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Abstract: The association between nasopharyngeal (NP) SARS-CoV-2 viral loads and clinical out-
comes remains debated. Here, we examined the factors that might predict the NP viral load and
the role of the viral load as a predictor of clinical outcomes. A convenience sample of 955 positive
remnant NP swab eluent samples collected during routine care between 18 November 2020 and
26 September 2021 was cataloged and a chart review was performed. For non-duplicate samples
with available demographic and clinical data (i.e., non-employees), an aliquot of eluent was sent
for a droplet digital PCR quantification of the SARS-CoV-2 viral load. Univariate and multivariate
analyses were performed to identify the clinical predictors of NP viral loads and the predictors
of COVID-19-related clinical outcomes. Samples and data from 698 individuals were included in
the final analysis. The sample cohort had a mean age of 50 years (range: 19–91); 86.6% were male
and 76.3% were unvaccinated. The NP viral load was higher in people with respiratory symptoms
(p = 0.0004) and fevers (p = 0.0006). In the predictive models for the clinical outcomes, the NP viral
load approached a significance as a predictor for in-hospital mortality. In conclusion, the NP viral
load did not appear to be a strong predictor of moderate-to-severe disease in the pre-Delta and Delta
phases of the pandemic, but was predictive of symptomatic diseases and approached a significance for
in-hospital mortality, providing support to the thesis that early viral control prevents the progression
of disease.

Keywords: COVID-19; SARS-CoV-2 viral load; droplet digital PCR; RNA quantification

1. Introduction

The correlation between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
viral loads and coronavirus disease 2019 (COVID-19) outcomes has been heavily inves-
tigated since the beginning of the pandemic. Determining the utility of an accurately
determined SARS-CoV-2 viral load in optimizing early treatment eligibility, preventing
transmission by identifying asymptomatic carriers and infectiousness after the disease,
and determining the prognosis remain open questions [1–3]. Studies have evaluated the
correlations between the viral load and the transmissibility, vaccination status, age, comor-
bidities, and disease severity [4–24]. These studies, however, have generated conflicting
results. Although a few studies have revealed a correlation between the viral load and the
vaccination status, disease severity, and transmissibility [5,8,16,18,22,23,25,26], others have
shown no statistical significance between the viral load and the disease severity [4,17,19,20]
or the vaccination status [7,9,10,21]. Even a recent (2022) systematic review of 34 such
studies evaluating the relationships between the disease severity and the viral load found
that a similar number of studies supported and opposed this hypothesis [12]. The viral
load has also been useful in determining the efficacy of novel treatments. The Blaze-1
trial, for example, utilized the viral load as its primary end point and determined that the
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combination therapy bamlanivimab and etesevimab resulted in a statistically significant
reduction in the SARS-CoV-2 viral load at day 11 [15].

The vast majority of studies looking at the predictive impact of the viral load, including the
Blaze-1 trial, utilized quantitative reverse transcription polymerase chain reaction (RT-qPCR)
assays to detect SARS-CoV-2 RNA and generate a viral load [4,6,7,9,10,12,14–18,20–23,26]. In
RT-qPCR, quantification is achieved by comparing the cycle threshold (Ct) values or the
PCR cycle at which the fluorescence intensity reaches a specified threshold with standard
curves created from samples with known quantities [27]. This generated result is dependent
on standard calibration curves and is not an absolute quantification [3,27–29]. Although
many assays use RT-qPCR for the diagnosis of COVID-19 [1,2,29–33], a droplet digital
polymerase chain reaction (ddPCR) is newer quantitative PCR technology. Available
since 2011, ddPCR allows for the absolute quantification of nucleic acid [27,34,35] without
the need for a standard curve [29,30,32,33,35]. Multiple studies have compared ddPCR
with RT-qPCR and have consistently found ddPCR to be more sensitive, specific, and
repeatable [1–3,28–32,35–38]. This is particularly true in samples with a low viral load, in
which RT-qPCR has been shown to produce false-negative results [2,29,35,39]. Although
qPCR is currently more ubiquitously available, with these advantages, a few anticipate that
ddPCR will overtake RT-qPCR as the new gold standard in future pandemics [32]. The
disadvantages of ddPCR include an increased cost (estimated to be about 5–10% more) and
an increased analytic time (estimated to be about 2 h longer) [29,30,32,39]. If the sample is
not properly diluted, ddPCR may also underestimate the viral load when it is very high as
the individual droplets of the PCR reactions are oversaturated [29].

In this study, we sought to explore the associations between SARS-CoV-2 viral loads
and patient symptoms, demographics, and clinical outcomes of COVID-19 utilizing ddPCR.
With prior studies utilizing RT-qPCR revealing conflicting results, we sought to explore
the associations utilizing the more sensitive, specific, and reliable ddPCR. A more reliable
association between the viral load and disease could aid earlier risk stratification and prog-
nostication as well as the optimization of treatment eligibility and limiting transmissibility.

2. Materials and Methods
2.1. Patients and Specimens

A convenience sample was obtained consisting of 955 remnant nasopharyngeal (NP)
swab eluent samples from positive tests collected during routine clinical care at the San
Diego Veterans Affairs Medical Center between 11/18/20 and 9/26/21. All testing was
obtained from the emergency room or from ancillary outdoor testing facilities set up outside
the hospital and regional clinics.

2.2. Patient Consent Statement

The current study was approved by the Research Ethics Committee of San Diego
Veterans Affairs Medical Center. The requirement to obtain informed consent was waived
by the Ethics Committee.

2.3. SARS-CoV-2 RNA Testing

NP swabs were collected by trained nurses at testing locations and placed in 3 mL of a
universal transport medium. Initial testing for the presence of SARS-CoV-2 was performed
using several different platforms, including Cepheid GeneXpert® (Sunnyvale, CA, USA),
Roche Liat® (Basel, Switzerland), Roche COBAS 6800® (Basel, Switzerland), and BioFire®

(Salt Lake City, UT, USA). The remnant samples from the positive tests were aliquoted and
stored at −80 ◦C until a further analysis was performed.

2.4. Droplet Digital PCR

RNA was extracted from the samples using a QIAamp® Viral RNA Mini kit (Qiagen,
Hilden, Germany). Following the kit’s protocol, RNA was extracted from 140 µL of the
sample and eluted from the QIAgen column with 60 µL of buffer AVE. The nucleic acid
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concentration was then measured using a NanoDrop® (Thermo Fisher Scientific, Waltham,
MA, USA) instrument.

Bio-Rad’s One-Step RT-ddPCR Advanced Kit® (Hercules, CA, USA) for the probe
protocol was used to estimate the viral load. For ddPCR, each sample was prepared in
duplicate with the average reported as the viral load. Briefly, 1 µL of the sample was loaded
into a reaction mix. Droplets were generated from the reaction mix using a Bio-Rad QX200
Droplet Generator and PCR was run overnight using Bio-Rad’s C1000 Touch thermal cycler.
The PCR results were then read on a Bio-Rad QX200 Droplet Reader the following day.

The oligonucleotide sequences, PCR settings, and thermal cycler conditions are shown
below in Tables 1–3.

Table 1. Primers and Probe Used in ddPCR.

Label Name Oligonucleotide Sequence (5′ to 3′)

2019-nCoV_N1-F GAC CCC AAA ATC AGC GAA AT

2019-nCoV_N1-R TCT GGT TAC TGC CAG TTG AAT CTG

2019-nCoV_N1-P FAM-ACC CCG CAT/ZEN/TAC GTT TGG TGG ACC-3IABkFQ
Note: Oligonucleotide sequences were from the Center for Disease Control and Prevention [40].

Table 2. Preparation of PCR Mix.

Component 1 × (µL)

Supermix 5

Reverse Transcriptase 2

DTT, 300 mM 1

Forward Primer, 10 µM 1.8

Reverse Primer, 10 µM 1.8

Probe, 2.5 µM 2

Water 5.4

Sample (80–117 ng) 1

Total 20

Table 3. Thermal Cycler Conditions.

Temperature, ◦C Time Number of Cycles

50 60 min 1

95 10 min 1

95 30 s (ramp rate 2 ◦C/s) 40

55 1 min (ramp rate 2 ◦C/s) 40

98 10 min 1

4 Infinite 1

2.5. Clinical Data Collection

A chart review was conducted by EH and SRM to extract the demographic and clinical
details for each included sample. Duplicate samples (e.g., repeat testing from the same
individual) were excluded, with only the first positive test kept for the analysis. The samples
from the employees of the Veterans Affairs (VA) Medical System were also excluded as
full demographic and clinical data were not available for these individuals. Occasionally,
subsequent care was obtained outside the VA medical system, but summarized records of
these visits were usually available in the VA electronic medical record.
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2.6. Statistical Analysis

The statistical analysis was performed using the R statistical computing program.
Associations between the continuous variables were examined using parametric (Pear-
son correlation) and non-parametric (Spearman correlation) approaches. The differences
between the medians across the groups were compared in a pairwise fashion using the
non-parametric Mann–Whitney test, given that the SARS-CoV-2 RNA loads were non-
normally distributed. Two-sided exact p-values were reported; p < 0.05 was considered to
be statistically significant. A multivariate linear regression was performed using the glm
function in R. The Akaike information criterion (AIC) was used to compare the multivariate
models and determine which one was the best fit for the data (i.e., explaining the greatest
amount of variation with the fewest number of variables).

3. Results

After removing the duplicate samples and the samples collected from employees, a
total of 698 veterans were included, 86.6% (n = 605) of whom were male. The average age
of the individuals included in the study was 50 years (range: 19–98). Sampling occurred
at a median of 4 days after the onset of symptoms (range: −7 to 84). Three-quarters of
individuals (76.3%, n = 529) were unvaccinated at diagnosis and 21.1% (n = 146) were
fully vaccinated at the time of diagnosis with a SARS-CoV-2 infection. The majority of
individuals were vaccinated with the Pfizer vaccine (58%, n = 95), followed by the Moderna
vaccine (31%, n = 50) and the Johnson and Johnson vaccine (11%, n = 18). The frequency of
comorbid conditions are shown in Table 4.

The majority of individuals developed symptoms, with 75.3% (n = 516) reporting
respiratory symptoms, 46.4% (n = 316) a fever, 33.8% (n = 231) GI symptoms, and 23.1%
(n = 161) a loss of taste and/or smell. A total of 28.9% (n = 198) individuals had both
respiratory and GI symptoms. A total of 19.1% veterans were evaluated only in the
emergency department, 21.3% (n = 149) were admitted to the hospital, and 8.6% (n = 60)
required ICU-level care; 33.3% of these (n = 20) required intubation and 16 individuals died
during hospitalization.

3.1. Associations with SARS-CoV-2 Nasopharyngeal Viral Load

We first evaluated the association between the SARS-CoV-2 log10 viral load and the
timing of sampling in relation to the onset of symptoms; a strong correlation was observed
(Spearman rho = −0.39; p < 0.0001) (Figure 1). We also compared the log10 viral loads in
the samples before the Delta wave (sampled prior to 1 July 2021) with those during the
Delta wave (sampled on 1 July 2021 or later) and we found that the viral loads were higher
during the Delta wave (3.65 vs. 5.03; p < 0.0001). We then examined the association that the
SARS-CoV-2 NP viral load had with the known risk factors for severe COVID-19. In these
univariate analyses, the presence of hypertension and diabetes mellitus was not associated
with differences in the viral load. Age was associated with the viral load (r = −0.077;
p = 0.045), but BMI was not. With regard to symptoms and laboratory values, we did
find a few associations with the SARS-CoV-2 viral load. The mean log10 viral load was
significantly higher in veterans reporting fevers (4.88 vs. 3.96; p < 0.0001) and respiratory
symptoms (4.67 vs. 3.47; p < 0.0001). Individuals with gastrointestinal symptoms had a
smaller but statistically significant difference in the viral load (4.71 vs. 4.22; p = 0.006). No
association was observed between the viral load and the peak CRP, ferritin, D-dimer, or
nadir absolute lymphocyte count.

In a univariate comparison, we found that vaccinated veterans had higher log10 viral
loads (4.71 vs. 4.24; p = 0.028) than those who were unvaccinated. However, after adjusting
for days from the onset of symptoms to sampling and for the SARS-CoV-2 variant (de-
termined by the predominant variant on the date of sampling, as described above), this
association was no longer statistically significant.
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Table 4. Descriptive characteristics of the cohort.

Characteristic Description Number with Data Available

Age * 50.2 (+/− 17.1) years 698

Gender

Male 86.6% (604) 698

Ethnicity

Hispanic/Latino 23.6% (158) 669

Comorbidity

DM2 17.4% (121) 697

CAD 7.9% (55) 695

HTN 33.8% (236) 698

Hemodialysis 0.4% (3) 697

Prior solid organ transplant 0.4% (3) 697

COPD/asthma 9.2% (64) 695

BMI * 29.76 (+/− 6.1) 639

Any immunosuppression 4.2% (29) 697

Symptoms

Respiratory 75.3% (516) 685

Gastrointestinal 46.3% (316) 682

Fever 33.9% (231) 682

Headache 20.9% (146) 698

Loss of taste and/or smell 23.1% (161) 698

Laboratory Values

Peak CRP ** 7.09 (2.58–14.62) mg/dL 153

Peak CPK ** 167.0 (67.5–325.5) units/L 79

Peak D-dimer** 0.94 (0.51–1.63) mg/L 155

Peak ferritin ** 717 (332–1475) µg/L 135

Absolute lymphocytes
(nadir) ** 0.90 (0.60–1.43) 103/µL 224

BMI: body mass index; DM2: type 2 diabetes mellitus; CAD: coronary artery disease; COPD: chronic obstructive
pulmonary disease; HTN: hypertension; CRP: C-reactive protein; CPK: creatinine phosphokinase. * Mean and
standard deviation; ** median and range.

3.2. Predictors of Moderate-to-Severe COVID-19

We then evaluated the predictive role that the NP SARS-CoV-2 log10 viral load had on
several different outcomes of moderate-to-severe COVID-19. Given the extensive literature
on the other factors that influence the severity of the disease, we examined the association
of the following risk factors with our outcomes: age, BMI, diabetes mellitus (DM), coronary
artery disease (CAD), chronic obstructive pulmonary disease (COPD)/asthma, immuno-
suppression, ethnicity, and current tobacco use. The vaccination status was also examined
in our analysis, as vaccinations have been shown to directly impact the viral load. Factors
with a p-value < 0.15 were included in the final model (Table 5). In our final model, we also
adjusted for the timing of the sample in relation to the onset of symptoms and also whether
or not the sample was obtained during the Delta wave (as we observed higher viral loads
during the Delta wave).
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Table 5. Univariate logistic regression for COVID-19-related outcomes.

ED Visit or Admission Admission Any Supplemental
O2 Requirement

Death During
Hospitalization

β p-Value β p-Value β p-Value β p-Value

Age 0.024 <0.0001 0.043 <0.0001 0.041 <0.0001 0.089 <0.0001

BMI 0.029 0.031 0.030 0.051 0.022 0.22 0.023 0.57

DM2 1.26 <0.0001 1.27 <0.0001 1.31 <0.0001 1.60 0.002

CAD 0.77 0.007 1.07 0.0003 1.15 0.0003 2.36 <0.0001

COPD/
Asthma 0.42 0.11 0.72 0.010 0.71 0.026 0.85 0.19

Active Smoker 0.030 0.91 −0.29 0.36 0.24 0.46 −0.56 0.59

Immunosuppression −0.39 0.64 1.00 0.010 0.67 0.14 1.21 0.12

Hispanic
Ethnicity 0.044 0.81 −0.034 0.87 0.23 0.35 −0.10 0.88

Bold β and p-values met the p-value threshold of <0.15 to be included in the predictive model. ED: emergency
department; BMI: body mass index; DM2: type 2 diabetes mellitus; CAD: coronary artery disease; COPD: chronic
obstructive pulmonary disease.

3.2.1. Emergency Department (ED) Visit or Hospital Admission

To examine the predictive ability of the viral load on a mild infection requiring an
ED visit and moderate-to-severe infections as estimated by infections requiring a hospital
admission, we first examined the association of the viral load on this outcome by adjusting
for the time of sampling and by the wave of infection (non-Delta vs. Delta). We found that
the SARS-CoV-2 viral load was not a significant predictor of ED visits or hospitalization;
this model had an AIC of 752.0. We then also included the risk factors for severe diseases
that met our pre-specified threshold for inclusion. Only age, BMI, CAD, DM2, and COPD
had a p-value of < 0.15 and were included in the final model (Table 6). This final model
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had an AIC of 651.9. The significant predictors in this model were age (β = 0.019; p = 0.005),
BMI (β = 0.031; p = 0.050), and DM2 (β = 1.01; p = 0.0002).

Table 6. Variables included in the final models, including p-values in the multivariate logistic model
and final model Akaike information criterion (AIC).

ED Visit or
Admission p-Value Admission p-Value

Any
Supplemental

O2 Requirement
p-Value Death During

Hospitalization p-Value

COVID-19 wave 0.26 COVID-19 wave 0.55 COVID-19 wave 0.68 COVID-19 wave 0.11

Days from onset
of Sx 0.50 Days from onset

of Sx 0.23 Days from
onset of Sx 0.020 Days from

onset of Sx 0.95

Log10
viral load 0.26 Log10

viral load 0.21 Log10
viral load 0.95 Log10

viral load 0.096

Age 0.005 Age <0.0001 Age 0.009 Age 0.002

DM2 0.0002 DM2 0.016 DM2 0.003 DM2 0.37

CAD 0.43 CAD 0.60 CAD 0.25 CAD 0.15

COPD/asthma 0.31 COPD/asthma 0.14 COPD/asthma 0.20 Any immunosup-
pression 0.20

BMI 0.50 BMI 0.12 Any immunosup-
pression 0.53

Final AIC 651.9 Final AIC 514.6 Final AIC 455.1 Final AIC 112.2

ED: emergency department; Sx: symptoms; BMI: body mass index; DM2: type 2 diabetes mellitus; CAD: coronary
artery disease; COPD: chronic obstructive pulmonary disease.

3.2.2. Hospital Admission

We then evaluated the role of the viral load on the outcome of hospital admission,
adjusting for the day of sampling and the wave of infection. We found that the SARS-CoV-2
viral load again was not a predictor for this outcome. The AIC for this model was 597.2.
Using the same process described above, we then included additional risk factors for
moderate-to-severe infections that met the criteria in our model. In our final model, we
included age, CAD, DM2, COPD/asthma, and BMI along with the viral load and wave of
infection. This resulted in an AIC of 514.6 (Table 6). The only significant predictors in this
model were age (β = 0.038; p < 0.0001) and DM2 (β = 0.64; p < 0.016).

3.2.3. Supplemental Oxygen

We then evaluated the predictive ability of the viral load on the need for supplemental
oxygen, again adjusting for the day of sampling and the wave of infection. We again found
that the SARS-CoV-2 viral load was not a significant predictor for this outcome, with an
AIC of 486.8 for the model. As described above, we then developed a best predictive
model that included the additional risk factors of age, CAD, DM2, COPD/asthma, and any
immunosuppression, which is shown in Table 6. The final model had an AIC of 455.1, but
the only significant predictors in this model were age (β = 0.028; p = 0.001), day of sampling
(β = 0.038; p < 0.020), and DM2 (β = 0.83; p < 0.003).

3.2.4. Death during Hospitalization

Finally, we evaluated the predictive ability of the viral load on death during hospi-
talization, again adjusting for the day of sampling and the wave of infection. Here, the
SARS-CoV-2 viral load was significant (β = 0.33; p < 0.045), with a model AIC of 129.9. As
described above, we then developed a best predictive model that included the additional
risk factors that met our criteria, which included age, DM2, CAD, and any immunosup-
pression (Table 6). The final model had an AIC of 112.2 and the only significant predictor in
the model was age (β = 0.079; p < 0.002).
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3.2.5. Vaccination Status

Being fully vaccinated was associated with a significantly reduced risk of needing
supplemental oxygen (p = 0.004) after adjusting for the wave of the epidemic. Full vac-
cination was not significantly predictive of the other clinical outcomes. When analyzing
only unvaccinated people, the predictive factors for the outcomes of hospital admission,
supplemental oxygen, and death during hospitalization did not significantly differ from
the analysis of the total cohort.

4. Discussion

In this cross-sectional study, we examined the association between the SARS-CoV-2 vi-
ral load obtained from NP swabs and the clinical outcomes, focusing on moderate-to-severe
COVID-19. Numerous other studies have now addressed this question [4,5,8,12,13,17–20,22],
but, in comparison to this study, very few have addressed the timing of the sample in
relation to the onset of symptoms or utilized droplet digital PCR, which is substantially
more accurate and precise for viral load measurements than standard quantitative real-time
PCR. Furthermore, unlike other previous studies, this study included a cross-section of all
individuals presenting for testing, ranging from asymptomatic to those requiring admission
to the ICU.

As others have previously noted, we found that that the timing of sampling was a
key predictor of the viral load, both in relation to the onset of symptoms and in relation
to the circulating SARS-CoV-2 variant at the time [41]. The Delta wave was shown to be
associated with higher viral loads than prior waves [41,42]. Here, we observed a greater
than 1.5 log10 increase during the Delta wave. Numerous reports have also suggested a
higher rate of moderate-to-severe disease during the Delta wave than in previous waves.
As it was unclear if those differences were due to higher viral loads or other features of
the virus, we developed predictive models with and without the wave of infection as a
predictor to see if it impacted the importance of the NP viral load as a predictor. We found
that the removal of the wave of infection did not significantly impact the importance of the
viral load.

A significant proportion of individuals who had a detectable NP viral load remained
asymptomatic [43]. This varied by the wave of the SARS-CoV-2 pandemic and also by their
vaccination status. After controlling for these two factors and the timing of the sampling,
we still found that individuals with a fever and respiratory symptoms had higher NP viral
loads than those without those symptoms, suggesting that the early control of replication
may be associated with an asymptomatic or a pauci-symptomatic infection. More recent
data using oral antivirals have also shown a correlation with the return of the viral load
and the return of symptomatology after the initial treatment of the infection [44].

To best evaluate the role of the NP SARS-CoV-2 viral load as a predictor of moderate-
to-severe COVID-19, we evaluated four different related outcomes. Notably, in our best
predictive models, the viral load only approached a significance as a predictor when the
outcome was in-hospital mortality. BMI, CAD, DM2, COPD/asthma, and immunosup-
pression all showed varying levels of impact on our chosen outcomes, but the strongest
and most consistent predictor by far was age. This again corroborated the data from
large cohorts [45,46], which also showed age to be the major risk factor for progression to
moderate-to-severe COVID-19.

Our cohort was unique in that it included about 25% of individuals who were fully
vaccinated. However, we did not see an impact of vaccination on the viral load after
adjusting for the wave of infection and for the timing of the sampling from the onset of
symptoms. Vaccination clearly prevented a more severe disease and was associated with a
significantly reduced risk of in-hospital mortality; thus, it may impact the viral load in the
lower respiratory tract differently than the NP.

We recognize several limitations with our study, foremost of which was the number of
factors that needed to be controlled for in this cross-sectional study. Although we collected
data on most of these factors (e.g., timing from the onset of symptoms, vaccination status,
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age, and comorbid risk factors), we could only approximate the particular variant from
the timing of the sample collection as we did not have sequencing data available for each
of the samples. With the large number of factors, we also would have liked to have had
a larger number of samples, but, as a single-center study, additional collections would
have led to an increase in complexity, given the viral differences in each successive wave of
the pandemic.

In conclusion, we found that the NP viral load was predictive of a symptomatic disease
and approached a significance for in-hospital mortality. However, with our limited sample
size, we were unable to demonstrate that the NP viral load was predictive of moderate-to-
severe disease in the pre-Delta and Delta phases of the epidemic. These limited findings still
do corroborate prior observations that early viral control may be prevent the progression
of disease.
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