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Abstract: Severe COVID-19 frequently features a systemic deluge of cytokines. Circulating cytokines
that can stratify risks are useful for more effective triage and management. Here, we ran a machine-
learning algorithm on a dataset of 36 plasma cytokines in a cohort of severe COVID-19 to identify
cytokine/s useful for describing the dynamic clinical state in multiple regression analysis. We
performed RNA-sequencing of circulating blood cells collected at different time-points. From a
Bayesian Information Criterion analysis, a combination of interleukin-8 (IL-8), Eotaxin, and Interferon-
γ (IFNγ) was found to be significantly linked to blood oxygenation over seven days. Individually
testing the cytokines in receiver operator characteristics analyses identified IL-8 as a strong stratifier
for clinical outcomes. Circulating IL-8 dynamics paralleled disease course. We also revealed key
transitions in immune transcriptome in patients stratified for circulating IL-8 at three time-points.
The study identifies plasma IL-8 as a key pathogenic cytokine linking systemic hyper-inflammation
to the clinical outcomes in COVID-19.

Keywords: COVID-19; cytokines; machine learning; IL-8; survival; biomarker

1. Introduction

The coronavirus disease of 2019, or COVID-19, caused by SARS-CoV-2, caused con-
siderable morbidity and mortality all over the world [1–3]. Emerging genetic variants of
the virus led to successive waves following the pandemic caused by the original strain
in early 2020, even though multiple vaccines have been approved and are in use world-
wide [4,5]. To date, more than 675 million individuals have been infected, leading to more
than 6.75 million deaths worldwide. Mortal outcomes of COVID-19 mostly lead from acute
respiratory distress syndrome (ARDS), which follows systemic hyper-inflammation [3].
Despite a great number of studies aimed at characterizing systemic hyper-inflammation
and its link to severe respiratory disease in some patients, the immunopathogenesis of
severe COVID-19 remains an enigma [6–12].

Systemic immunosuppression using corticosteroids remains the most successful ther-
apy [13,14]. Therapies targeting cytokine interleukin-6 are also effective in a group of pa-
tients but with heterogeneous efficacy [15–17]. Anti-viral therapies, using small molecules
or a combination of antibodies, also have very limited efficacy in terms of the number
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of responding patients [18–21]. Thus, meticulous characterization of systemic hyper-
inflammation in order to identify key molecular targets that are more universal is of major
importance. Moreover, biomarkers linked to the hyper-inflammatory response, which
parallel the disease course with dependable predictive value for clinical outcomes, are also
very useful.

Systemic hyper-inflammation in severe COVID-19 patients features a systemic deluge
of cytokines [6,7]. In this study, we performed exploratory analysis on multiplex plasma
cytokine data and associated clinical meta-data from a cohort of severe COVID-19 patients,
originally recruited in an already completed and reported randomized control trial (RCT) on
convalescent plasma therapy (CPT) [22]. We aimed to identify cytokine/s with circulating
dynamics closely linked to a quantitative clinical parameter over a significant period of
time. Quantitation of the extent of blood oxygenation was represented by the kinetics of
the ratio between capillary blood oxygen saturation (SpO2) and the fraction of oxygen
delivered in the inhaled air (FiO2), as previously described [12,22]. We employed a machine
learning algorithm to shrink a multiple regression model to derive 7-day blood oxygenation
from day 1 plasma cytokine levels. We identified plasma interleukin-8 (IL-8) to be a strong
predictor of poor clinical outcomes, as patients with higher IL-8 registered less favorable
clinical outcomes. The immune transcriptome was also found to be distinctive between
patients with higher and lower plasma IL-8 at different time-points. Finally, the kinetics
of the plasma level of IL-8 over seven days post-sampling closely paralleled the disease
course and predicted outcomes.

2. Materials and Methods
2.1. Plasma Cytokine Analysis

The plasma cytokine panel dataset used in these exploratory analyses was originally
generated from cryo-stored plasma samples, collected at three time-points over seven
days post-recruitment, from a cohort of severe COVID-19 patients with ARDS (N = 77),
originally recruited for an already completed and reported randomized control trial on con-
valescent plasma therapy (CTRI/2020/05/025209) at the ID and BG Hospital, Kolkata [22].
The study was approved by the institutional ethics committees of ID & BG Hospital
(IDBGH/Ethics/2429) and CSIR-Indian Institute of Chemical Biology, Kolkata, India, in
accordance with the Helsinki Declaration. Out of 48 analytes assayed, 36 cytokines, which
were detectable in 70% of severe COVID-19 patients in our cohort, were used for anal-
yses [22]. Threshold cycle values from the real-time PCR done for SARS-CoV-2 targets
on RNA derived from a nasopharyngeal swab on the day of recruitment (time-point 1
or T1) and data on percent neutralization by plasma in a surrogate virus neutralization
assay based on recombinant ACE2 and viral receptor binding domain (RBD) interaction,
representing neutralizing antibody content of the plasma, were also used [22].

2.2. Machine Learning for Modeling

In order to derive a quantitative parameter for blood oxygenation level, we used
the area under curve values for SpO2/FiO2 ratio kinetics for individual patients over
seven days following recruitment (SFR7dAUC), as described earlier [12,22]. Then, to model
this blood oxygenation status based on the circulating cytokine level dataset using a
machine learning algorithm, we chose Bayesian information criterion in R software (codes
are provided in the Supplemental Information). As the cytokines data were collected in
several batches, before running the multiple regression model, the cytokine dataset was
batch-corrected using the ComBat algorithm [23,24].

2.3. Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve was prepared using the ‘pROC’
package (Version 1.17.0.1) in R software. The area under curve (AUC) value and cut-off
value were determined using the ‘cutpointr’ function. All relevant codes are provided in
the Supplemental Information.
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2.4. Single-Cell RNA Sequencing Data Analysis

Seurat R software package (Version 4.0.3) was used to analyze two single-cell RNA
sequencing data available in GEO Datasets (Accession no. GSE163668 and GSE145926).
Dimensionality reduction of the scaled data was performed by using principal component
analysis. Finally, TSNE plots were obtained to visualize the expression of CXCL8 and
CXCR1 expression in different clusters and among different major immune cells. All
relevant codes are provided in the Supplemental Information.

2.5. RNA-Sequencing

The RNASeq library was prepared using Illumina TruSeq Stranded Total RNA Li-
brary Prep Kit. Libraries were sequenced on the Illumina NextSeq 550 platform, using
high output Kit v2.5 (300 Cycles), at a final library concentration of 1.6 pM. Filtered fastq
files were processed using Salmon v1.4.0 [25]. Reference transcriptome Ensembl GRCh38
(release 103) was used for indexing and quantification of genes. TPM values were analyzed
using MeV software [26]. Limma tool [27] was used to list differentially expressed genes
(DEGs) between patient sub-groups. The list of DEGs (transcripts) (p ≤ 0.05) provided by
Limma was divided into two groups—(1) upregulated (having all differentially expressed
transcripts upregulated) and (2) downregulated (having all differentially expressed tran-
scripts downregulated) before being entered into the online NetworkAnalyst software [28]
to obtain the list of enriched pathways (p ≤ 0.05) from the Reactome database, separately
for upregulated and downregulated genes, as well as the specific genes implicated in these
pathways.

2.6. Statistics

Kaplan–Meier analyses were performed on Graphpad Prism software or in R. The
statistical tests performed are depicted while describing the respective figures.

3. Results
3.1. Machine Learning to Derive a Minimal Model Based on Plasma Cytokine Levels to Predict
Clinical Outcome in Severe COVID-19

Systemic cytokine deluge associated with the hyper-inflammatory state encountered
in severe COVID-19 is established as the therapeutic target, and anti-inflammatory cor-
ticosteroids have been by far the most successful pharmacotherapy. Targeting individ-
ual cytokines such as IL-6 has also been productive, but only in patient subsets [15–17].
Targeting cytokines, either as disease biomarkers or therapeutic targets, is limited by
the well-documented heterogeneity in the composition of the cytokine deluge in severe
COVID-19 [7,22]. To identify cytokines with the most generalized influence on COVID-19
disease outcomes, we attempted a retrospective analysis, powered by machine learning
algorithms, on clinical metadata and plasma cytokine concentration data derived from
a concluded RCT on CPT, performed in a small Indian cohort of severe COVID-19 pa-
tients [22]. The cohort characteristics are depicted in Supplemental Table S1. The design
of the study is depicted in Figure 1A. Plasma levels of 36 different cytokines (sampled
at ARDS diagnosis, <7 days post-hospitalization) were taken as features to describe the
tissue response of the patients in terms of blood oxygenation over 7 days post-sampling,
taking the area under curve for the kinetics of SpO2/FiO2 ratio as a quantitative surrogate
(termed SFR7dAUC). The higher the SFR7dAUC value, the better the blood oxygenation
over 7 days [22]. Figure 1B shows the heterogeneity of cytokines clusters based on plasma
concentrations in different patients with varying levels of SFR7dAUC.
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Figure 1. Circulating cytokines and blood oxygenation in severe COVID-19 patients. (A) Experi-
mental schema for the study. (B) Correlation (Pearson) clustering of plasma abundance of cytokines
shown in order of increasing blood oxygenation (represented by area under curve of the SpO2/FiO2
ratio kinetics over 7 days following recruitment.

We conducted a multivariate regression analysis to express SFR7dAUC as a function
of thirty-six variables represented by the plasma concentrations of individual cytokines.
For optimal model shrinkage, we performed a widely used machine learning algorithm,
viz. Bayesian information criterion or BIC (Figure 2A, Supplemental Code S1). Three
variables (or cytokines) were featured in BIC viz. the proinflammatory cytokine IL-8, the
effector T cell-derived cytokine interferon-γ (IFNγ), and the chemokine Eotaxin related in
the following equation:

SFR7dAUC ~ Y = 3.828 × [Eotaxin] + 17.122 × [IFNγ] − 21.334 × [IL-8] + 673.188
 

2 

 

 

Figure 2. Machine learning to derive a minimal predictive model to describe blood oxygenation
using plasma cytokine abundance in severe COVID-19 patients. (A) Bayesian information criterion
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applied to multiple regression model to derive SFR7dAUC based on plasma concentration of cytokines
at shown in the right panel with elimination of cytokines to derive a minimally effective model. Red *
indicates the cytokines derived from the analysis. (B) Correlation of the three cytokine BIC-Y index
with actual SFR7dAUC values in severe COVID-19 patients. Pearson’s R-value is shown, *** p < 0.0005.
(C) Receiver operator characteristic curve (black line) of BIC-Y values to derive remission versus
non-remission (death); the marked point denotes the specificity and sensitivity with the derived
cut-off. (D) Survival of patients until day 30 post-enrolment is compared in a Kaplan–Meier curve
between patients with BIC-Y values above (black line) or below (red line) the cut-off derived from the
ROC curve shown in (C). Surviving patients were censored on day 30 post-enrolment. (E) Hospital
stay duration (time to remission) of the patients from both groups (BIC-Y values above or below
cut-off) since the day of enrolment are plotted in an ascending Kaplan–Meier curve. Deaths and
non-remission at day 30 post-enrolment were censored. For the outcome comparisons shown in
(D,E), the Mantel–Cox log-rank test was performed. The number of patients at risk on different days
and the Mantel–Haenszel hazard ratio is shown.

Values of the function (Y) calculated for each patient, but excluding the intercept value
(designated as BIC-Y), were plotted against the actual SFR7dAUC values, which showed
a strong linear correlation, as expected (Figure 2B). As described earlier, SFR7dAUC is
a quantitative surrogate for blood oxygenation and, thus, also for the extent of involve-
ment/resolution of pulmonary tissue pathology in COVID-19. We hypothesized that the
BIC-Y value could also have the potential to predict final disease outcomes. On performing
ROC analysis, for predicting mortal outcome, we determined a BIC-Y cut-off value of
275.0964, although with very low specificity (Figure 2C, Supplemental Code S2). Never-
theless, Kaplan–Meier curve analyses revealed that patients scoring a higher than cut-off
BIC-Y value registered a significant survival benefit with a Mantel Haenszel hazard ratio of
0.2958, p = 0.0059 in the Mantel–Cox log-rank test (Figure 2D). Patients with higher BIC-Y
values also were found to have earlier mitigation of hypoxia (Supplemental Figure S1A) as
well as earlier remission, as noted from time to discharge from the hospital (Figure 2E).

3.2. Predictive Value of Individual Cytokines Featured in BIC-Derived Regression Model and
Identification of IL-8 as an Independent Predictor

As the sensitivity and specificity profile of BIC-Y was not robust, and because plasma
levels of individual cytokines would have much greater clinical applicability as a prognostic
biomarker, instead of the value computed from a regression analysis, we next performed
ROC analyses for predicting fatal outcomes, using plasma concentrations of Eotaxin, IFNγ,
and IL-8 individually. We found that the AUC value of the ROC curve was highest for IL-8
(Figure 3A), compared to both Eotaxin (Supplemental Figure S1A) and IFNγ (Supplemental
Figure S1B).

When we stratified patients in our cohort as having higher or lower plasma levels
than computed cut-offs for either Eotaxin or IFNγ, none of the subgroups showed any
comparative benefit either in terms of survival (Supplemental Figure S1C,D) or in terms of
earlier remission (Supplemental Figure S1E,F). However, on stratifying patients based on a
computed cut-off value of 7.7903 pg/mL for plasma concentration of IL-8, with a sensitivity
of 90.48% and specificity of 48.21%, patients having IL-8 levels lower than the cut-off
level (IL8lo) registered significantly favorable final outcome in terms of 30-day survival
on Kaplan–Meier curve analysis with a hazard ratio of 0.3069, p-value 0.0077 (Figure 3B,
Supplemental Figure S3A). IL8lo patients were also found to have earlier mitigation of
hypoxia (Figure 3C) as well as earlier remission (Figure 3D, Supplemental Figure S3B).

Viral load at T1 (represented by CT values from RT-PCR for SARS-CoV-2 targets on
nasopharyngeal swab samples) was not significantly different between IL8lo and IL8hi pa-
tients (Supplemental Figure S2A). Plasma-neutralizing antibody content at T1 (represented
by percent neutralization of ACE2-RBD interaction) was quite similar among the IL8lo and
IL8hi patients (Supplemental Figure S2B).
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Figure 3. Plasma level of IL-8 and clinical outcomes in severe COVID-19 patients. (A) Receiver
operator characteristic curve (black line) of plasma levels of IL-8 to derive remission versus non-
remission (death), the marked point denotes the specificity and sensitivity with the derived cut-off (red
circle). The red dotted line denotes the diagonal. (B) Survival of patients till day 30 post-enrolment is
compared in a Kaplan–Meier curve between patients with plasma level of IL-8 below (IL8lo, black
line) or above (IL8hi, red line) the cut-off derived from the ROC curve shown in (A). Surviving
patients were censored on day 30 post-enrolment. (C) Comparison of SpO2/FiO2 ratio kinetics
over 7 days following plasma sampling between IL8lo (black line) and IL8hi (red line) subgroup of
patients. * p < 0.05, ** p < 0.005, *** p < 0.0005 from unpaired t-tests. (D) Hospital stay duration (time
to remission) of the patients from both groups, IL8lo (black line) and IL8hi (red line), since the day
of enrolment is plotted in an ascending Kaplan–Meier curve. Deaths and non-remission at day 30
post-enrolment were censored. For the outcome comparisons shown in (B,D) Mantel–Cox log-rank
test was performed. Number of patients at risk on different days and the Mantel–Haenszel hazard
ratio is shown. (E) Mantel–Haenszel hazard ratio for Kaplan–Meier analysis for survival in subgroups
of patients, for IL8lo patients, compared with IL8hi patients. Analyses showing Mantel–Cox log-rank
test p-values <0.05 are indicated in green.

We did not find any considerable effect of age, gender, and major comorbidities on the
plasma level of IL-8 on the day of enrolment among the severe COVID-19 patients recruited
in the cohort (Supplemental Figure S4A–C). We also performed a series of sub-class analyses
to validate the predictive value of plasma IL-8 concentration, e.g., between male and female
ARDS patients, between patients who were diabetic or hypertensive and who were not, and
patients who received different therapies, viz. corticosteroids, remdesivir, and convalescent
plasma (Figure 3E). While males, non-diabetics, and patients receiving corticosteroids or
remdesivir as part of their therapies showed statistically significant survival benefits when
they were IL8lo, these sub-class analyses were handicapped by lower sample sizes for
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some of the sub-classes and, thus, warrant further exploration in bigger cohorts of severe
COVID-19 patients to establish the observations.

Of note here, in patients who received COVID convalescent plasma (CCP) as part of
their therapy (which was after the sampling for IL-8 measurement was performed), initial
plasma IL-8 level was not predictive of clinical outcomes. On the other hand, patients
not receiving CCP did register this predictive stratification. This may point to the rapid
anti-inflammatory effect of CCP reported earlier, which may dissipate the effect of higher
levels of circulating IL-8 prior to CCP transfusion [7,22].

3.3. Exploring Cellular Sources of IL-8 and IL-8-Responder Cells in Peripheral Blood and
Bronchoalveolar Lumen

To glean further insight into cellular sources of IL-8 and the IL-8 responder cells in
severe COVID-19 patients, we conducted a series of targeted re-analyses of two publicly
available single-cell RNA sequencing datasets, GSE163668 (blood mononuclear cells) and
GSE145926 (cells derived from bronchoalveolar lavage), generated from COVID-19 pa-
tients [11,29]. As expected from our present data as well as from previously reported
data [30], significantly increased expression of both CXCL8 (gene encoding IL8) and its
receptor CXCR1 was apparent in both peripheral immune cells as well as cells in bron-
choalveolar lavage fluid (BALF) in severe COVID-19, as compared to cells derived from
COVID-19 patients with milder disease course (Figure 4A–H). Expression of the other IL-8
receptor CXCR2 was insignificant and, thus, not considered for analyses.

 

4 

 

 
Figure 4. Re-analyses of single-cell RNA sequencing data to show expression of IL-8 and its receptor
among all cells. (A–D) Abundance of IL-8 transcript (CXCL8) among different subsets of cells isolated
from peripheral blood (A,B) and bronchoalveolar lavage fluid (C,D), compared between mild (A,C)
and severe (B,D) COVID-19 patients. (E–H) Abundance of transcript for IL-8 receptor (CXCR1)
among different subsets of cells isolated from peripheral blood (E,F) and bronchoalveolar lavage
fluid (G,H), compared between mild (E,G) and severe (F,H) COVID-19 patients. Data analyzed from
public datasets GSE163668 (blood cells) and GSE145926 (cells from bronchoalveolar lavage).

We explored different cell subsets individually, marked by their differential expression
of specific cell surface markers commonly used to identify them. In GSE163668, the
circulating myeloid origin cells (expressing CD16 or FCGR3A, CD14, CD11c or ITGAX,
CD11b or ITGAM, marking monocytes, macrophages, and conventional dendritic cells)
were found to have the highest expression of IL-8 (Figure 5A). On the other hand, B (marked
by CD19) or T lymphocytes (CD4 and CD8) and natural killer cells (marked by NCAM1)
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showed negligible expression (Figure 5A). Expression of the IL-8 receptor (CXCR1) was
also found to be highest in the myeloid cells circulating in the blood (Figure 5B). 

5 

 
Figure 5. Re-analyses of single-cell RNA sequencing data to show individual immune cells expressing
IL-8 and its receptor in severe COVID-19 patients. (A) Abundance of IL-8 transcript (CXCL8) among
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different cell subsets from peripheral blood of severe COVID-19 patients, defined by expression of
characteristic transcripts. (B) Abundance of the transcript for IL-8 receptor (CXCR1) among different
cell subsets from peripheral blood of severe COVID-19 patients, defined by expression of characteristic
transcripts. Data analyzed from public dataset GSE163668. (C) Abundance of IL-8 transcript (CXCL8)
among different cell subsets from bronchoalveolar lavage of severe COVID-19 patients, defined by
expression of characteristic transcripts. (D) Abundance of the transcript for IL-8 receptor (CXCR1)
among different cell subsets from bronchoalveolar lavage of severe COVID-19 patients, defined by
expression of characteristic transcripts. Data analyzed from public dataset GSE145926.

When the scRNAseq data (GSE145926) from BALF cells were analyzed, a significant
expression of IL-8 was also found in epithelial cells (marked by EPCAM1) (Figure 5C),
apart from the myeloid cells. Expression of the receptor CXCR1 was again restricted to the
cells of myeloid origin (Figure 5D). The infected epithelium, thus, may play a key role in
the local amplification of the inflammatory cascade by producing IL-8.

3.4. Systemic Mechanistic Insight from Transcriptome Studies on Circulating Immune Cells
Compared between IL8hi and IL8lo Patients at Different Time-Points

To explore global transcriptome response in circulating immune cells in response to
changes in plasma IL-8 across the disease course over seven days following recruitment, we
looked at IL-8 levels in plasma at two follow-up time-points, time-point 2 (T2) on the 3rd or
4th day following initial enrolment (T1) and time-point 3 (T3) on the 7th day following T1.
We stratified the patients at each time-point (T1, T2, and T3) into IL8hi and IL8lo sub-groups
based on the cut-off value derived at T1. RNA sequencing was performed on peripheral
blood mononuclear cell samples from 17 selected patients representing the IL8hi and IL8lo
sub-groups at each time-point. Accordingly, peripheral blood transcriptome was generated
from nine patients falling into the IL8hi group at T1 (designated T1hi), eight patients falling
into the IL8lo group at T1 (T1lo), seven patients falling into the IL8hi group at T2 (T2hi) and
six patients falling into the IL8lo group at T2 (T2lo). Finally, a comparison was performed
on five patients who were classified as T1hi and ended up falling into the IL8lo group at
time-point T3 (designated T3lo). After pre-processing and normalization, differentially
regulated genes were compared between these sub-groups (Figure 6A–C).

Major pathways enriched by the upregulated genes expectedly represented the sys-
temic hyper-inflammation, including toll-like receptor activation cytokine signaling, ECM
biosynthesis, activation of fibroblasts, and activation of pathways associated with tran-
scription of RNA viruses as well as TLR-mediated type I interferon response (Figure 6D,
Supplemental Table S2). On the other hand, the major pathways enriched by downreg-
ulated genes in the T1hi sub-group in comparison to the T1lo sub-group were mainly
transcriptional regulation, host–virus interaction, DNA repair, TCA cycle, and others which
represented normative anti-viral responses (Figure 6G, Supplemental Table S3). A very
similar transcriptional landscape was apparent at T2 as well − T2hi sub-group showing
upregulation of pathways linked to hyper-inflammation, viz. TLR and cytokine signaling
and downregulation of pathways linked to anti-viral immune response, e.g., lymphocyte
activation (Figure 6E,H, Supplemental Tables S4 and S5).

Finally, we looked for changes in the immunocellular transcriptional landscape in
patients who, despite being IL8hi at T1 in the course of the disease, had a reduction in their
plasma IL-8 levels and were classified as T3lo. Interestingly, compared to T1, at T3, both
the upregulated and downregulated pathways were representative of tissue regeneration
response, mitigation of inflammation, and dissipation of anti-viral response, indicating a
transition to the state of disease remission (Figure 6F,I, Supplemental Tables S6 and S7).
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Figure 6. Analyses of immunocellular transcriptome from peripheral blood mononuclear cells from
severe COVID-19 patients. (A–C) Differentially expressed genes (more than 2-fold change) shown in
a volcano plot, analyzed from RNA sequencing data generated from peripheral blood mononuclear
cells, compared between patients falling into the IL8hi group at time-point T1 (N = 9), designated
T1hi, and patients falling into the IL8lo group at time-point T1 (N = 8), designated T1lo (A), between
patients falling into the IL8hi group at time-point T2 (N = 7), designated T2hi, and patients falling
into the IL8lo group at time-point T2 (N = 6), designated T2lo, (B) and, finally, between patients
who were classified as IL8hi at time-point T1 (N = 5), designated T1hi, and ended up falling into
the IL8lo group at time-point T3, designated T3lo (C). (D–F) Network depictions of major pathway
groups enriched by genes upregulated in T1hi compared to T1lo (D), upregulated in T2hi compared to
T2lo (E), and upregulated in T3lo compared to T1hi (F). (G–I) Network depictions of major pathway
families enriched by genes downregulated in T1hi compared to T1lo (G), downregulated in T2hi

compared to T2lo (H), and downregulated in T3lo compared to T1hi (I).

3.5. Circulating IL-8 Dynamics Parallels Disease Course

Then, to further explore how patients would fair in response to changes in plasma
IL-8 concentrations along the disease course, we assessed final disease outcomes in patients
falling into the IL8hi and IL8lo groups at each time-point (cut-off value as per T1, represented
in data shown in Figure 2A–D). It was evident that most patients who remained in the
IL8lo group at all three time-points or patients in the IL8hi group at T1 but became IL8lo
at T2 or T3, met with disease remission. On the other hand, a large majority of patients
remaining in the IL8hi group all along their disease course had a fatal outcome (Figure 7A).
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Figure 7. Plasma IL-8 dynamics parallel disease course and stratify final outcomes in severe
COVID-19. (A) Sankey chart showing subgroups of severe COVID-19 patients variably falling
into either IL8hi or IL8lo groups at three different time-points, stratified in terms of final outcomes.
(B) Plot shows data from receiver operator characteristics analyses for plasma IL-8 levels at three
time-points in terms of final fatal outcomes, showing the respective cut-off values (black line, right
Y axis represented as percent) as well as sensitivity (blue line) and specificity (green line) for those
cut-off values (left Y axis represented as plasma concentration of IL-8).

To further validate this aspect, we performed ROC analyses on plasma IL-8 levels
for T2 and T3 as well. Computed cut-off values were not much changed (7.7903 pg/mL
at T1, 9.867 pg/mL at T2, and 10.4614 pg/mL at T3), while the specificity of these cut-off
levels increased with time, reaching 87.5% at T3 (Figure 7B). Indeed, on stratifying the
patients based on a cut-off value of 9.85 pg/mL, which is the mean cut-off value for all
three time-points, again, the resulting IL8lo group patients (as per plasma level at T1)
registered significantly favorable outcomes both in terms of survival as well as time to
remission (Supplemental Figure S3A,B). Thus, a high level of circulating IL-8 was linked
to unfavorable disease outcomes, and its modulation over 7 days paralleled the disease
course toward remission or non-remission. The specificity of the computed cut-off plasma
level, thus, increased with days along the disease course.

4. Discussion

Systemic hyper-inflammation in COVID-19 characteristically follows the initial mildly
symptomatic phase of infection with SARS-CoV-2 [1–3]. Pathological outcomes of pro-
gressively deficient blood oxygenation function of the lungs are concomitant to the hyper-
inflammatory phase [31]. Gradual decommissioning of alveoli has been thought to be
due to myriad micro-pathologies [31,32]. An expanded myeloid cell compartment in the
periphery is reflected in myeloid infiltration in the lung beds [9–11]. The systemic deluge
of cytokines is projected to play a major role in tissue damage as well as infiltration of
the inflammatory cells. In addition, a hypercoagulable state in the microvasculature is
also projected based on evidence for pulmonary microthrombotic events [33,34]. This also
contributes to alveolar decommissioning. A plausible mechanistic link of the microvascular
hypercoagulable state with the systemic hyper-inflammation may lie with the expanded
myeloid cells, which express critical coagulation regulators, viz. suPAR, both in circulation
and in tissue [12].

A number of studies have looked into the cytokine deluge and its predictive link with
the clinical outcomes in cohorts from different parts of the world [7,35–42]. Here, in an
Indian cohort of severe COVID-19 patients, we first utilized a machine-learning algorithm
to derive a multiple regression model that could select a minimal combination out of
36 different cytokines (sampled <7 days post-hospitalization), which could act as features
to describe the disease progression. We utilized a quantitative surrogate for the disease
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progression, SFR7dAUC, to be used as the function modeled by the features. The Bayesian
information criterion algorithm was used to derive the minimal model [43]. This led us
to a model based on plasma levels of IL-8, IFNγ, and Eotaxin which fitted the SFR7dAUC
data. An index based on plasma levels of these three cytokines early in the disease course
and derived from this model, which we termed BIC-Y, was found to have a rather weak
predictive value for final clinical outcomes.

On examining the predictive value of the three individual cytokines, we found that
only IL-8 had the ability to stratify patients based on final clinical outcomes. Moreover,
follow-up sampling of plasma at two time-points over 7 days following recruitment re-
vealed that the circulating IL-8 dynamics closely paralleled the disease course. Re-analyses
of single-cell RNAseq datasets from other studies revealed that the expanded myeloid
compartment largely contributed to IL-8 production, although lung epithelial cells also
contributed. Another previous study also implicated the local abundance of IL-8 in the
lung in contributing to disease severity in COVID-19 [39]. Patient subgroups stratified
based on cut-off level of IL-8 in their plasma also showed differential immunocellular tran-
scriptome, which represented the systemic hyper-inflammatory state in the IL8hi patient
subgroup, which was mitigated as the plasma level of IL-8 was reduced in the course of the
disease. IL-8 has also been identified in a few other studies to be associated with clinical
outcomes [35–41]. Our study complements these earlier reports by showing the importance
of the longer-term dynamics of IL-8 and its link with disease outcomes. Further validation
of these data in other cohorts will be useful in establishing IL-8 as a dependable biomarker
in severe COVID-19 as well as a potential therapeutic target.
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