinical and clinical examples of viral vectors applied for cancer therapy.

Viral Vector Phase Findings

Breast cancer
HSV-HF10 Pre Substantial tumor regression, prolonged survival in mice [102]

Reolysin + anti-PD1 Pre Superior tumor regression, prolonged survival in mice after combination [103]
M1 Pre Targeting and killing of 4T1 mammary tumors in mice [104]

PANVAC Phase I SD in 4 patients, complete response in 1 patient [105]
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Table 2. Cont.

Viral Vector Phase Findings

Gliomas
M1 Pre Specific targeting of C6 glioma cells [106]
M1 Pre Replication of M1 in gliomas in mice, rats, and macaques [107]

SFV-IL-12 Pre 87% reduction of RG2 glioma size in rats [108]
SFV-VA Pre 100% eradication of small, 50% eradication of large tumors in mice [59]

RRV Toca 511-CD Pre Prolonged survival in mice with orthotopic gliomas [109]
m-ZIKV Pre Prolonged survival in mice with implanted glioblastomas [65]
MV-CEA Phase I Trial in progress in patients with recurrent glioblastoma [110]

RRV Toca 511 Phase I Prolonged survival of 13.6 months in HGG patients [111]
RRV Toca 511 Phase II/III No improvement in overall survival in HGG patients [112]

Colon cancer
KUN-GM-CSF Pre Cure of >50% of mice with CT26 colon tumors [113]

VSV(M51R) Pre Reduced luciferase expression in tumors, prolonged survival in mice [114]
M-LPO Pre Superior oncolytic activity in mice [115]

SFV-LacZ RNA Pre Protection against tumor challenges in mice after a single injection of RNA [116]

VEE-CEA Phase I Antigen-specific responses and prolonged survival in colorectal cancer
patients [108,117]

vvDD Phase I Th1-biased immune responses against vvDD and tumors in patients [118]

Melanoma
KUN-GM-CSF Pre Significant tumor regression, 67% of mice tumor-free [113]

NDV-IL12/IL15 Pre Superior survival after NDV-IL15 compared to NDV-IL12 in mice [119]
VSV-LCMV-GP Pre Significant tumor regression, prolonged survival in melanoma models [120]
VSV-XN2-∆G Pre Strong tumor regression in mice [121]

CVA21-ICAM-DAF Pre Tumor regression, reduced tumor burden in mouse melanoma model [122]
MG1-hDCT + Ad Pre Ad-hDCT prime-Maraba MG1-hDCT booster elicited immune responses [94]

HSV-HF10 + CTLA4 Phase III Good safety and antitumor activity in patients [102]
HSV T-VEC Phase II/III Good tolerance, promising therapeutic effect in melanoma patients [123]
HSV T-VEC Approval Approved for treatment of advanced melanoma in the US, Europe, Australia [124]

Pancreatic cancer
Adsur-SYE Pre Complete tumor regression in mice [125]
PANVAC Pre Superior immune response in pancreatic mouse cancer models [126]

SV40-hRT-SST2 Pre Long-term inhibition of tumors in Capan-1 mouse tumor model [91]
HSV-HF10 Phase I PR in 3 patients, SD in 4 patients, PD in 9 patients [127]

Ovarian
VSV-LCMP-GP Pre Tumor regression in ovarian cancer mouse models [128]

VSV-LCMP-GP + Rux Pre Superior therapeutic activity after combination therapy [128]
VSVMP-p DNA Pre 87–98% tumor regression in ovarian mouse cancer models [129]

SIN AR339 Pre Ovarian cancer cell killing, tumor regression in mice [130]
MV-CEA Phase I SD in all 9 patients, overall survival twice to the expected time [131]

Prostate
MV-CEA Pre Delay of tumor growth, prolonged survival [132]

MV-sc-Fv-PSMA Pre Specific killing of prostate tumors, enhanced by radiation [133]
MV + MuV Pre Superior antitumor activity, survival after combination therapy [134]
VEE-PSMA Pre Strong Th1-biased immune responses in mice [135]

VEE-mSTEAP Pre Prime immunization with DNA, booster with VEE specific immunogenicity [136]
VEE-PSCA Pre Long-term survival in 90% of TRAMP mice [137]

VV-GLV-1h123-NIS Pre Inhibition of tumor growth, prolonged survival in prostate cancer models [138]
VSV-PSMA Phase I Good safety, disappointingly weak immune responses [139]

Adsur-SYE, adenovirus vector with survivin promoter, pancreatic cell-targeting ligand SYENFSA; CD, yeast
cytosine deaminase; CTLA4, anti-CTLA-4 antibody; DAF, decay accelerating factor; HGG, high grade glioma; HSV,
herpes simplex virus; ICAM-1, intercellular adhesion molecule-1; KUN. Kunjin virus; LCMP-GP, lymphocytic
choriomeningitis virus-glycoprotein; M1, oncolytic alphavirus; M-LPO, liposome-encapsulated M1 alphavirus;
mSTEAP, mouse six-transmembrane epithelial antigen of the prostate; m-ZIKV, mouse-adapted Zika virus; MV,
measles virus; NDV, Newcastle disease virus; PD, progressive disease; PR, partial response; Pre, preclinical studies;
PSCA, prostate stem cell antigen; PSMA, prostate-specific membrane antigen; RRV replicating retrovirus; Rux,
ruxolitinib; SD, stable disease; SFV, Semliki Forest virus; SIN, Sindbis virus; TRAMP, transgenic adenocarcinoma
of the prostate; VSV, vesicular stomatitis virus; vvDD, oncolytic vaccinia virus.
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For example, substantial tumor regression and prolonged survival were observed
in mouse breast tumor models after treatment with an HSV-HF10 vector [102], and the
co-treatment with a reovirus vector and checkpoint inhibitor PD-1 antibody [103]. The
oncolytic M1 alphavirus efficiently targeted and killed 4T1 mammary tumors in mice [104].
In one example of a clinical study, the PANVAC vaccine based on VV and fowl pox was
subjected to a phase I trial in heavily pre-treated breast cancer patients [105]. Stable disease
(SD) was observed in four patients and one patient showed a complete response [105]. In the
context of gliomas, the M1 alphavirus showed specific targeting of C6 glioma cells [106] and
replication in gliomas in mice, rats, and macaques [107]. Moreover, SFV particles expressing
interleukin-12 (SFV-IL-12) were administered via an implanted canula, which reduced RG2
gliomas by 87% in rats [108]. In another study, the replication competent SFV VA7 showed
strong killing of human glioma cells, and intravenous administration in BALB/c mice
completely eradicated 100% of small and 50% of large subcutaneous U87 tumors [59]. In
the case of RV vectors, the replicating retroviral vector (RRV) Toca 511 carrying the yeast
cytosine deaminase (CD) provided extended survival in mice implanted with orthotopic
gliomas [109]. ZIKV has demonstrated specific targeting and killing of glioblastoma stem
cells (GSCs), and administration of the mouse-adapted ZIKV (m-ZIKV) strain prolonged
survival substantially in mice with implanted glioblastomas [65]. Moreover, MV particles
expressing the carcinoembryonic antigen (CEA) [140] have been subjected to a phase I trial
in patients with recurrent glioblastoma multiforme [110]. In a phase I trial, patients with
recurrent or progressive high-grade glioma (HGG) who received the RRV Toca 511 vector
showed a statistically relevant extended survival of 13.6 months [111]. In contrast, the
overall survival was not prolonged in phase II/III trials in HGG patients [112].

KUN-based expression of the granulocyte macrophage-colony stimulating factor (GM-
CSF) resulted in cure in more than 50% of CT26 colon tumor-bearing mice [113]. In another
approach, the oncolytic VSV(M51R) strain was administered intraperitoneally into BALB/c
mice carrying luciferase-expressing CT26 tumors, which resulted in eradication of tumors
demonstrated by reduced luciferase expression and prolonged survival of mice [114]. M1
alphavirus particles encapsulated in liposomes (M-LPO) were able to inhibit the growth of
colorectal LoVo and liver Hep3B cancer cells [115]. Moreover, intravenous administration
of M-LPO reduced the production of M1-specific neutralizing antibodies in mice, resulting
in superior oncolytic activity [106]. In an interesting approach, only a single injection
of 0.1 µg of naked SFV-LacZ replicon RNA provided protection in mice with implanted
CT26 colon tumors against tumor challenges [116]. Additionally, therapeutic activity and
prolonged survival were found in mice with pre-existing tumors [116]. In the case of
clinical trials, VEE-CEA particles were administered to stage III and IV colorectal cancer
patients in a phase I trial [117]. It was found that antigen-specific immune responses were
detected in both stage III and IV patients, and the overall survival was extended. In another
phase I trial, patients with advanced colorectal cancer were subjected to oncolytic vvDD
poxvirus particles, which elicited potent Th1-biased immune responses against vvDD and
tumors [118].

Melanoma has been frequently targeted for gene therapy applications of viral vectors.
For example, KUN-GM-CSF particles generated significant tumor regression and cured 67%
of mice with B16-OVA melanomas [113]. In another approach NDV vectors were applied
for the expression of IL-12 and IL-15 [119]. Intratumoral administration of NDV-IL12
and NDV-IL15 into a mouse melanoma model suppressed tumor growth. NDV-IL15 was
superior, showing 26.6% higher survival rate compared to NDV-IL12 [119]. In another study,
chimeric VSV particles expressing the lymphocytic choriomeningitis virus glycoprotein
(LCMV-GP) showed significant tumor regression and prolonged survival in syngeneic
melanoma tumor models [120]. In another study on VSV, strong tumor regression was
seen in C57BL/6 mice implanted with B16-OVA melanomas after subcutaneous injection
of an oncolytic VSV vector [121]. In the context of picornaviruses, a single subcutaneous
injection of CVA21 particles expressing the intercellular adhesion molecule-1 (ICAM-1)
and the decay-accelerating factor (DAF) resulted in tumor regression and reduced tumor
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burden in a mouse melanoma model [122]. The oncolytic Maraba MG1 strain expressing the
human dopachrome tautomerase (hDCT) neither elicited antitumor immune responses nor
therapeutic activity in mice with B16-F10 metastases [94]. However, prime immunization
with Ad-hDCT followed by a booster immunization with Maraba MG1-hDCT elicited
strong immune responses [94]. In contrast, the Maraba MG1 strain provided a long-lasting
cure in sarcoma-bearing mice, and protection against challenges with sarcoma tumors [79].
In a phase III study, HSV-HF10 was combined with the checkpoint inhibitor anti-CTLA-4
antibody, demonstrating a good safety profile and antitumor activity in patients with non-
resectable or metastatic melanoma [102]. HSV vectors, especially the oncolytic talimogene
laherparevec (HSV T-VEC) vector expressing GM-CSF, have been assessed in Phase II
and III clinical trials, showing a tolerable adverse event profile and promising therapeutic
efficacy superior to GM-CSF therapy [123]. However, responses in visceral metastases have
been modest. HSV T-VEC has been approved for the treatment of advanced melanoma in
the US, Europe, and Australia [124].

Due to the aggressive nature and difficulty to treat pancreatic cancer, gene therapy
efforts have been welcomed as an alternative strategy. For example, administration of Ad
vectors containing the survivin promoter and the pancreatic cancer cell-targeting ligand
SYENFSA (SYE) resulted in complete regression of pancreatic neuroendocrine tumors
(PNETs) in mice [125]. Related to poxviruses, a heterogenous prime-boost strategy applying
the PANVAC system for VV and fowl pox vectors elicited enhanced immune responses
in pancreatic mouse cancer models [126]. A replication-competent SV40 vector carrying
the tumor-specific human telomerase (hTR) RNA promoter and the somatostatin receptor
tumor-suppressor 2 (SST2) gene showed long-term inhibition of tumor growth in the
Capan-1 pancreatic mouse tumor model [91]. In a phase I trial, the oncolytic HSV-HF10 was
administered intratumorally to patients with non-resectable locally advanced pancreatic
cancer, showing partial response (PR) in three patients, SD in four patients, and progressive
disease (PD) in nine patients [127].

In the case of ovarian cancer, the VSV-LCMV-GP showed tumor regression in sub-
cutaneous and orthotopic ovarian cancer mouse models [128]. Moreover, the therapeutic
efficacy was improved by co-administration of VSV-LCMV-GP and the JAK1/2 inhibitor
ruxolitinib [128]. Application of the liposome-encapsulated VSVMP-p DNA vector ex-
pressing the VSV membrane (M) protein for intraperitoneal injection in mice reduced the
tumor weight by 90%, and prolonged survival of mice with implanted ovarian tumors [141].
Moreover, the ovarian tumor growth was inhibited by 87–98% [129]. In another study,
intraperitoneal administration of the oncolytic SIN AR339 vector resulted in ovarian cancer
cell killing and tumor regression in mice [130]. In a clinical setting, MV-CEA particles were
evaluated in a phase I trial in patients with recurrent ovarian cancer [131]. No dose-limiting
toxicity was associated with the treatment, and SD was achieved in all nine treated patients.
Moreover, the median overall survival was 12.15 months, which is twice the expected time.

Related to prostate cancer, intratumoral administration of MV-CEA particles delayed
tumor growth and prolonged survival in PC-3 prostate tumor-bearing mice [132]. In
another study, an MV vector expressing a single-chain antibody (sc-Fv) specific for the
extracellular domain of the prostate-specific membrane antigen (PSMA) was administered
to mice with LNCaP and PC3-PSMA prostate tumors [133]. MV-sc-Fv-PSMA provided
specific infection and killing of PSMA-positive prostate cancer cells, which was further en-
hanced by radiation therapy. Co-administration of oncolytic MV and mumps virus (MuV)
vectors showed superior antitumor activity, and prolonged survival in mice with PC-3
prostate tumors compared to administration of either MV or MuV vectors alone [134]. In
another approach, VEE-based expression of the prostate-specific membrane antigen (PSMA)
elicited strong PSMA-specific immune responses in BALB/c and C57BL/6 mice [135]. A
single immunization induced strong T- and B-cell responses, which were Th1-biased. More-
over, a booster immunization with VEE particles expressing the mouse six-transmembrane
epithelial antigen of the prostate (mSTEAP) 15 days after a prime immunization with
gold-coated conventional pcDNA-3-mSTEAP plasmids elicited specific immune responses
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against mSTEAP, a modest but significant delay of tumor growth, and prolonged the overall
survival of mice [136]. Moreover, administration of VEE particles expressing the prostate
stem cell antigen (PSCA) resulted in long-term survival in 90% of transgenic adenocarci-
noma of the prostate (TRAMP) mice [137]. In addition, administration of the VV GLV-1h123
vector expressing the sodium iodide symporter (NIS) gene provided significant inhibition
of tumor growth, and extended survival time in prostate cancer mouse models [138]. In
the context of clinical evaluation, a phase I trial was conducted in patients with castration
resistant metastatic prostate cancer (CRPC) with VEE-PSMA particles [139]. Although
the procedure showed good safety standards, the PSMA-specific immune responses were
disappointingly weak.

3.2. Cardiovascular Diseases

Gene therapy-based applications for cardiovascular diseases have mainly focused on
Ad and AAV vectors (Table 3). For example, expression of the sarcoplasmic reticulum Ca2+

ATPase (SERCa2a) by an Ad vector restored both systolic and diastolic heart functions to
normal levels in a rat model of heart failure [142]. Ad-SERCa2a also managed to improve
coronary blood flow, and reduced cardiomyocyte size in a rat model for type 2 diabetes [143].
SERCa2a has also been expressed from AAV-1 vectors leading to increased coronary blood
flow in a pig model [144]. Moreover, LV-based expression of SERCa2a provided protection
against left ventricular dilation, improved systolic and diastolic functions, and reduced
mortality rates in an ischemic rat heart failure model [145]. Moreover, expression of
the hepatocyte growth factor (HGF) led to improved heart function in a postinfarct pig
heart model [146]. In other approaches, cardiac arrythmia has been treated with Ad
vectors expressing Connexin 43 (Cx43) or the I(Kr) potassium channel alpha subunit,
resulting in increased conduction velocity, prevention of atrial fibrillation, and reduced
tachycardia after myocardial infarction in pigs [147] and prevention of fibrillation in a swine
model [148], respectively. The pMX5 retrovirus has been applied for the expression of the
transcription factors GATA4, MEF2C, and TBX5 for the reprogramming of non-myocytes in
the mouse heart to cardiomyocyte-like cells to reduce infarct size and to attenuate cardiac
dysfunction [149].

Table 3. Preclinical and clinical examples of viral vectors applied for cardiovascular, metabolic, and
hematological diseases.

Viral Vector Phase Findings

Cardiovascular
Ad-SERCa2a Pre Restoration of systolic/diastolic heart function in rat heart model [142]
Ad-SERCa2a Pre Improved coronary blood flow, reduced cardiomyocyte size in rats [143]

AAV1-SERCa2a Pre Increased coronary blood flow in pig model [144]
LV-SERCa2a Pre Protection against dilation, improved systolic and diastolic functions [145]

Ad-HGF Pre Improved heart function in a post-infarct pig model [146]
Ad-Cx43 Pre Prevention of atrial fibrillation, reduced tachycardia in post-infarct pigs [147]

Ad-KCNH2 Pre Prevention of fibrillation in swine model [148]
pMX5-GATA4/TBX5 Pre Reprogramming cells to reduce infarct size, attenuated cardiac dysfunction [149]

Ad-VEGF Phase I Improved myocardial perfusion reserve, relief in symptoms in angina patients [150]
Ad-VEGF Phase II Improved treadmill exercise, no improvement in myocardial perfusion [151]
Ad-FGF4 Phase I/II Improved treadmill exercise [152,153], stress-induced myocardial perfusion [154]

AAVI-SERCa2a Phase I Improved in functional, symptomatic, ventricular/remodeling parameters [155]
AAV1-SERCa2a Phase II Improved walking, oxygen consumption, ventricular endosystolic volume [156]
AAV1-SERCa2a Phase IIa Reduced number of cardiovascular events and deaths [157]
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Table 3. Cont.

Viral Vector Phase Findings

Metabolic
AAV-GUS Pre Single injection reversed mucopolysaccharidosis phenotype in mice [158]

AAV-LDL-R Pre Nearly normal lipid levels, prevention of severe atherosclerosis in mice [159]
AAV-FGF21 Pre Therapeutic efficacy in transgenic mice as model for T2DM [160]
AAV8-PAL Pre Long-term correction of hyperphenylalaninemia in mice [161]
AAV8-GAA Pre Therapeutic activity and attenuated Pompe disease phenotype in mice [162]

MSCV-Insulin Pre Decreased blood glucose, increased insulin, reversal of diabetes in mice [163]
MMTV-Ad36 E4orf1 Pre Improved glucose excursion in mice [164]

AAV-PBGD Phase I Unable to correct AIP phenotype, but reduced hospitalization [165]
AAV-hAAT Phase I Above background levels of hAAT in patients [166]
AAV-hAAT Phase II Strong immunostaining of AAT in muscle biopsies [167]

Hematology
Ad-FVIII Pre Physiological levels of FVIII in mice [168]
Ad-FIX Pre Long-term expression of FIX in nude mice [169]
Ad-cFIX Pre Correction of hemophilia B in dogs, but only 1–2% FIX after 3 weeks [170]

Ad-cFIX + CsA Pre CsA restored therapeutic FIX levels for at least 6 months [171]
AAV6/AAV8-FVIII Pre Therapeutic levels of FVIII lasting for >3 years in dogs [172]

AAV8-FVIII Pre 1–2% of normal FVIII levels, prevention of 90% of bleeding episodes in dogs [173]
AAV8/AAV9-FVIII Pre 1.9–11.3% of normal FVIII, no effect on chromosomal integration in dogs [174]

AAV8-FIX Pre 25–40% of normal FIX levels in hemophilic dogs [175]
AAV-FVIII Phase I/II 8–60% of normal FVIII levels in hemophilia A patients [176]

AAV5-hFVIII-SQ Phase I Clinical benefits, reduced bleeding events in hemophilia A patients [177]
AAV8-FIX Phase I 1–6% of normal FIX levels in hemophilia B patients for 3.2 years [178]

scAAV2-FIX Phase I Stable expression of FIX for 7 years, reduced bleedings in patients [176]
AAVS3-FIX Phase I/II Stable expression for 27 months required immunosuppression in patients [179]
AAV5-FVIII Approval Conditional marketing approval for severe hemophilia A by EMA [180].

2bF8 LV Pre Sustained FVIII expression. correction of hemophilia A phenotype in mice [181]
SIN-LV-cFIX Pre Long-term stable expression of FIX in dogs [182]

2bF9/MGMT LV Pre 2.9-fold increase in FIX expression, reduced blood clotting time [183]
LV-PKDL/R Pre LV-transduced HSCs corrected hemolytic anemia phenotype in mice [184]

MSCV-FANCA CR Transient gene correction in 2 Fanconi anemia patients [185]
LV-RPS19 Pre Cure of DBA in an RPS19 DBA-deficient mouse model [186]

LentiGlobin BB305 Phase I Stop of transfusion of red blood cells in β-thalassemia patients [187]
LentiGlobin BB305 Phase III Sustained HbAT87Q, non-β0/β0 genotype patients independent of transfusions [188]

GLOBE LV Pre In utero gene therapy providing normalized hematological phenotype in mice [189]
GLOBE LV Phase I/II Transfusion discontinued or reduced in β-thalassemia patients [190]
LV-HSCs Pre Anti-sickling protein expression in mice [191]

LentiGlobin BB305 CR Transfusions in the SCD patient could be discontinued [192]
LentiGlobin BB305 Phase I/II Clinical remission or reduced frequency of transfusions in SCD patients [193]

HIV-HSV-TK Pre Prolonged survival of mice with acute T-cell leukemia (ATL) [194]
SIN-GALV.fus Pre Antitumor activity against acute myeloid leukemia (AML) xenografts in mice [195]

AAV6-CD33-iCasp9 Pre Antitumor and apoptotic activity, prolonged survival in zebrafish [196]
LOAd703 + CAR T Pre Lymphoma killing in cell lines and in xenograft mouse models [197]

HSVrantes/HSVB7.1 Pre Complete tumor regression after combination therapy in mice [198]
HSV-1 T-01 Pre Intratumoral and contralateral tumor regression in mice [199]

AAV8-h1567 mAb Pre Strong antitumor activity, prolonged survival in mice [200]
SIN + α4-IBB Ab Pre Complete lymphoma eradication, long-lasting immunity in mice [201]

CVA21 RNA Pre Rapid tumor regression in mice, comparable to CVA21 particles [202]
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Table 3. Cont.

Viral Vector Phase Findings

VSV-IFN-β Pre Eradication of tumors, prolonged survival in mice [203]
Reolysin Pre Reduced tumor burden in xenograft and syngeneic myeloma mouse models [204]

2bF8 LV, LV vector with integrin alpha-2b promoter; 2bF9/MGMT LV, LV vector with alpha-2b promoter; FVIII
gene; hAAV, adeno-associated virus; AAVS3, AAV3 with synthetic capsid protein; Ad, adenovirus; AIP, acute
intermittent porphyria; CR, case report; CsA, cyclosporin A; Cx43, connexin 43; DBA, Diamond-Blackfan anemia;
EMA, European Medicines Agency; FANCA, Fanconi anemia complementation group A; FGF4, fibroblast growth
factor 4; FGF21, fibroblast growth factor 21; FIX, factor IX; FVIII, factor VIII; hAAT, human alpha-1-antitrypsin;
GAA, acid α-glucosidase; GALV.fus, gibbon ape leukemia virus fusion protein; GUS, β-glucuronidase; h1567
mAb, anti-CCR4 monoclonal antibody; HbA, hemoglobin; HSCs, hematopoietic stem cells; HSV, herpes simplex
virus; HSV-TK, herpes simplex virus-thymidine kinase; KCNH2, I(Kr) potassium channel alpha subunit; LDL-R,
low density lipoprotein receptor; LentGlobin BB305, LV vector expressing HbAT87Q; MMTV, mouse mammary
tumor virus; MSCV, murine stem cell virus; PAL, phenylalanine amino lyase; PBGD, porphobilinogen deaminase;
pMX5, retrovirus; Pre, preclinical studies; RPS19, ribosomal protein S19; scAAV8, self-complimentary AAV8;
SERCa2a, sarcoplasmic reticulum Ca2+ ATPase; SIN-LV, self-inactivating LV; SIN, Sindbis virus; T2DM, type 2
diabetes mellitus; VEGF, vascular endothelial growth factor; VSV, vesicular stomatitis virus.

Related to clinical evaluation, in a phase I trial, intramyocardial administration of
the vascular endothelial growth factor (VEGF) expressed from Ad vectors generated im-
provement in myocardial perfusion reserve and relief of symptoms in refractory angina
patients [150]. In a phase II study in patients with severely symptomatic coronary artery
disease, the Ad-VEGF vector showed significant improvement in treadmill exercise, al-
though, no improvement in myocardial perfusion was observed [151]. In a series of phase
I-II AGENT (Angiogenic GENe Therapy) trials, the fibroblast growth factor 4 (FGF4) was
expressed from Ad vectors in patients with chronic stable angina [152–154]. The studies
demonstrated symptomatic improvement in exercise time [152], sex-specific benefits for
treadmill exercise [153], and improvement in stress-induced myocardial perfusion [154].
AAV1-SERCa2a has been evaluated in a phase I study in patients with heart failure, which
led to an improvement in functional, symptomatic, and ventricular/remodeling param-
eters [155]. In a phase II study, improvements in a walking test, peak maximum oxygen
consumption, and left ventricular endosystolic volume were seen in patients with class
III/IV heart failure after AAV1-SERCa2a treatment [156]. In another phase IIa trial, AAV1-
SERCa2a treatment reduced the number of cardiovascular events and deaths [157].

3.3. Metabolic Diseases

More than 30 metabolic diseases have been subjected to viral vector-based gene
therapy studies [205] (Table 3). AAV vectors have been used in the majority of studies. For
example, AAV-based expression of β-glucuronidase (GUS) has been used for treatment
of the lysosomal storage disease mucopolysaccharidosis [158]. Intramuscular injection
of AAV-GUS generated high levels of local GUS. In contrast, only low GUS activity was
detected after intravenous administration in mice [158]. However, even low levels of
GUS reduced the glycosaminoglycan levels to normal in the liver and reduced storage
granules substantially, and a single administration of AAV-GUS was sufficient to reverse
the disease phenotype in mice [158]. AAV vectors have also been used for the expression of
the low-density lipoprotein receptor (LDL-R) in the liver, which provided nearly complete
normalization of serum lipid levels and prevention of severe atherosclerosis in mice [159].
Related to type 2 diabetes mellitus (T2DM), expression of the fibroblast growth factor
21 (FGF21) from AAV vectors provided substantial reduction in body weight, adipose
tissue hypertrophy and inflammation, and insulin resistance for more than one year in
transgenic ob/ob mice or wildtype mice receiving a high-fat diet [160]. In the context
of phenylketonuria (PKU), a single injection of an AAV8 vector, containing the human
antitrypsin (hAAT) promoter for the liver-specific expression of phenylalanine amino lyase
(PAL), generated long-term correction of hyperphenylalaninemia in mice [161]. Moreover,
AAV8 vectors expressing the acid α-glucosidase (GAA) gene have been evaluated for the
treatment of Pompe disease, a glycogen storage disease [162,206]. Liver-specific GAA
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expression led to therapeutic activity and attenuated the disease phenotype in mice. RVs
such as murine stem cell virus (MSCV) have been used for expression of the human insulin
gene in diabetic mice, showing decrease in blood glucose levels, increase in secreted insulin,
and reversal of diabetes for up to 6 weeks [163]. Moreover, the hyperglycemic Ad36 E4orf1
protein was expressed from an murine mammary tumor virus (MMTV) vector generating
improved glucose excursion in C57BL/6 mice despite their high fat diet, and enhanced
glucose levels without increasing insulin sensitivity [164].

In the case of clinical trials, intravenous administration of AAV particles expressing
the porphobilinogen deaminase (PBGD) gene in a phase I trial in patients with acute
intermittent porphyria (AIP) did not correct the AIP phenotype but suggested a trend
towards a reduction in hospitalization and heme treatment [165]. In another approach, a
phase I trial on patients with alpha-1-antitrypsin (AAT) deficiency was conducted with
AAV vectors expressing the human AAT gene [166]. The safe intramuscular administration
of AAV-hAAT generated AAT expression above background levels, which was sustained
for at least one year. A follow-up phase II trial demonstrated antibody responses in all
patients, however, not against AAT [167]. Despite that, strong immunostaining of AAT was
detected in muscle biopsies.

3.4. Hematological Diseases

Among hematological diseases, hemophilias have been successful targets for gene
therapy to correct the mutated factor VIII (FVIII) [207] and factor IX (FIX) [208] genes
causing hemophilia A and B, respectively (Table 3). Originally, Ad vectors were applied
showing sustained expression of the full-length FVIII at physiological levels in mice [168].
Furthermore, Ad-based long-term FIX expression of more than 300 days could be estab-
lished in nude mice [169]. Ad-based expression of the canine FIX (cFIX) provided complete
correction of the hemophilic phenotype in FIX-deficient hemophilia B dogs [170]. How-
ever, the cFIX levels decreased to only 1–2% of normal FIX levels in three weeks, but
co-administration of the immunosuppressive cyclosporin A (CsA) restored therapeutic FIX
levels and correction of hemophilia B for at least 6 months [171].

The limited packaging capacity of AAV vectors has presented some difficulties related
to hemophilia therapy due to the large size of the FVIII gene [209]. For this reason, the
B-domain deleted (BDD) FVIII has been expressed from AAV vectors [210]. In addition, the
choice of AAV serotype is important as AAV8 provided much higher FVIII activity than
AAV2, 3, 5, and 7 serotypes [211]. For example, AAV2-based expression of the canine BDD
FVIII was only transient, while AAV6 and AAV8 vectors provided persistent therapeutic
levels of FVIII, lasting for more than 3 years [172]. In another canine study on AAV8-FVIII,
1–2% of normal FVIII levels were achieved, which prevented 90% of bleeding episodes [173].
Moreover, a study with AAV8 and AAV9 in nine dogs showed 1.9–11.3% of normal levels
monitored for 10 years [174]. Liver samples from six dogs identified 1741 unique integration
sites in the genome, none of which induced tumors or altered liver function. Related to
hemophilia B, AAV8-based FIX delivery increased FIX expression by 8–12-fold, with 25–40%
of normal FIX levels in hemophilic dogs [175].

In clinical trials, interim results from a phase I/II study in six hemophilia A patients
treated with a single injection of AAV-FVIII generated 8–60% of normal FVIII levels [176].
Moreover, a single infusion of the AAV-FVIII SQ variant (AAV5-hFVIII-SQ) showed sus-
tained clinically relevant benefits with a decrease in bleeding events, and no need for
prophylactic FVIII use in severe hemophilia A patients in a multiyear follow-up study [177].
AAV8-FIX particles were evaluated in a phase I trial in hemophilia B patients, which
provided 1–6% of normal FIX levels for at least 3.2 years [178]. In another approach, self-
complementary AAV2 vectors expressing FIX (scAAV2-FIX) showed stable FIX production
for 7 years, contributing to substantial reduction in bleeding in hemophilia B patients [176].
In a phase I/II study, the AAVS3 vector, containing a synthetic capsid protein, was subjected
to expression of FIX (FLT180a), which resulted in dose-dependent increase in FIX levels
with five patients showing 51–78%, three patients 23–43%, and one patient 260% of the
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normal FIX levels [179]. Although sustained FIX expression was detected for 27 months,
immunosuppression with glucocorticoids was required in all patients. Approval for condi-
tional marketing of an AAV5 vector expressing the BDD FVIII cDNA for the treatment of
severe hemophilia A has been granted by the European Medicines Agency (EMA) [180].

LV vectors have also been evaluated for hemophilia gene therapy. For example, the
FVIII gene was expressed from a platelet-specific integrin alpha 2b promoter engineered
into an LV vector (2bF8 LV) and transduced into mouse bone marrow [181]. Mice trans-
planted with 2bF8 LV-transduce bone marrow generated functional FVIII activity, survival
of tail clipping, and correction of the hemophilia A phenotype. In the case of hemophilia
B, expression of cFIX from a self-inactivating LV (SIN-LV) vector, carrying a hepatocyte-
specific promoter, generated long-term stable FIX expression in dogs [182]. In another
approach, the 2bF9/MGMT LV vector, which contains the alpha-2b promoter, the FIX, and
methylguanine-DNA-methyltransferase (MGMT) 140K genes, provided a 2.9-fold higher
FIX expression and 3.7-fold higher FIX activity in platelets after hematopoietic stem cell
(HSC) transduction [183]. In transplanted mice, the blood clotting time was significantly
reduced while the expression of therapeutic platelet-FIX was enhanced in mice.

Hemolytic anemia has been approached by transduction of HSCs by LV expressing
the pyruvate kinase L/R (PKL/R) to compensate for pyruvate kinase deficiency (PKD),
which corrected the hematological phenotype in mice [184]. The oncoretroviral MSCV
vector has been used for ex vivo transfer of the Fanconi anemia complementation group A
(FANCA) gene to treat Fanconi anemia (FA) [185]. Despite good safety and tolerability, the
gene correction was transient due to the low dose of infused gene-corrected cells. In the
context of Diamond-Blackfan anemia (DBA), LV-based expression of the ribosomal protein
S19 (RPS19) provided cure of DBA and lethal bone marrow in an RPS19-deficient DPA
mouse model [186].

In addition, β-thalassemia caused by more than 200 mutations in the β-globin gene [212]
has been the target for viral-based gene therapy. For example, ex vivo transduced
LentiGlobin BB305, an LV vector expressing the adult human hemoglobin T87Q mutant
gene (HbAT87Q), allowed 12 β-thalassemia patients with the β0/β0 genotype to stop red
blood cell transfusions and in 9 other patients, the transfusion volume could be reduced
by 73% in a phase I study [187]. Interim results from a phase III trial with LentiGlobin
BB305 confirmed the expression of sustained levels of HbAT87Q and for patients with the
non-β0/β0 genotype to become independent of transfusions [188]. The GLOBE LV vector
has been subjected to intrahepatic administration in utero in a humanized mouse model,
which resulted in a normalized hematological phenotype at 12–32 weeks of age [189]. In a
phase I/II trial, rapid recovery was achieved in three adult and six pediatric β-thalassemia
patients treated with GLOBE LV vector-transduced stem cells [190]. The transfusion could
be completely discontinued in children and reduced in adults.

In the context of sickle cell disease (SCD), which is caused by a single mutation in
the β-globin chain of the adult α2β2 hemoglobin tetramer [213], HSCs transduced with
LV vectors expressing a βA-globin variant have demonstrated long-term expression for
10 months and accumulation of anti-sickling protein up to 52% of total hemoglobin in mouse
models [191]. In a case report, LentiGlobin BB305-transduced bone marrow cells showed
no SCD-related clinical events and the patient’s transfusions could be discontinued [192].
In a phase I/II trial, autologous CD34+ cells were transduced with LentiGlobin BB305
expressing the anti-sickling βA-T87Q globin gene, which caused no adverse events in three
SCD patients [193]. Clinical remission was observed in two patients, and the frequency of
transfusions could be reduced in one patient.

Among hematological diseases, leukemias, lymphomas, and myelomas have also
been subjected to gene therapy applications using viral vectors, as described previously
in more detail [214]. Briefly, LV (HIV) vectors expressing herpes simplex virus-thymidine
kinase (HSV-TK) were administered intraperitoneally to adult T-cell leukemia (ATL)-NOD-
SCID mice, which generated significantly lower levels of secreted IL-2 and prolonged
survival of mice compared to administration of an HIV vector expressing GFP [194]. Ex-
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pression of a hyperfusogenic gibbon ape leukemia virus envelope glycoprotein (GALV.fus)
from a SIN vector resulted in antitumor activity against human acute myeloid leukemia
(AML) xenografts in mice [195]. In another approach, the AAV6-CD33 vector carrying an
antibody-binding CD33 epitope targeting leukemia cells was utilized for the expression
of the inducible caspase 9 (iCasp9) suicide gene in an AML xenotransplantation model in
zebrafish [196]. AAV6-CD33-iCasp9 treatment resulted in antileukemic activity, a higher
number of apoptotic cells, and prolonged survival.

In the case of lymphomas, the oncolytic Ad vector LOAd703 expressing CD40L and
4-1BBL was combined with chimeric antigen receptor (CAR) T-cell therapy, demonstrating
increased killing of lymphoma cell lines and lymphomas in xenograft mouse models [197].
HSV amplicon vectors have been used for the expression of RANTES (HSVrantes) and
the T-cell costimulatory ligand B7.1 (HSVB7.1) [198]. Complete EL4 tumor regression was
observed in mice after intratumoral co-administration of HSVrantes and HSVB7.1, and
in contralateral tumors. Similarly, intratumoral injection of the third generation HSV-1
T-01 vector provided tumor regression not only in injected tumors but also in non-injected
contralateral tumors in mice [199]. In another approach, AAV8 expressing the humanized
single-chain variable fragment (scFV)-Fc fusion minibody of the anti-CCR4 monoclonal
antibody h1567 showed strong antitumor activity and prolonged survival in mice after a
single intravenous infusion [200]. The oncolytic SIN vector combined with the agonistic
monoclonal antibody to the T-cell stimulatory receptor 4-1BB (α4-1BB Ab) showed complete
eradication of a non-Hodgkin B cell lymphoma in an A20 mouse tumor model, and long-
lasting antitumor immunity was established in surviving mice [201].

In the context of lymphomas, infectious oncolytic CVA21 RNA was intratumorally
injected into KAS6/1 myeloma-bearing mice leading to rapid tumor regression, which was
comparable to injection of fully infectious CVA21 particles [202]. Moreover, intravenous
administration of the oncolytic VSV vector expressing interferon-β (IFN-β) eradicated
myeloma cells and prolonged survival in immune-competent myeloma mice [203]. In addi-
tion, the oncolytic reovirus (Reolysin) showed selective replication and induced apoptosis
in multiple myeloma cell lines and reduced the tumor burden in xenograft and syngeneic
multiple myeloma mouse models [204].

3.5. Neurological Disorders

Several approaches have been explored for gene therapy of neurological disorders
(Table 4). For instance, AAV-based expression of the glutamic acid decarboxylase 65
(GAD65) gene improved symptoms related to Parkinson’s disease in a rat model, and
relieved pain in a rat pain model [215]. In a comparative study, the glial cell-derived
neurotrophic factor (GDNF) was expressed from Ad, AAV, and LV vectors resulting in
regionally restricted GDNF expression in the striatum and substantia nigra, inhibition of
toxin-induced degeneration of nigral dopamine neurons, and functional striatal dopamine
innervation in a rat Parkinson’s disease model [215]. Moreover, administration of AAV-
GDNF or LV-GDNF to 6-hydroxydopamine (6-OHDA)-lesioned rats and 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MTTP)-lesioned primates generated sustained GDNF delivery
for 3–6 months, which contributed to regeneration and functional recovery [216]. In another
study, it was demonstrated that LV-GDNF administration to the striatum and substantia
nigra reversed functional and motor deficits and completely prevented nigrostriatal degra-
dation in MPTP-lesioned rhesus macaques [217]. In clinical settings, in a phase I clinical
trial, the human aromatic-l-amino acid decarboxylase (hAAD) expressed from an AAV
vector showed good tolerance, only minor adverse events, and a significant improvement
in the Parkinson’s Disease Rating Scale (UPDRS), which was sustained for at least 2 years
in patients with moderate to advanced Parkinson’s disease [218]. In a phase I/II clinical
trial, tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and
GTP-cyclohydroxylase-1 (GCH-1) expressed from LV vectors (ProSavin) were subjected to
intrastriatal administration in Parkinson’s disease patients, which was safe, well tolerated,
and provided significant improvement of motor function [219]. Moreover, a long-term
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phase I/II follow-up study with ProSavin showed a significant improvement in the UPDRS
score 4 years after the treatment [220].

Table 4. Preclinical and clinical examples of viral vectors applied for neurological disorders, muscular
diseases, and immunodeficiency.

Viral Vector Phase Findings

Neurological
AAV-GAD65 Pre Improved symptoms of Parkinson’s disease in rats [215]
AAV-GAD65 Pre Pain relief in rat pain model [215]

Ad-GDNF Pre Inhibition of toxin-induced degeneration of neurons in rat model [216]
AAV-GDNF Pre Inhibition of toxin-induced degeneration of neurons in rat model [216]
LV-GDNF Pre Inhibition of toxin-induced degeneration of neurons in rat model [216]

AAV-GDNF Pre GDNF for 3–6 months, regeneration, functional recovery in rats, primates [216]
LV-GDNF Pre GDNF for 3–6 months, regeneration, functional recovery in rats, primates [216]
LV-GDNF Pre Reversed functional and motor deficits, prevented degradation in primates [217]

AAV-hAAD Phase I Significant improvement in UPRDS in Parkinson’s disease patients [218]
LV-ProSavin Phase I/II Safe, well tolerated, improved motor function in Parkinson’s disease patients [219]
LV-ProSavin Phase I/II Significantly improved 4-year UPRDS score in Parkinson’s disease patients [220]

AAV2/5-NGF Pre Long-term neuroprotection in rat Alzheimer’s disease model [221]
AAV2/5-NGF Phase I Inconclusive results in Alzheimer’s disease patients [222]
AAV-APPsα Pre Functional special memory, mitigated synaptic and cognitive deficits in mice [223]

LV-GDNF Pre Preserved learning and memory in mouse Alzheimer’s disease model [224]
LV-Klotho Pre Less cognitive deficits and Alzheimer’s disease-like pathologies in mice [225]

AAV5-miHTT Pre Prevention of ATT aggregate formation, neuronal dysfunction in HD rat model [226]
AAV-miHTT Pre Reduced mutant HTT mRNA and protein in transgenic HD minipig brain [227]
AAV-miHTT Phase I/II Study in progress on disease progression in Huntington’s disease patients [228]

AAV9-MeCP2 Pre Prolonged survival in a mouse Rett syndrome model [229]
AAV9-SMN Phase I Improved motor function, prolonged survival in SMA patients [230]
AAV9-SMN Phase I Improved motor function, prolonged survival in SMA patients [231]
AAV9-SMN Approval Approved for treatment of SMA patients in the US, the EU, and Canada [232]

Muscular
Ad-∆Dys Pre Restored dystrophin protein levels in mice [233]

AAV-µDys Pre Amelioration of dystrophin phenotype in transgenic mtx mice [234]
AAV6-µDys Pre Reduced skeletal muscle pathology, prolonged lifespan in dystrophic mice [235]
AAV6-µDys Pre Efficient delivery of dystrophin in canine dystrophin model for 2 years [236]
AAV6-µDys Phase I/II Therapeutic levels of µDys, improved NSAA score in all DMD patients [237]
AAV9-µDys Phase I Study in progress in 4–12-year-old DMD patients [238]

AAV-PABPN1 Pre Decreased muscle fibrosis, normal muscle strength in OPMD mouse model [239]
LV-PABPN1 Pre Efficient ex vivo transduction and rescue of myoblasts from OPMD patients [240]

Immunodeficiency
γRV-IL2RG CR Long-lasting clinical benefits in 8 out of 10 SCID-X1 patients [241]
γRV-IL2RG CR Normal growth, protection against infections in SCID-X1 patients after 18 years [242]
γRV-IL2RG CR Sustained clinical benefits in 10 SCID-X1 patients [243]
γRV-IL2RG CR T-ALL in SCID-X1 patients after unfavorable integration of the γRV vector [8,244]

SIN-γRV CR Successful treatment of 9 SCID-X1 patients without leukemia development [245]
SIN-LV CR Successful treatment of 44 SCID-X1 patients without leukemia development [245]

SIN-LV-ABCD1 CR Prevention of progressive demyelination, clinical benefits in ALD patients [40]
SIN-γRV/LV-ADA CR Sustained ADA expression, metabolic correction in >100 SCID-ADA patients [246]

AAV, adeno-associated virus; ABCD1, adenosine triphosphate.binding cassette transporter; Ad, adenovirus; ADA,
adenosine deaminase; ALD, adrenoleukodystrophy; ∆Dys, truncated dystrophin; DMD, Duchenne muscular
dystrophy; GAD65; glutamic acid decarboxylase; GDNF, glial-derived neurotrophic factor; hAAD, human
aromatic-l-amino decarboxylase; HD, Huntington’s disease; IL2RG, interleukin-2 receptor gamma subunit; HTT,
huntingtin; LV, lentivirus; MeCP2, methyl CpG binding protein 2; µDys, mircro-dystrophin; miHTT, micro-
RNA targeting HTT; NSAA, North Star Ambulatory Assessment; OPMD, oculopharyngeal muscular dystrophy;
PABPN1, poly A-binding protein nuclear 1; Pre, preclinical studies; ProSavin, LV vector expressing tyrosine
hydroxylase, aromatic amino acid dopa decarboxylase, and GTP-cyclohydroxylase-1; γRV, gamma retrovirus;
SCID-X1, X-linked severe combined immunodeficiency; SIN-LV, self-inactivating LV; SMA, spinal muscular
atrophy; SMN, survival motor neuron; T-ALL, T-cell acute lymphoblastic leukemia; UPDRS, United Parkinson’s
Disease Rating Scale.
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In the case of Alzheimer’s disease, a chimeric AAV2/5 vector with the AAV2 genome
and the AAV5 capsid structure has been applied for the expression of the nerve growth
factor (NGF) [221]. In comparison to AAV2-NGF, the AAV2/5-NGF showed superior trans-
duction of septal cholinergic neurons in rats, which provided long-term neuroprotection.
Although preclinical studies have shown promising results regarding neuroprotection,
the results from a phase I trial with AAV2/5-NGF were inconclusive [222]. In another ap-
proach, the secreted amyloid precursor protein (AAPsα) was expressed from AAV vectors,
which resulted in functional rescue of spatial memory and mitigated synaptic and cognitive
deficits in mice [223]. Moreover, LV-GDNF administration preserved learning and memory
in mice; although, the amyloid and tau pathologies were not reduced [224]. However,
the upregulation of the brain-derived neurotrophic factor (BDNF) was induced, which
can contribute to neuronal protection against atrophy and degeneration. In another study,
LV-based expression of the anti-aging gene Klotho efficiently ameliorated cognitive deficits
and Alzheimer’s disease-like pathologies in the brains of APP/presenilin-1 transgenic
mice [225].

Huntington’s disease, caused by a mutation in the huntingtin (HTT) gene, has been
explored for AAV-based gene silencing with miRNAs targeting HTT [226]. Administration
of AAV5-miHTT suppressed mutant HTT mRNA, resulting in almost complete prevention
of mutant HTT aggregate formation and suppression of DARPP-32-associated neuronal
dysfunction in a rat model for Huntington’s disease [226]. Moreover, AAV5-miHTT sig-
nificantly decreased mutant HTT mRNA and protein levels in the brain of transgenic HD
minipigs [227]. A phase I/II clinical trial is in progress for the evaluation of safety, tolerabil-
ity, and proof-of-concept of a single-time bilateral injection of AAV-miHTT (AMT-1309) in
adults with early-stage Huntington’s disease compared with control individuals for disease
progression [228]. In the context of the X-linked Rett syndrome (RTT), the transcription
regulator methyl CpG-binding protein 2 (MeCP2) was expressed from an AAV9 vector
showing prolonged survival in an RTT mouse model [229]. In attempts to treat spinal
muscular atrophy (SMA), which is associated with muscle weakness and atrophy, but
caused by deterioration of motor neurons in the brainstem and spinal cord, an AAV9 vector
has been employed for the expression of the survival motor neuron (SMN) gene [230]. In a
phase I trial, AAV9-SMN delivery generated remarkable improvements in motor function
and survival rates [230]. In another phase I study, a single intravenous AAV9-SMN injection
improved motor function and extended survival in SMA patients [231]. AAV9-SMN1 has
been approved in the US for treatment of children with SMA up to the age of two years,
and in the EU and Canada in SMA patients under the brand name Zolgensma [232].

3.6. Muscular Diseases

Several gene therapy applications targeting muscular diseases, particularly various
muscular dystrophies, have been successful [233]. For example, related to Duchenne mus-
cular dystrophy (DMD), Ad-based expression of a truncated form of dystrophin restored
dystrophin-related protein levels in mouse skeletal muscle [234]. The large size of dys-
trophin has been a major issue for AAV-based expression due to its limited packaging
capacity, which has led to the engineering of ”micro-dystrophin” cassettes (µDys) [235].
AAV-µDys were used for the production of transgenic mtx mice, which ameliorated the
dystrophin phenotype with restored levels of normal C57BL/10 mice [235]. Moreover,
AAV6-µDys restored dystrophin levels in respiratory, cardiac, and limb musculature, re-
ducing the skeletal muscle pathology, and substantially prolonging the lifespan of severely
dystrophic mice [236]. Additionally, the AAV6-µDys resulted in efficient delivery of dys-
trophin throughout different skeletal muscles in a canine dystrophin model, which lasted
for at least two years [237]. In the context of clinical trials, AAV6-µDys has been subjected
to a phase I/II trial in DMD patients, in which, according to interim results, therapeutic
levels of µDys, 81% dystrophin-positive fibers, and improvement in the North Star Ambu-
latory Assessment (NSAA) score were seen in all patients [238]. Moreover, a phase I trial
with the AAV9-mini-dystrophin vector is in progress in 4-12-year-old DMD patients for
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the verification of safety, tolerability, dystrophin expression and distribution, and muscle
strength [247]. Several other AAV-based phase I/II and phase III are in progress in DMD
patients (NCT03368742, NCT03375164, and NCT04281485), showing minimal adverse
events, good safety in four patients, robust expression of µDys, and functional muscle
improvement based on interim results [238].

In the case of oculopharyngeal muscular dystrophy (OPMD), which is caused by
trinucleotide repeat expansion in the poly A-binding protein nuclear 1 (PABPN1) gene,
patients suffer from late onset of ptosis, swallowing difficulties, and formation of nuclear
aggregates in skeletal muscles [239]. Significant reduction in insoluble aggregates, decrease
in muscle fibrosis, and normalization of muscle strength was seen in an OPMD mouse
model after AAV-PABPN1 administration [240]. For ex vivo studies in myoblasts from
OPMD patients, LV-based delivery was utilized due to the low transduction efficacy of
AAV in primary myoblasts [241]. In contrast, the LV-PABPN1 transduction was efficient
and provided myoblast cell rescue.

3.7. Immunodeficiency

The area where gene therapy has seen the greatest progress is undoubtedly in im-
munodeficiency, and the treatment of SCID and other immunodeficiencies. Despite the
great excitement due to successful defective Moloney γRV-based correction of SCID-X1
in children, a major setback was encountered as the therapeutic gene was inserted into
the LMO2 proto-oncogene region of the genome leading to leukemia development in a
few patients [8,228]. In this first clinical trial, CD34+ cells were transduced with the RV
vector expressing the interleukin-2 receptor gamma subunit (IL2RG) in 10 SCID patients,
which established normal T-cell counts within 3–6 months and demonstrated long-lasting
clinical benefits in 8 out of 10 patients [242]. Remarkably, in a follow-up study of 18 years,
all but one patient presented normal growth and protection against infections associated
with SCID-X1 disease [243]. In another study, sustained clinical benefits were obtained in
10 SCID-X1 patients [244], although 2-14 years after the therapeutic intervention, T-cell
acute lymphoblastic leukemia (T-ALL) was discovered in patients where the γRV vec-
tor was integrated either into the LMO2 [8] or the CCDN2 locus [245]. For this reason,
SIN-γRV vectors have been engineered, which has confirmed that no cases of leukemia
developed in nine newly treated SCID-X1 patients [40]. Similarly, engineering of SIN-LV
vectors allowed successful treatment of another 44 SCID-X1 patients without any leukemia
development [40].

In the context of X-linked adrenoleukodystrophy (ALD), SIN-LV vector expressing the
adenosine triphosphate-binding cassette transporter (ABCD1) were ex vivo transduced into
patient-derived autologous CD34+ cells [248]. When SIN-LV-ABCD1 transduced cells were
reinfused in two ALD patients, progressive cerebral demyelination was prevented provid-
ing clear clinical benefits [248]. Related to adenosine deaminase-severe combined immun-
odeficiency (ADA-SCID), the defected adenosine deaminase (ADA) gene [246] has been re-
placed by delivery with SIN-γRV or SIN-LV vectors [246]. Today, more than 100 ADA-SCID
patients have been treated, resulting in sustained ADA expression, metabolic correction,
and high overall survival [249].

3.8. Other Diseases

In addition to the disease indications described above, other disease areas such as oph-
thalmologic and lung diseases have been subjected to gene therapy. Moreover, infectious
diseases have been mainly subjected to vaccine development, which in a broad sense can
be considered as gene therapy. As these areas have previously been described in detail
elsewhere [250], only a short summary is included here (Table 5).

Ophthalmology has been considered as a favorable area for gene therapy due to the
relatively easy access to treatable space, allowing topical administration of gene therapy
vectors. For example, intravitreal administration AAV vectors expressing the brain-derived
neurotrophic factor (BDNF) showed protection of retinal ganglion cells, and reduced the
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intraocular pressure in a rat glaucoma model [251]. The intraocular pressure could also
be reduced in mice by overexpression of matrix metalloproteinase 3 (MMP-3) from an
AAV vector [252]. Regarding macular dystrophy X-linked retinoschisis (XLRS), the loss
of the extracellular matrix protein retinoschisis 1 (RS1) was compensated by AAV-based
delivery of RS1 to the eye of RS1 knockout mice, which generated significant improvement
in retinal structure and function [253]. AAV vectors have been utilized for gene therapy of
color blindness, achromatopsia [254]. As mutations in the cyclic nucleotide gated channel
(CNGC) and the guanine nucleotide α-transducin (GNAT) genes cause achromatopsia,
AAV-GNAT2 expression under the control of a human red cone opsin promoter was used
to restore color vision in mice [255]. Improved photopic electrophysiological responses
and functional vision were obtained in dogs subjected to subretinal injection of AAV5-
CNGB3 [256].

Table 5. Preclinical and clinical examples of viral vectors applied for ophthalmologic and lung
diseases, and vaccine development against infectious diseases.

Viral Vector Phase Findings

Ophthalmologic
AAV-BDNF Pre Retinal ganglion cell protection, reduced intraocular pressure in rat glaucoma [251]

AAV-MMP-3 Pre Reduced intraocular pressure in mice [252]
AAV-RS1 Pre Significant improvement in retinal structure, function in RS1 knockout mice [253]

AAV-GNAT Pre Restoration of color vision in mice [255]
AAV5-CNGB3 Pre Improved photopic electrophysiological responses, functional vision in dogs [256]
AAV-sFLT01 Phase I Good safety and tolerability in AMD patients [257]
AAV-sFLT01 Phase IIa No serious adverse events, improved vision in AMD patients [258]
AAV2-ND4 Phase I Significant improvement of visual acuity in LHON patients [259]
AAV2-ND4 Phase I Enhanced visual acuity in LHON patients [260]

AAV2-RPE65 Phase III Maximum vision improvement in patients with inherited retinal dystrophy [261]
AAV2-RPE65 Approval Approved for treatment of visual loss in the US, Australia, and Canada [262]

Lung
AAV-CFTR Pre Long-term (6 months) CFTR expression in rabbit airway epithelium [263]
AAV-CFTR Pre Safe delivery of CFTR DNA to rhesus macaque lung [264]

HD-Ad-CFTR Pre Transduction of airway basal cells from CF patients, restored CFTR activity [265]
HIV-CFTR Pre Partial recovery of CFTR function in CF knockout mice for 110 days [266]
FIV-CFTR Pre Restored CFTR activity in CF pigs [267]
SIV-CFTR Pre Functional CFTR in mouse lung, human air–liquid interface cultures [268]

Infectious
ChAdOx1 nCoV-19 Phase III Good safety and 62–90% vaccine efficacy [269]
ChAdOx1 nCoV-19 Approval Granted EUA in the UK [270]

Ad5.S-nb2 Phase II Strong immunogenicity, good safety in adults [271]
Ad5.S-nb2 Approval Granted EUA in China [270]

rAd26-S/rAd5-S Phase III 91.6% vaccine efficacy from interim results [272]
rAd26-S/rAd5-S Approval Granted EUA in Russia [273]

Ad26.COV2.S Phase III Vaccine efficacy after single dose [274]
Ad26.COV2.S Approval Granted EUA in the US [270]
VSV-ZEBOV Phase III Good vaccine efficacy in Guinea and Sierra Leone [275,276]
VSV-ZEBOV Approval Approval as Ervebo for vaccination against EVD [277]

AAV, adeno-associated virus; Ad, adenovirus; AMD, age-related macular degeneration; BDNF, brain-derived
neurotrophic factor; CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; CNGB3, cyclic
nucleotide gated channel B3; EUA, emergency use authorization; FIV, feline immunodeficiency virus; GNAT,
guanine nucleotide transducing; HD-Ad, helper-dependent adenovirus; HIV, human immunodeficiency virus;
LHON, Leber’s hereditary optic neuropathy; MMP-3, matrix metalloproteinase 3; ND4, NADH dehydrogenase
protein subunit 4; Pre, preclinical studies; RS1, retinoschisis 1; sFLOT01, fusion protein of VEGF and the Fc portion
of the human IgG1; SIV, simian immunodeficiency virus.

Regarding clinical applications, AAV vectors expressing the sFLT01 fusion protein com-
prising the VEGF and the Fc portion of the human IgG1 showed good safety and tolerability
in a phase I trial in 19 age-related macular degeneration (AMD) patients [257]. Furthermore,
no treatment-related serious adverse events were recorded, but improved vision was regis-
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tered in 11 AMD patients treated with AAV-sFLT01 in a phase IIa study [243,258]. Leber’s
hereditary optic neuropathy (LHON), characterized by rapid loss of vision, is caused
by a mutation in the NADH dehydrogenase protein subunit 4 (ND4) [278]. AAV2-ND4
treatment resulted in significant improvement in visual acuity in six out of nine LHON
patients [259]. In another phase I trial, modest but statistically significant improved visual
acuity was seen for 14 LHON patients [260]. Moreover, patients with RPE65-mediated
inherited retinal dystrophy were subjected to AAV2-based RPE65 gene replacement ther-
apy in a phase III study, which provided maximum possible vision improvement [261].
AAV2-RPE65, Voretigene neparvovec, has been approved for treatment of visual loss due
to inherited retinal dystrophy in patients in the US, Australia, and Canada under the brand
name Luxturna [262].

Gene therapy for lung diseases has mainly focused on the potential of developing
some breakthrough treatment for cystic fibrosis. As cystic fibrosis is caused by mutations
in the cystic fibrosis transmembrane conductance regulator (CFTR) gene [263], viral vector
based CFTR expression represents an attractive approach. For example, AAV2-CFTR
administered via fiberoptic bronchoscopy to the rabbit lung provided CFTR expression
for at least 6 months in the airway epithelium [279]. In another approach, AAV2-CFTR
was administered to the right lower lung lobe of rhesus macaques resulting in safe long-
term delivery of CFTR DNA [264]. A helper-dependent Ad (HD-Ad) vector has also been
engineered for intranasal delivery in mice and bronchoscopic instillation in pigs [265].
The HD-Ad-CFTR also demonstrated transduction of human airway basal cells from
cystic fibrosis patients and restoration of CFTR channel activity [265]. Among LV vectors,
HIV-based expression of CFTR in the mouse epithelium resulted in a partial recovery of
electrophysiological functions in cystic fibrosis knockout mice for at least 110 days [266].
Moreover, a FIV-CFTR based vector pseudotyped with the GP64 protein restored CFTR
activity in pigs with cystic fibrosis [267]. SIV-based functional expression of CFTR was also
established in mouse lung and in human air–liquid interface cultures as a preparation for
the first in-human trial [268].

Finally, vaccine development against infectious diseases using viral vectors has been
very successful, recently. Needless to say, the unprecedented rapid development of different
Ad-based COVID-19 vaccines has strongly contributed to the downgrading of the COVID-
19 pandemic to an endemic status. The ChAdOx1 nCoV-19 vaccine [269], based on the
ChAdOx1 chimpanzee Ad, and the Ad5-S-nb2 vaccine [271], based on the human Ad5
serotype, carry the SARS-CoV-2 spike (S) protein as an antigen and have demonstrated
high vaccine efficacy in phase III clinical trials after two immunization doses. In contrast,
the rAd26-S/dAd5-S (Sputnik) vaccine [272] is based on a prime vaccination with the
Ad26 serotype expressing the S protein, followed by a booster vaccination with the Ad5
serotype also expressing the S protein, showing good efficacy in phase II and III studies.
The strategy of this vaccination regimen is to limit immune reactions against Ad and
reduction in vaccine efficacy by using another Ad serotype for the booster vaccination.
The Ad26 serotype-based Ad26.COV2.S vaccine [274] also expresses the S protein, but
in contrast to the other Ad-based vaccines, a single immunization has shown efficacy in
clinical trials. The positive results from clinical trials supported the granting of Emergency
Use Authorization (EUA) for the ChAdOx1 nCoV-19 vaccine in the UK in December 2020,
the Ad26.COV2.S vaccine in the US in February 2021, and the Ad5-S-nb2 vaccine in China
in February 2021 [270]. Controversially, the rAd26-S/rAd5-S vaccine received approval
in Russia already in August 2020, after only being preliminary evaluated in 76 Russian
volunteers [273]. Although good safety and vaccine efficacy have been achieved, emerging
SARS-CoV-2 variants and detection of rare serious adverse events due to mass vaccinations
will require intelligent re-engineering of existing vaccines to meet the new demands.

In the context of other vaccines, the VSV-based Ebola virus vaccine (VSV-ZEBOV) has
demonstrated good safety profiles and excellent efficacy in two phase III studies conducted
in Guinea [275], and in Guinea and Sierra Leone [276]. In 2020, the VSV-ZEBOV vaccine was
approved under the name Ervebo for vaccinations against Ebola virus disease (EVD) [277].
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4. Conclusions

In summary, viral vectors have been successfully applied for a broad spectrum of
disease indications. Encouraging results have been obtained in preclinical studies in animal
models, and also in clinical trials in patient groups with long-lasting cure, confirmed espe-
cially in SCID-X1 patients [243]. GendicineTM, a replication-deficient Ad vector expressing
the p53 gene, was approved in China [280], and more than 30,000 patients with head and
neck cancer have been treated with it. GendicineTM has demonstrated good safety and
efficacy, especially in combination with chemo- and radiotherapy [281]. In the US and
Europe, a second-generation oncolytic HSV vector expressing GM-CSF has been approved
for melanoma therapy [124]. The AAV-based Onasemnogene aboparvovec (Zolgensma)
has been approved for the treatment of SMA [232]. Furthermore, approval for the AAV-
based Voretigene neparvovec (Luxturna) was received for the treatment of inherited retinal
dystrophy [262]. As mentioned above, several Ad-based COVID-19 vaccines have been
granted EUA [272], and the Ebola vaccine Ervebo has been approved [277]. However, it is
important to keep in mind the case of GlyberaTM, the AAV-based treatment of lipoprotein
lipase deficiency [282]. Despite its approval in Europe, the clinical use of GlyberaTM was
discontinued due to lack of demand for this rare monogenic inherited disease.

Moreover, several issues need still to be addressed to make viral vector-based gene
therapy highly attractive. Despite the advantage of viral vector-based gene delivery com-
pared to non-viral vector systems, the safety of using particularly oncolytic and replication-
proficient vectors is of utmost importance. Safety issues have also surfaced related chromo-
somal integration, where random integration has caused severe adverse events. Another
issue of concern has been the difficulties in transferring successful proof-of-concept findings
from rodents to larger animals and especially to humans. A potential “bridge” to success,
particularly in the field of cancer therapy, has been to target domestic animals. For example,
canines develop natural tumors and in addition to developing veterinary drugs, they serve
as a potential model for pre-evaluation of efficacy before conducting human trials, partly
because they represent good models for delivery to a larger organism, and partly because
the natural tumors in canines closely resemble human cancers in contrast to induced and
implanted tumors in rodent models.

Furthermore, an often-asked question is which viral vector system, and which ther-
apeutic target should be chosen. Based on all gene therapy examples described in this
review, it is obvious that there is not a single vector suitable for all applications. For this
reason, viral vector diversity is important in research and development of promoting gene
therapy. Due to the extensive number of preclinical and clinical trials conducted with viral
vectors, the goal has been to give an overview of which viral vectors are suitable for which
indication. For example, self-replicating RNA viruses have proven excellent for high-level
short-term transgene expression required for cancer therapy, and development of vaccines
against infectious diseases and cancers. In contrast, inherited diseases and chronic diseases,
such as immunodeficiency, hematological diseases, and muscular dystrophy, which require
long-term expression of therapeutic genes albeit not necessarily at high levels, have favored
the application of Ad, AAV, HSV, RV, and LV vectors. Both vectors providing extrachro-
mosomal expression and chromosomal integration have proven useful for therapeutic
efficacy, lasting for several years. As with any other method of drug development, the
management of serious adverse events is important. Not unexpectedly, the delivery of
viral vectors causes adverse events, as does generally any drug. For this reason, efforts
have been made to reduce the risk of using viral vectors and to decrease the severity of
adverse events by the deletion of non-essential genetic material from viral vectors, the use
of attenuated or less cytopathogenic viral vectors, and monitoring the spread of viruses and
establishing a control of their replication and expression capacity. As seen for long-term
follow-up studies, treatments for several years have not revealed adverse events, including
the extreme example of 18 years of therapeutic efficacy without any side effects in SCID-X1
patients treated with RV vectors. These positive findings have encouraged the transition to
clinical applications. However, in the light of the ever-tightening requirements associated
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with clinical evaluation, it is important to, already at an early stage of vector development,
include appropriate design and engineering steps to fully comply with the requirements
for clinical studies, and to facilitate regulatory implementations.
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