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Abstract: Background, Aims, Methods, Results, Conclusions: Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is a global challenge due to its ability to mutate into variants that spread
more rapidly than the wild-type virus. The molecular biology of this virus has been extensively
studied and computational methods applied are an example paradigm for novel antiviral drug
therapies. The rapid evolution of SARS-CoV-2 in the human population is driven, in part, by
mutations in the receptor-binding domain (RBD) of the spike (S-) protein, some of which enable
tighter binding to angiotensin-converting enzyme (ACE2). More stable RBD-ACE2 association is
coupled with accelerated hydrolysis by proteases, such as furin, trypsin, and the Transmembrane
Serine Protease 2 (TMPRSS2) that augment infection rates, while inhibition of the 3-chymotrypsin-
like protease (3CLpro) can prevent the viral replication. Additionally, non-RBD and non-interfacial
mutations may assist the S-protein in adopting thermodynamically favorable conformations for
stronger binding. This study aimed to report variant distribution of SARS-CoV-2 across European
Union (EU)/European Economic Area (EEA) countries and relate mutations with the driving forces
that trigger infections. Variants’ distribution data for SARS-CoV-2 across EU/EEA countries were
mined from the European Centre for Disease Prevention and Control (ECDC) based on the sequence
or genotyping data that are deposited in the Global Science Initiative for providing genomic data
(GISAID) and The European Surveillance System (TESSy) databases. Docking studies performed with
AutoDock VINA revealed stabilizing interactions of putative antiviral drugs, e.g., selected anionic
imidazole biphenyl tetrazoles, with the ACE2 receptor in the RBD-ACE2 complex. The driving
forces of key mutations for Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Lambda, and Omicron
variants, which stabilize the RBD-ACE2 complex, were investigated by computational approaches.
Arginine is the critical amino acid in the polybasic furin cleavage sites S1/S2 (681-PRRARS-686) S2′

(814-KRS-816). Critical mutations into arginine residues that were found in the delta variant (L452R,
P681R) and may be responsible for the increased transmissibility and morbidity are also present
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in two widely spreading omicron variants, named BA.4.6 and BQ.1, where mutation R346T in the
S-protein potentially contributes to neutralization escape. Arginine binders, such as Angiotensin
Receptor Blockers (ARBs), could be a class of novel drugs for treating COVID-19.

Keywords: SARS-CoV-2; COVID-19; epidemiology; mutations; ACE2; ARBs; RAS; RBD; arginine;
proteases; infectivity

1. Introduction

Unraveling the molecular mechanisms of mutations of SARS-CoV-2 is the key to
the discovery and design of new treatment targets for the Corona Virus Disease 2019
(COVID-19). In this commentary, we report (1) the epidemiology distribution of variants
across European countries and variant prevalence (dominant earlier alpha, beta, gamma,
and delta variants now are replaced by omicron variants [1–4]) and (2) dominating mu-
tations N501Y, E484K, K417N, P681H, P681R, and D614G, which are attempted to be ex-
plained based on computational Molecular Dynamics (MD) simulations and on structured
traits of the residues in their charged configuration in the interface between SARS-CoV-2
and ACE2 before and after developing mutations [5–11]. The trend of the mutations is the
replacement of non-polar and hydrophobic residues with polar and hydrophilic amino
acids, which are able to create more stable ligand-binding networks, allowing the mutant
to increasingly spread [12]. Intermolecular pi–pi interactions observed between Y41 of the
ACE2 receptor and various aromatic substitutions at the N501 locus of the RBD indicated
that such interactions enhanced the RBD-ACE2 binding [12]. The order of aromatic muta-
tions enhancing binding was tryptophan (W) > tyrosine (Y) > phenylalanine (F). Aromatic
interactions potentially play an essential role in increasing binding [13–17]. The notion that
more polar residues favor stronger RBD-ACE2 binding is supported within the context of
this sub-trend since tryptophan and tyrosine residues are more polar than phenylalanine
(the most lipophilic amino acid). Furthermore, tryptophan with an excess of aromatic pi
electrons compared to tyrosine and phenylalanine results in stronger binding with ACE2.
Tryptophan and tyrosine also participate in hydrogen bonds (HB) with ACE2 residues
through the heteroatom nitrogen of the W ring and the hydroxyl group of the Y ring (not
possible for the side chain of the F residue), which is consistent with the polarity ranking.
Comparison of the wild-type and the mutant protein stabilities by free energy calculations,
as well as calculations of protein–protein intermolecular interactions’ free energies, are in
accordance with enhanced RBD-ACE2 binding predicted by residue polarity. The struc-
ture of the SARS-CoV-2 S-protein’s RBD bound to the ACE2 receptor and mutations that
strengthen SARS-CoV-2 infectivity have been reported [5,12,18]. This article focuses on the
molecular epidemiology of SARS-CoV-2 and the driving forces that trigger mutations in
SARS-CoV-2 [13,14], where arginine seems to play a dominant role.

2. Materials and Methods

The ECDC provides variants’ distribution data regarding the 30 EU/EEA countries on
a weekly basis. The distribution is based on the sequence or genotyping data regarding the
SARS-CoV-2 detection and variant classification that are deposited in the GISAID and TESSy
databases. Table 1 contains the summary data regarding the variants overview reported on
24 November 2022 (46th week of 2022), as mined from the official ECDC’s website ([19]
accessed on 24 November 2022). Only variants that are considered as variants of concern
(VOC) or variants of interest (VOI) (as of 24 November 2022) are included in the summary
depicted in Table 1 (all omicron subvariants). The weekly variant distribution plot between
weeks 34–45 of 2022 is also provided by ECDC, based on data from previous weeks.

Docking of ligands to the ACE2 receptor in the RBD-ACE2 complex was performed
using AutoDock VINA14 as implemented in the Yet Another Scientific Artificial Reality
Application (YASARA) software suite. Global docking of ligands to the ACE2 receptor in
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the RBD-ACE2 complex (PDB: 6LZG) was performed using AutoDock VINA14 [20] using
default parameters. Partial atomic charges and dihedral barriers were initially assigned
according to the AMBER03 force field [21] and then damped to mimic the less polar
Gasteiger charges used to optimize the AutoDock scoring function. Energy terms are based
on the ECEPP/3 force field [22,23], an all-atom vacuum force field with appended terms
for solvation-free energy and entropic contributions. The setup was conducted with the
YASARA molecular modeling program [24]; the best hit of 900 runs per ligand was reported
as kcal/mol free energy of binding.

Molecular dynamics (MD) simulations were performed with the YASARA suite [25].
The setup included definition of periodic boundaries, a pKa prediction to fine-tune the
protonation states of protein residues at the chosen pH of 7.4 [26], and optimization of the
hydrogen bonding network [27] to increase the solute (i.e., receptor or receptor–ligand)
stability. Sodium and chloride ions were introduced to a physiological concentration of
0.9 wt%, with an excess of either Na+ or Cl− to neutralize the cell. After the steepest descent
and simulated annealing minimizations to remove clashes, simulations were typically run
for a minimum of 40 nanoseconds (ns) using the AMBER14 force field [28] for the solute,
GAFF2 [29] and AM1BCC [30] for ligands, and TIP3P for water. The cutoff was 8 Angstroms
(Å) for Van der Waals forces (the default used by AMBER [31]), and no cutoff was applied to
electrostatic forces (using the Particle Mesh Ewald algorithm [32]). The equations of motions
were integrated with a multiple timestep of 2.5 femtoseconds (fs) for bonded intramolecular
interactions and 5.0 fs for non-bonded interactions at a temperature of 311 K and a pressure
of 1 atm (NPT ensemble) using algorithms described in detail previously [33].

3. Results
3.1. Variant Distribution across EU/EEA Countries

In the past three years, the pandemic caused by COVID-19 was accompanied by the
emergence of new variants of SARS-CoV-2 [34]. The five dominant VOCs that have been
reported so far (as of November 2022) are alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta
(B.1.617.2), and omicron (B.1.1.529) ([35], accessed on 24 November 2022). The first two
variants (i.e., alpha and beta) were responsible for the peak of COVID-19 infections and
deaths from October 2020 to the beginning of summer 2021 (depending on the area), while
the third variant (i.e., gamma) was mainly circulated during the same period in Brazil and L.
America [36]. The third wave of COVID-19 was caused by the fourth variant, named delta,
which circulated from April 2021 until the end of the year. The fifth variant was named
omicron and was responsible for the next wave of COVID-19 infections, achieving its
highest rate around the globe in December 2021 and January 2022. The omicron variant was
initially characterized for its vaccine breakthrough and immune evasion [18], and as such, it
affected the epidemiological situation in the following months. The initial omicron variant
(named BA.1) was soon replaced by the omicron BA.2 subvariant in March 2022, which was
subsequently and rapidly replaced by two new subvariants, named BA.4 and BA.5, in April
2022. All omicron sub-variants have been reported to possess at least 50 mutations in their
genome and are the most mutated variants containing 31–37 mutations in the S-protein
compared to the previous variants of concern [1].

In the current phase of the pandemic, the infections caused by the BA.5 subvariant
remain the most dominant across COVID-19 patients in the European continent ([19]
accessed on 24 December 2022). Interestingly though, two sublineages named BA.2.75
(“Centaurus”) and BQ.1 (“Cerberus”) can also be detected within the EU/EEA countries in
accountable percentages, and with the latter to be gaining ground according to the latest
increasing rates of infections. The BQ.1 subvariant, as of 20 October 2022, is considered
a VOI from ECDC ([37], accessed on 24 December 2022). BA.2.75, a sublineage variant of
BA.2, on 7 July 2022, was added as a variant under monitoring (VUM) by ECDC and, as of
24 December 2022, is considered as VOI. BQ.1 originates from the BA.5 omicron’s VOC.
BQ.1.1 is another sublineage of the original BA.5 variant and exhibits high potential to
replace BA.5 and become the new dominant variant. Based on modeling estimates, by the
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beginning of 2023, more than 80% of COVID-19 cases are expected to be due to BQ.1/BQ.1.1
SARS-CoV-2 variants [18,36,37].

Sequence or genotyping data regarding the SARS-CoV-2 detection and variant classi-
fication through the GISAID and the TESSy databases are summarized and reported on
ECDC’s official website on a weekly basis [19]. Table 1 contains the summary data regard-
ing the variants overview reported on 24 November 2022 (46th week of 2022). An adequate
weekly sequencing volume is a level at which it is possible to follow trends and estimate
the proportion with sufficient precision (variant’s prevalence of 5% or lower). Higher
numbers of sequences increase the accuracy and allow the detection of variants accounting
for a smaller proportion of circulating viruses. As can be seen in Table 1, the volume of
sequencing or genotyping for variant detection can be classified into four categories: level
1a (L1a), level 1b (L1b), level 1c (L1c), and level 2 (L2). L1a is for sequence or genotyping
volumes capable of variant proportion estimations with sufficient precision at the variant
prevalence of 1% or lower, L1b for >1–2.5%, L1c for >2.5–5%, and L2 for >5%.

ECDC provides variants’ distribution information regarding the 30 EU/EEA countries
(Table 1). For the period between weeks 44 and 45 of 2022 (produced on 24 November
2022), 24 out of the 30 countries report adequate sequence or genotyping volumes (L1a, L1b,
L1c, or L2 levels). For the six countries that have not reported sequence or genotyping data
during that period, this category is annotated as “No data” (i.e., Croatia, Cyprus, Finland,
Lithuania, Malta, and Slovakia). Only variants that are considered as VOC or VOI (as of 24
November 2022) are included in the summary depicted in Table 1 (all omicron subvariants).
These variants are BA.5, BQ.1, BA.2.75, BA.4, and BA.2. Any de-escalated VOC or VOI or
variants reported as ‘Other’.

The European variants’ landscape evolves around the BA.5 variant prevalence (Figure 1).
The BA.2, BA.2.75, and BA.4 variants’ proportions are de-escalating. The BQ.1 variant is
ranked 2nd for 16 out of the 24 countries that reported data for weeks 44–45. The BA.2.75
variant is ranked 2nd for 7 out of the 24 countries (i.e., Austria, Estonia, Germany, Greece,
Latvia, Liechtenstein, and Romania). Poland reports equal percentages (i.e., 1.7%) for both the
BQ.1 and the BA.2.75 variants. Interestingly, the BQ.1 variant is gaining ground, as it exhibits
increasing proportions in the last 6 weeks’ period (from week 39 to week 45 of 2022) for most
of the EU/EEA countries, as can be seen in Figure 1.

Figure 1. Weekly variant distribution plot by country [19] (accessed on 24 November 2022).
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Table 1. Overview report regarding the SARS-CoV-2 variant distribution for EU/EEA countries ([19] accessed on 24 November 2022).

Country
Weeks of

Data 1
Data

Source 2,3
Number of

Cases

Volume of Sequencing
or Genotyping for
Variant Detection

Total Known
Variants
Detected

BA.5 BQ.1 BA.2.75 BA.4 BA.2 Other

n % Category n % n % n % n % n % n %

Austria 44–45 GISAID 54,210 4272 7.9 L1a 740 410 55.4 99 13.4 138 18.6 32 4.3 5 0.7 56 7.6
Belgium 44–45 GISAID 8953 235 2.6 L2 235 122 51.9 91 38.7 7 3 2 0.9 5 2.1 8 3.4
Bulgaria 44 TESSy 2893 166 5.7 L2 166 165 99.4 1 0.6
Croatia GISAID 0 0 0 No data 0
Cyprus TESSy 0 0 0 No data 0
Czechia 44–45 GISAID 12,317 53 0.4 L2 53 48 90.6 4 7.5 1 1.9

Denmark 44–45 TESSy 8450 5629 66.6 L1a 5629 3023 53.7 1852 32.9 560 9.9 57 1 137 2.4
Estonia 44–45 TESSy 1043 608 58.3 L1b 608 579 95.2 11 1.8 5 0.8 12 2 1 0.2
Finland GISAID 0 0 0 No data 0
France 44–45 GISAID 305,759 866 0.3 L1c 861 394 45.8 410 47.6 8 0.9 3 0.3 32 3.7 14 1.6

Germany 44–45 TESSy 443,282 4661 1.1 L1a 4661 4275 91.7 151 3.2 182 3.9 53 1.1
Greece 44–45 TESSy 87,883 387 0.4 L2 387 271 70 40 10.3 42 10.9 8 2.1 4 1 22 5.7

Hungary 45 TESSy 4431 168 3.8 L2 168 165 98.2 1 0.6 2 1.2
Iceland 44–45 GISAID 615 145 23.6 L2 145 51 35.2 62 42.8 19 13.1 7 4.8 6 4.1
Ireland 44–45 TESSy 3315 188 5.7 L2 188 71 37.8 94 50 10 5.3 4 2.1 5 2.7 4 2.1

Italy 44–45 GISAID 298,878 1300 0.4 L1b 1290 835 64.7 373 28.9 27 2.1 12 0.9 22 1.7 21 1.6
Latvia 44–45 TESSy 5415 1086 20.1 L1b 1086 1072 98.7 5 0.5 5 0.5 3 0.3 1 0.1

Liechtenstein 44–45 GISAID 139 24 17.3 L2 24 8 33.3 7 29.2 9 37.5
Lithuania GISAID 0 0 0 No data 0

Luxembourg 44–45 TESSy 2809 667 23.7 L1c 667 319 47.8 276 41.4 1 0.1 17 2.5 54 8.1
Malta TESSy 0 0 0 No data 0
The

Netherlands 44 TESSy 8226 701 8.5 L1b 701 430 61.3 186 26.5 46 6.6 7 1 20 2.9 12 1.7

Norway 44–45 TESSy 1786 105 5.9 L2 105 64 61 29 27.6 8 7.6 1 1 3 2.9
Poland 44–45 GISAID 5964 59 1 L2 59 57 96.6 1 1.7 1 1.7

Portugal 44–45 TESSy 11,310 242 2.1 L2 242 225 93 14 5.8 3 1.2
Romania 44–45 TESSy 4995 189 3.8 L2 189 154 81.5 1 0.5 3 1.6 2 1.1 1 0.5
Slovakia TESSy 0 0 0 No data 0
Slovenia 44 GISAID 4565 9 0.2 L2 9 8 88.9 1 11.1

Spain 44–45 GISAID 37,601 377 1 L2 374 128 34.2 225 60.2 17 4.5 1 0.3 3 0.8
Sweden 44–45 GISAID 7151 756 10.6 L1c 756 461 61 233 30.8 19 2.5 4 0.5 14 1.9 25 3.3

1 Data produced on 24 November 2022 (week 46). 2 GISAID database: [38]. 3 TESSy database [39], accessed on 24 November 2022.
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3.2. Arginine Mutations Stabilize Best the Conformation of S-Protein and the Complex with ACE2

The role of arginine in replacing the wild-type RBD residues in critical positions 452,
484, and 501, where mutations happen, is dual. One is to stabilize the conformation of the
S-protein’s conformation, which facilitates the molecular recognition with ACE2, and the
second is to stabilize the RBD-ACE2 complex further. Docking studies have shown higher
stability for both the conformation of S-protein and the RBD-ACE2 complex after selective
arginine mutations [13,14]. The chemical structure of arginine (Figure 2A) indicates that the
strong positive charge of the guanidino group is shared through resonance with the three
nitrogen atoms, rendering this group a super binder with anionic groups [40]. This is shown
in docking interaction studies between bisartan A (4 butyl imidazole bearing two N,N′

biphenyl tetrazole groups) and ACE2 (PDB: 6LZG) catalytic center residues. One tetrazole
group of bisartan A is interacting with the guanidino groups of ACE2 arginine residues,
Arg518 and Arg514, and the second tetrazole is interacting with the guanidino groups of
Arg518 and Arg273 (Figure 2B). The ability of arginine to bind stronger compared to other
amino acids is also seen in stability and docking studies of dominant mutation RBD 501R
with ACE2 anionic residues [12]. The guanidino group of mutation 501R binds strongly
through salt bridges and pi–pi interactions with acidic (E and D) or aromatic residues
(W, Y, F, and H) of ACE2, as well as with the ionic moieties, tetrazoles, or carboxylates
of angiotensin II receptor blockers (ARBs) [13,14]. The chemical structure of BisA is seen
in Figure 2C.

Figure 2. Cont.
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Figure 2. (A) Chemical structure of L-arginine in which the torsion angle variables of the side chain
are indicated with arrows. The cationic guanidinium moiety forms the dominant part of the arginine
side chain. (B) Docking pose of bisartan A (4-butyl imidazole bearing two N,N′ biphenyl tetrazole
groups) in the ACE2 receptor (PDB 6LZG) and the interaction of Arg518 and Arg514 with one
tetrazole of the ligand. The other tetrazole interacts with Arg273 and Arg518. (C) Chemical structure
of BisA. Note that both tetrazoles are ionized at physiological pH yielding a net charge of −1 for the
ligand (illustrations made with MarvinSketch [41]).

Our previous studies have shown that mutations at position 501, from asparagine
to tyrosine and then to arginine, progressively increase the stability of the S-protein’s
conformation due to strong interactions of arginine with neighboring residues. S-protein’s
stability is expressed by a change in total free energy (ddG) or free energy of solubility
(ddSol) as a function of the mutation type (amino acid substitution) at the 501 locus of RBD.
Thus, an asparagine > tyrosine > arginine substitution resulted in the largest enhancement
of protein stability with the ranking order to be as follows: ddG = 0 kcal/mol for the wild
type (N501), ddG = −0.24 kcal/mol for the Y501 mutant, and ddG = −1.28 kcal/mol for
the R501 mutant (lower ddG values translate into higher stability). The stability of the
RBD-ACE2 complex is the most important factor regarding SARS-CoV-2 epidemiology [12].
The higher stability of the RBD-ACE2 complex results in higher infectivity and transmis-
sibility. Intermolecular interactions of residues that hold together the proteins of RBD
and ACE2 vary in strength and depend on the structural features (polarity, aromaticity) of
the interacting residues [12]. These interactions are hydrophobic, hydrophilic, hydrogen
bonding, salt bridges, and pi–pi interactions, which predominate. The crystal structure of
the complex (PDB: 6LZG) has identified the wild-type RBD N501 interaction with ACE2
Y41 through hydrogen bonding which binds the two chains. Mutation N501Y, the dominant
mutation in the alpha variant [6], increased the interaction with ACE2 Y41 through pi–pi
interactions enhancing the stability of the complex. N501R mutation was shown to increase
the interaction with ACE2 Y41 further [13].

In Figure 3, the S-protein’s stability is illustrated as a function of mutations occurred
by amino acid substitution at position 501 of the RBD (upper panel). The conformation of
the three mutants at the 501 locus (i.e., N501, Y501, and R501) is also depicted in Figure 3
(lower panel), along with the ddG values for each mutation type. The highest interaction
occurred for the mutant R501 (Figure 3C) [13].
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Figure 3. Upper Panel: S-protein stability expressed by change in total free energy (ddG) or free
energy of solubility (ddSol) as a function of mutation type (amino acid substitution) at the 501 locus
of the PDB ID 7KGK. Lower values of ddG and ddSol correspond to increased protein stability. Thus,
an asparagine to arginine substitution at the x501 locus resulted in the largest enhancement of protein
stability (−1.28 kcal/mol). Green shaded box indicates the wild-type N501 S-protein. Lower Panel:
(A) Asparagine (Asn) conformation at the wild-type N501 locus. (B) Mutant Y501 conformation.
(C) Mutant R501 conformation (adapted from [13]).

The docked pose of the chlorinated analog bisartan C (BisC, N,N′ bisbiphenyl tetrazole
losartan, the chemical structure is shown in Figure 4A) to the interfacial region between
the ACE2 receptor and the RBD of SARS-CoV-2 is depicted in Figure 4B (van der Waals
surface and ribbon representation). This pose resulted from the global docking of BisC to
the RBD (PDB: 6LZG) using AutoDock VINA. The docking domain comprised a cuboid
cell with non-periodic (wall) boundaries 8 Å from any target atom. The BisC binding
motif (Figure 4C) primarily involved pi–pi (red lines), pi–cation/salt bridges (blue lines),
and hydrophobic (green lines) interactions. The interactive residues of SARS-CoV-2 RBD
were Tyr505, Arg403, Phe456, and Tyr421, Tyr473 and Lys417, while those of ACE2 were
Ala387, Arg393, Pro389, Val93, Lys26, Leu29, Asp30, His34, and Glu23. The intermolecular
interactions of BisC with the RBD included pi–cation/salt bridges with Arg403 and Lys417,
pi–pi interactions with Tyr505, Tyr421, Phe456, and Tyr473, and one hydrophobic interaction
with Lys421. The binding of BisC to the ACE2 interfacial region was mainly dominated
by a plethora of hydrophobic interactions (green lines) with Ala387, Pro389, Val93, Lys26,
Leu29, Asp30, and Glu23, one pi–pi interaction with His34, as well as one pi/cation (salt
bridge) interaction (blue lines) with Arg393. The MD simulation for the ACE2-RBD-BisC
complex revealed that the bound BisC molecule was moderately stable and remained in
the binding pocket (Figure 4D). The MD simulation was run for 32 ns. Figure 4D depicts
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the heavy atom (HA) RMSD trends for the ACE2 receptor (orange), bound RBD (gray), and
bound BisC (yellow) over the 32 ns MD simulation of the ACE2-RBD-BisC complex at 311 K
and the constant pressure of 1 atm (NPT ensemble). Inset images show BisC conformations
at 15 ns, 22 ns, and 32 ns. While BisC was relatively stable over the course of the MD
simulation, it was not ejected into the aqueous phase. Brief periods of sporadic instability
were noted (e.g., ~12–17 ns).

Figure 4. Docking and MD simulation of the ACE2-RBD complex (PDB 6LZG) with the bound
imidazole biphenyl-tetrazole (bisartan) BisC. (A) Chemical structure of BisC is depicted in the ionized
tetrazole form that predominates at neutral pH. (B) The ACE2-RBD-BisC complex following BisC
global docking at the ACE2-RBD interfacial domain (see docking protocol in Materials and Methods).
This docked complex is also the initial starting conformation for the MD simulation. (C) Details of the
main intermolecular interactions involved in BisC docking at the ACE2/RBD complex. The principal
stabilizing forces involved salt-bridge (also referred to as cation–pi) type interactions between the
anionic tetrazole group-1 (Tet1) and Arg393 and Arg403 (blue lines). The anionic tetrazole group-2
(Tet2) interacted with Lys417. Additional pi–pi stacking (red lines) and hydrophobic (green lines)
interactions also stabilized BisC in the interfacial domain. (D) Heavy atom (HA) RMSD trends for the
ACE2 receptor (orange), bound RBD (gray), and bound BisC (yellow) over a 32 ns MD simulation of
the ACE2-RBD-BisC complex at 311 K and constant pressure of 1 atm (NPT ensemble) in physiological
saline (0.9 wt% NaCl solution; refer to Material and Methods for the detailed MD protocol). Inset
images show BisC conformations at 15 ns, 22 ns, and 32 ns. While BisC was relatively stable over the
course of the MD simulation, it was not ejected into the aqueous phase. Brief periods of sporadic
instability were noted (e.g., ~12–17 ns).
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4. Discussion
4.1. Variant Distribution across EU/EEA Countries

In the current phase of the pandemic, the infections caused by the omicron SARS-CoV-2
variants remain the most dominant across COVID-19 patients in the European continent
([19] accessed on 24 November 2022). The BA.5 subvariant prevalence can be seen for all
EU/EEA countries that report sequence or genotyping data through the GISAID and TESSy
databases (Figure 1, Table 1), while the BA.2, BA.2.75, and BA.4 variants’ proportions are
de-escalating. Interestingly, the sublineages BA.2.75 and BQ.1 can be detected within the
EU/EEA countries in accountable percentages. BA.2.75 is a sublineage variant of BA.2 and,
as of 24 November 2022, is considered as VOI. The BQ.1 sublineage seems to be gaining
ground according to the latest increasing rates of infections, and as of 20 October 2022, it is
considered as a VOI from ECDC ([37], accessed on 24 November 2022). BQ.1 originates
from the BA.5 omicron VOC. BQ.1.1 is another sublineage of the original BA.5 variant and
exhibits high potential to become the new dominant variant.

4.2. Polybasic Cleavage Sites of the SARS-CoV-2 S-Protein and 3CLpro Inhibition

The critical P681R mutation at the rich arginine furin cleavage site (FCS) 681–686
(Figure 5A) enhances cleavage and infectivity suggesting a critical role for basic arginine
residues in SARS-CoV-2 for spreading infection. A second S2′ cleavage site is involved
in promoting infusion initiation, and the cleavage occurs between R815-S816 by trypsin
and trypsin-like proteases, such as the TMPRSS2 [42–44]. The latter may also cleave at the
S1/S2 FCS. A recent study suggests that furin might also cleave between R815-S816 at the
S2′ cleavage site, with an additional FCS located at the N terminal domain (NTD) of the S
protein [42]. Trypsin enhances SARS-CoV-2 infection in cultured cells [45] and, along with
other proteases produced in the lungs or small intestine, might boost viral replication in
these organs, ultimately leading to severe tissue damage. Furin, trypsin, and TMPRSS2
might act synergistically in viral entry and infectivity, supporting the combination of furin,
trypsin, and TMPRSS2 inhibitors as potent antiviral drugs [46]. Figure 5B shows the
homotrimeric SARS-CoV-2 S-protein and the S1/S2 and S2′ FCSs. The polybasic cleavage
sites of SARS-CoV-2, 680-SPRRARS-686, and 810-SKPSKRS-816 provide potential treatment
targets [42,44,47–49]. Interaction of polybasic cleavage sites (arginine’s positively charged
side chain) occurs with negatively charged ARBs (Figure 2). ARBs, namely sartans, bear
negative charges (tetrazolate and carboxylate) and may target the positive cavity loops
of the S-protein. These positively charged arginine residues block the entry of the virus
through ACE2. This applies to all sartans which bear negative charges, inlcuding bisartans
which consist of two tetrazole groups (e.g., BisA, Figure 2C) [13]. In silico studies suggest
that ARBs either block ACE2, inactivating the entry of the virus, or prevent hydrolysis of
the S-protein by furin, trypsin, and TMPR552 [14]. Arginine is the critical amino acid for
cleavage, and inhibition by ARBs may be critical for developing novel antiviral treatments.

The viral genome, after hijacking the host ribosomes, gets translated into ~800 kDa
large polypeptide (PP) chain. The newly generated PP chain is autoproteolytically cleaved
by proteases such as 3CLpro. The latter is encoded by the viral genome in order to generate
the non-structural proteins (NSPs) that are required for replication. 3CLpro is the main
protease of SARS-CoV-2, and as such, it plays a major role in viral replication. The PP chain
is cleaved into 16 NSPs in total. The 11 NSPs are generated by the 3CLpro, rendering this
protease one of the major targets for developing anti-SARS-CoV-2 drugs [50]. Bisartans
have been found in our previous in silico studies to bind strongly to the 3CLpro catalytic
center and to be stable in MD simulations [13,14].
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Figure 5. (A) Cleavage sites of the SARS-CoV-2 virus S-protein; NTD, N-terminal domain; RBD,
receptor-binding domain; FP, fusion peptide; TMD, transmembrane domain. (B) Homotrimeric
SARS-CoV-2 S-protein and locations of the S1/S2 and S2′ FCSs.

4.3. Critical Mutations

The objective of this study is to explain the stability, higher affinity, and infectivity of
the SARS-CoV-2 mutants based on the charge interactions in the new network environment
formed after the mutation. Computational chemistry has revealed and predicted stronger
binding to ACE2 for certain mutations at positions 501, 417, and 484 of RBD. Mutations
of SARS-CoV-2 have been identified in several countries [5,7–9,51,52]. Natural products
and S-protein’s fragments have been investigated in silico as possible inhibitors [53–55].
The most known mutations reported so far are N501Y, E484K, K417N, P681H, P681R, and
D614G, with the three first to be in the RBD interface with ACE2 [5,8,9,52]. The N501Y
mutation appeared to be the most infective in the UK Alpha variant, which also includes the
less infective K417N and E484K mutations. The P681H mutation is known as the Nigerian
lineage and with the D614G mutation, located in the A chain of the S-protein, are bound to
a lesser degree compared to the three RBD mutants E484K, K417N, N501Y [7,10].

4.3.1. The Triple Mutation E484K, K417N, N501Y (UK Variant)

It has been reported that the combination of E484K, K417N, and N501Y mutations
results in the highest degree of conformational alterations in the S protein RBD when
bound to ACE2, compared to E484K, K417N or N501Y alone [5,7–9,51,52]. The triple
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mutation together in the S protein RBD domain has an additive effect and increases the
affinity of RBD for ACE2 [13]. In particular, the E484K mutation switches the charge on the
flexible loop region of RBD, leading to the formation of novel favorable contacts. These
mutations were examined under the light of network interactions with ACE2 residues
and vary according to the polarity and the charge of the interacting residues, which create
a new, more stable environment where they are favorably accommodated. The major
forces that dominate the interactions are derived from salt bridges, hydrogen bonds, and
pi–pi interactions. Mutations point strongly to the convergent evolution of SARS-CoV-2
RBD structures to improve binding affinity to the ACE2 receptors, which subsequently
makes them more stable and more infective. Strong inter- and intra-interactions in the new
setting make mutants survive and spread. Pi–Pi interaction, as in mutant Y501RBD/Y41
ACE2, was found to be the strongest compared to hydrogen bonds based on phenol-phenol
interactions [8–10].

The N501Y mutation, known as the UK mutation, was initially dominating globally.
The fact that the N501Y mutation appeared independently in different geographical areas
after its first appearance in the UK provides further indication of a possible advantageous
mutational shift of higher infectivity compared to the original N501 variant. The N501Y
mutation allows the virus to bind to the ACE2 receptor more tightly compared to N501.
In the crystal structure of RBD/ACE2 [12,32], the wild type’s N501 residue of the RBD
(PDB 6LZG) is interacting through hydrogen bonding (3.85 Å) with ACE2 Y41 (Pi–donor
HB). Additionally, the side chain’s oxygen atom of Y41 forms one conventional HB (2.73 Å)
with the side chain of T500 of the RBD (donor). Mutation N501Y (PDB 7EKG) presumably
leads to a conventional HB (2.73 Å) between the hydroxyl group of 501Y (donor) and the
oxygen atom from the carbonyl group of the backbone of Y41 (acceptor) of the ACE2. The
latter is slightly more stable compared to the conventional hydrogen bond in wild type
variant in terms of donor-acceptor distance (Å). Enhancement of the affinity is further
enforced by the quadrupole ring-ring interaction (pi–pi T-shaped) between the two tyrosine
residues (4.87 Å), which strengthens the binding (Figure 6). Tyrosine is known to interact
in a charged network through the nucleophile tyrosinate, as in angiotensin II (AngII)
receptor activation, and through hydrogen bonding, salt bridges, and quadrupole ring-ring
interactions with aromatic residues. This results in stronger binding in the network of
charges with subsequent favorable spreading and infectivity. This mutation and the broad
tyrosine interactions in the mutant that stabilize the binding are energetically favorable
compared to N501, with an amide functionality of reduced reactivity compared to the
tyrosine (aromatic, hydroxyl) functionality [8].

Figure 6. Interactions between Y41 of ACE2 with N501 (left panel) and Y501 (right panel) of S-protein
of SARS-CoV-2 (PDB IDs: 6LZG and 7EKG, respectively). HBs are depicted in green (conventional)
and blue (Pi-donor HB) and hydrophobic interactions in magenta (Pi–Pi T-shaped). Interactions were
analyzed and illustrations made with Discovery Studio Visualizer [56].

The enhanced complex stability imparted by N501Y was consistent with a decrease in
the ddGbind of −0.36 kcal/mol compared to that of the N501, as revealed by our previous
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study [13]. In contrast, the isolated single-point mutations E484K and K417N were by them-
selves destabilizing, with ddGbind values of +0.5049 and +0.9442 kcal/mol, respectively,
suggesting a weakening of the RBD-ACE2 binding. However, in MD simulations, both
mutants (i.e., E484K and K417N) exhibited improved binding to ACE2. Their combined
effect on the triple mutant (i.e., E484K, K417N, and N501Y) was to significantly increase the
RBD-ACE2 binding potential. The ddGbind was significantly increased when compared to
the wild-type and to any of the three single-point mutations separately. Moreover, based on
this study’s MD results, the singular pi–pi interaction of the two tyrosine residues between
RDB N501Y and ACE2 Y41 is what really drives the binding. A weak HB between N501Y-
RBD and Y41-ACE2 can be observed after 9 ns of MD simulation between ACE2 and the
RBD (PDB 6LZG), but it is quite distant (>2.5 Å) compared to the other 7 HBs. The single
pi–pi interaction that is preserved after 9 ns can potentially overwhelm that weak HB in
terms of the interaction potential. Secondly, due largely to the pi–pi interaction, the N501Y
interaction with Y41 of ACE2 is the closest atom interaction (~1.6 Å) of all interactions
detected. This proximity association is most likely due to the pi–pi interaction and not to
the weak HB, although the latter could indeed make a partial contribution by withdrawing
electron density from the aromatic ring(s). The pi–pi interaction could assume slightly
different conformations following repeated energy optimizations (e.g., T-form, Sandwich,
and Parallel).

4.3.2. The Triple Mutation L452R, E484Q, P681R (Indian Variant)

The sublineage B.1.617.1 (kappa) appeared in India and included mutations E484Q,
L452R, and P681R with severe symptoms in the population. The mutation E484Q
(ddG = −0.29 kcal/mol) results in the mutant 484Q, which is a much stronger binder
compared with the mutant 484K (ddG = +0.02 kcal/mol) according to our MD simulations,
which predicted the stronger affinity and infectivity of the 484Q mutant [13]. The major
triple combination of L452R, E484Q, and P681R seen in the Indian variant suggests that
the virus is evolving similar traits Independently and continuously adapting to its human
hosts. The replacement of hydrophobic amino acids L, E, and P with the hydrophilic R,
Q, and R also suggests that the trend of virus is to reduce hydrophobic interaction and
increase hydrophilic interactions with ACE2 residues which are stronger, creating more
stable networks allowing the virus to survive, evolve, and spread [5,52].

4.3.3. The E484K Mutation (UK, South Africa, and Brazil Variants)

Molecular dynamics simulations reveal that the E484K mutation, which appeared in
UK, South Africa, and Brazil variants ([57], accessed on 24 November 2022), enhances S
protein RBD-ACE2 affinity [52]. The combination of E484K, K417N, and N501Y mutations
induces conformational changes greater than the N501Y mutant alone, potentially resulting
in an escape mutant [7,51,52]. The increased affinity of 484K, compared to 484E, for ACE2,
has been suggested to be due, in part, to the change in net charge. This allows the formation
of a transient contact ion pair with E75 of ACE2 [8,9,12]. In particular, the strong salt bridge
between the lysine amino group at position 484 of the S-protein and with a glutamic acid
carboxyl group at position 75 of ACE2 increases the affinity of RBD for ACE2 [12].

4.3.4. Comparative Analysis of the E484Q and E484K Mutations

The E484Q mutation, which appeared in the kappa variant (B.1.617.1), resulted in an
escape mutant where glutamate in position 484 was replaced by glutamine, an amino acid
of a similar hydrophilicity index [58] (Table 2). The mutant 484Q was highly infective, and
the S-protein’s RBD possessed a higher affinity towards the ACE2 residues, as predicted
and also confirmed in our previous MD simulation studies [13,14]. Structurally, glutamine
contains a carboxamide (-CONH2) which can interact with ACE2 residues through carbonyl
and amino groups capable of forming hydrogen bonds and pi–pi interactions [7]. More
importantly, though, glutamine is an amino acid of different functionality compared to
lysine (K). The mutant 484K, which appeared in the UK, South Africa (previous beta VOC),



Viruses 2023, 15, 309 14 of 22

and Brazil (previous gamma VOC), cannot form pi–pi interactions, as the side chain of
lysine (when protonated) lacks pi electrons. Additionally, the side chain of lysine cannot
act as an HB acceptor (-NH3

+ group) in comparison with glutamine (-NH2 group). In
our previous study, with the use of molecular modeling tools, we demonstrated that the
mutation E484Q results in the formation of a more stable ACE2-RBD complex compared
to E484K [13]. It is worth noticing that in the same study, it is mentioned that the E484R
mutation leads to the formation of the most stable ACE2-RBD complex. The crucial role
of arginine in infectivity indicates the potential trend that drives the emergence of new
SARS-CoV-2 subvariants: the replacement of non-polar and hydrophobic amino acids with
polar and hydrophilic and/or mutations to more hydrophilic residues.

Table 2. Physicochemical classes and properties of the 20 common amino acids [58].

Volume Classes “Hydropathy “ Classes

Hydrophobic Neutral Hydrophilic

very large F W Y
large I L M K R

medium H
small V C P T E Q

very small A G S D N
aliphatic sulfur hydroxyl basic acidic amide

uncharged charged uncharged

Non-polar Polar

4.3.5. The K417N Mutation (South Africa Variant)

The K417N mutation appeared in the beta VOC and led to a mutant with increased
stability of the network between the mutated RBD and ACE2. Lysine contains an ε amino
group (-NH3

+) capable of potentially forming salt bridges with negative groups such as
carboxylates and/or as a donor in hydrogen bonds. Asparagine contains the amide group
(-CONH2), potentially participating in hydrogen bonds (donor and acceptor) and pi–pi
interactions through the carbonyl group. The latter extra functionality of asparagine may
allow a stronger affinity of this amino acid with ACE2 compared to lysine residues. Lysine
and asparagine residues’ hydrophilicity indexes are in the same order of magnitude, with
the former being slightly more hydrophilic [58]. Interestingly, free energy perturbation
calculations for the interaction of the K417N mutated S-protein RBD with both the ACE2
receptor and antibody derived from COVID-19 patients have shown that the S RBD-ACE2
interactions were significantly increased, whereas the antibody interaction dramatically
decreased [59–62].

4.3.6. The P681H Mutation (Nigerian Variant) and the P681R (Indian Variant) in the
Vicinity of the S1/S2 Spike Fusion Region

The P681H and P681R mutations occur in the neighboring fusion cleavage site of
SARS-CoV-2 at position 685R (Figure 5A). They are globally prevalent and are the result
of stronger binding of the 681H and 681R mutants with the ACE2 receptor compared
to the P681 original variant. Proline is a rigid amino acid that changes the direction
of a peptide sequence with the restricted ability to participate in charge networks as
it lacks polar groups in the side chain. On the contrary, histidine is a polyfunctional
amphoteric amino acid that can be positively charged (when both nitrogen atoms are
protonated) and can potentially form pi–pi interactions with aromatic residues or groups
bearing pi electrons. This allows increased avidity of histidine with neighboring negatively
charged groups or with aromatic residues and participation in a charge relay system
as in angiotensin [63,64] and serine proteases [65]. The P681R mutation is even more
transmissible and infective compared to P681H. Arginine is more hydrophilic compared
to histidine [58], leading to stronger interactions and more stable networks (Table 2) [5].
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Again, the trend of replacing residues with more hydrophilic ones results in mutants of
increased stability of the RBD-ACE2 complex.

4.3.7. The D614G (India, South Africa, and Brazil Variants) and D614R Mutations

Another S-protein’s mutation, the D614G, has been seen in the previous beta, gamma,
and delta VOCs, allowing the virus to replicate more efficiently in the upper respiratory
tract rather than in the lower tract in a mice model [11]. This increased viral load in this
anatomical site may allow the virus to spread through sternutation and to cough more
easily. However, the D614G variant, although circulating for some time, has not been
shown to be more pathological. This may be due to the loose interactions that are expected
for glycine, with less binding affinity compared to D614 towards ACE2. Substitution of
aspartate by glycine leads to a virus variant with fewer interactions of the neutral non-polar
hydrophobic glycine residue with the ACE2 protein compared to the functional polar and
charged and the hydrophilic carboxyl group of aspartate residue (Table 2). This mutation
leads to a less charged network and reduced binding affinity of variant 614G to ACE2.
This may account for less infectivity and less severe symptoms when compared to other
mutations, which are strongly stabilized in the surrounding charged environment [11,66].
However, potential mutation to D614R may lead to strong interactions with ACE2 residues
and higher infectivity. Arginine is a polar, positively charged hydrophilic amino acid
stabilizing network compared to the non-polar neutral hydrophobic glycine residue in the
hydropathy ranking properties of the twenty common amino acids (Table 2).

4.3.8. The R346T Mutation in Omicron Subvariants BQ.1 and BA.4.6

Currently, the omicron subvariant BA.5 is dominating globally and has shown sub-
stantial immune escape as compared with previous omicron subvariants. As can be seen in
Figure 1, the same motif applies to the European variants’ distribution (i.e., BA.5 preva-
lence). Interestingly, the BQ.1 variant (sublineage of BA.5) is gaining ground and possesses
the high potential to become the next dominant variant around the globe [37] (accessed on
24 November 2022). BQ.1 carries critical mutations in S-protein’s antigenic sites, including
K444T and N460K. In addition to these mutations, BQ.1.1 bears an additional R346T mu-
tation in a key antigenic site on the S-protein of SARS-CoV-2 [67]. BA.4.6 is a sublineage
of BA.4 and has recently increased in prevalence in certain regions currently dominated
by BA.5. BA.4.6 carries two additional mutations in the S-protein: R346T and N658S. The
ability of BA.4.6 to evade neutralizing antibodies and the role of R346T mutation remains
to be determined [2,3,68]. The R346T mutation is also the case for the BQ.1 variant, and it
may be involved in the molecular recognition with ACE2 that is necessary for viral infec-
tivity and/or transmissibility. Computational studies regarding the RBD-ACE2 complex
stability for these novel omicron subvariants may provide critical insights regarding the
characteristics of molecular recognition.

4.4. The Role of Tyrosine in Stabilizing Network Systems
4.4.1. The Example of AT1R/ARBs

The multifunctional reactivity of tyrosine (hydroxylate, aromaticity) contributes greatly
to the creation of stable networks in tyrosine variants. This network is well depicted
in ARBs/angiotensin type I receptor (AT1R) crystal interaction, where tetrazolate and
carboxylate groups of ARBs, as in olmesartan interact with residues R167 and Tyr35 of
AT1R [69,70]. This is also well depicted in AngII/angiotensin type 1 receptor (AT1R) crystal
interaction, where mutation Y35A destabilizes the network, resulting in its inactivation
and preventing binding of AngII and ARBs with AT1R [69,70]. Alanine is a neutral amino
acid that lacks functionality and therefore binds loosely with neighboring residues. In
our studies in the renin–angiotensin system (RAS), it has been found that angiotensin
II exerts its agonist activity through the tyrosine hydroxylate formed in a charge relay
system (CRS) mechanism analogous to the serine protease cleavage mechanism through
a serinate anion [63,65]. The interaction of angiotensin II tyrosinate with its AT1 receptor
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is blocked with angiotensin II receptor antagonists (ARBs), protecting from hypertension
and related cardiovascular diseases. Mutation Y35A in AT1R results in an inert biological
network and confirms the intriguing central role of Tyr to create and stabilize networks
upon the binding of AngII or ARBs with AT1R. In silico studies have demonstrated a
strong affinity of ARBs with AT1R and with the S-protein of SARS-CoV-2, in particular with
arginine-rich sites as 681–686 and 814–815. Angiotensin II receptor blockers (ARBs) have
been found to upregulate ACE2 and to be protective in hypertensive patients infected by
SARS-CoV-2, rendering them potential inhibitors that may prevent infection [71]. Agents
which upregulate ACE2, such as Diminazene [72–74] and angiotensin II inhibitors, reduce
the RAS toxic angiotensin II implicated in the storm of cytokines and in pneumonia, one of
the symptoms of COVID-19. ARBs may be another promising class of repurposable drugs
for inhibiting SARS-CoV-2 [13,14]. Figure 7 shows the intermolecular interactions between
AT1R and ARB Olmesartan (PDB 4ZUD).

Figure 7. Intermolecular interactions between AT1R and the ARB olmesartan (illustrations made with
MarvinSketch 22-11 [41]) and Discovery Studio Visualizer [56]. Left: hydrogen bond interaction be-
tween AT1R Y35 hydroxyl group with olmesartan imidazole nitrogen. Right: interactions of the AT1R
residues Y35, F77, W84, Y87, Y92, V108, S109, A163, R167, and I288 with the ARB olmesartan (PDB
4ZUD). HBs are depicted in green (conventional) and blue (Pi-donor HB), hydrophobic interactions
in black (alkyl-alkyl and Pi-alkyl) and magenta (Pi–Pi stacked and Pi–Pi T-shaped), and electrostatic
(salt bridges and Pi–cation) in orange. The Y35A mutation destabilizes the Olmesartan/AT1 network
and prevents binding. Note that ARBs may be inhibitors of SARS-CoV-2 and ACE2 binding through
strong interactions between negatively charged tetrazolate and carboxylate with polybasic arginine
residues’ cavity loop 681–686 RBD of SARS-CoV-2.

4.4.2. The Role of Tyrosine in Triggering the Hypertensive Activity of Angiotensin II and
Possibly the Proinflammatory Cytokine Storm in COVID-19

Recent studies directly implicate the cytokine storm in COVID-19 patients with over-
expression of AngII in the renin-angiotensin system (RAS). An important beneficial function
of ACE2 is the degradation of toxic Ang II to beneficial Ang heptapeptides after the decar-
boxylation of alamandine. This function is a pivotal link between ACE2 deficiency and
SARS-CoV-2 infection [75]. Our previous studies on AngII (mechanism of action and ratio-
nal design of ARBs) have revealed that Ang acts at the AT1R through a charge relay system
(CRS), analogous to serine proteases involving residues tyrosine, histidine, phenylalanine,
and C-terminal carboxylate [63,65]. Tyrosine is the principal component of RAS, and the
tyrosine hydroxylate anion binds to the AngII receptor to elicit a vasoconstrictive effect.
Methylation of the tyrosine hydroxyl group eliminates activity revealing the importance of
a tyrosinate negative charge for potency [63,64]. The charge relay system creates a cyclic
structure within the AngII molecule which at the receptor level operates through the tyro-
sine hydroxylate to trigger activity [63]. In the interface of ACE2/SARS-CoV-2 interactions,
tyrosine forms strong salt bridges with negative groups such as carboxylates (aspartic
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acid and glutamic acid). Tyrosinates strongly bind to SARS-CoV-2 positively charged
residues, such as arginine, to create stable networks with subsequent increased infectivity
and morbidity. The structure of the SARS-CoV-2 RBD bound to the ACE2 receptor, and the
interactive residues have been reported by Lan and colleagues [12].

4.4.3. pi–pi Interactions Enhance Binding Affinity

Our previous MD simulation results [13] underlined that pi–pi interactions of the two
tyrosine residues (i.e., Y41 of ACE2 and 501Y) significantly enhance the binding between
RDB and ACE2. The single pi–pi interaction may overwhelm weak HBs in terms of the
interaction potential. Additionally, the proximity association between these two residues is
most likely due to the pi–pi interaction and not to the weak HB that is probably formed
between them, although the latter could indeed make a partial contribution to the molec-
ular recognition of RBD with ACE2. The pi–pi interaction can potentially adopt slightly
different conformations, such as T-shaped, sandwich, and parallel-displaced (Figure 8).
A computational QM analysis of this phenomenon could be undertaken using isolated
tyrosine residues or phenol molecules in vacuo, coordinated or non-coordinated [4,15–17].
Our studies indicate that fully atomistic MD simulations can also provide useful insights
regarding the intermolecular interactions that dominate the molecular recognition of RBD
with ACE2 [13,14].

Figure 8. Sandwich, T-shaped, and parallel-displaced configurations of the benzene dimer.

4.4.4. RAS and ACE2 Are Targets for COVID-19 Antiviral Drugs

The RAS has been the prime target for the therapy of cardiovascular diseases, and
non-peptide angiotensin AT1 receptor blockers (ARBs) have been developed to specifically
block the AT1 receptor [63]. Since angiotensin-converting enzyme 2 (ACE2) in the RAS
is the entry of SARS-CoV-2 in the cell initiating infection, ARBs and bisartans, and in
particular BV6 (bearing two biphenyl tetrazoles), were investigated as possible antivirals
to treat COVID-19 disease furthermore to its antihypertensive potential [13,14]. Extensive
clinical studies have shown that ACE2 and ARBs are beneficial in the treatment of hyper-
tensive patients infected by COVID-19 [76,77]. Other studies looking at the mechanism of
triggering disease have shown that imbalance in RAS in favor of angiotensin II deregulates
the system, exaggerates SARS-CoV-2 specific T-cells, and contributes to COVID-19 severity
and mortality [78,79]. A symptom of morbidity is the release of inflammatory cytokines,
and ARBs could be a promising strategy not only for COVID-19 but also for autoimmune
diseases. ARBs modulate TH1- and TH17-mediated potency by converting pathogenic
cytokines to regulatory [80–82]. The conformation of angiotensin, the principal component
of RAS, which led to non-peptide mimetic ARBs and Bisartans was the result of pioneer
work based on structure–activity studies, nuclear magnetic resonance, fluorescence, and
modeling techniques [83–87]. In all these studies, the arginine residues play a catalytic
role in basic cleavage sites (R685-S686 and R815-S816) for the S-protein’s cleavage and trig-
gering infection induced by furin and TMPRSS2 proteases [88–90]. Furthermore, arginine
(L452R) and RBD mutations enhance the binding of RBD S-protein with ACE2 increasing
transmissibility and infectivity [5]. Arginine blockers, thus, are potential therapeutics for
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treating COVID-19 [13,14]. Proteases such as furin, trypsin, TMPRSS2, and 3CLpro are
potential targets for designing novel COVID-19 drugs [91,92].

5. Conclusions

In this commentary, we report the epidemiology of SARS-CoV-2 variants across Euro-
pean countries and the distribution of the variants. We also focus on the interface of the
complex of the S-protein’s RBD and the ACE2, where the intermolecular interactions are
the driving force that stabilizes the mutated variants of SARS-CoV-2. Mutations lead to
stronger charged networks, which are energetically favored through interactions such as
hydrogen bonds, electrostatic, salt bridges, hydrophobic (e.g., pi–pi interactions), and van
der Waals. The functionality of the interacting residues and their ability to create stable
networks is the key to driving mutations to new pathologically significant alterations in
COVID-19 symptoms. The polarity and charges of the mutated residues are the corner-
stones directing the pathogenicity of SARS-CoV-2. MD simulations show that the RBD
triple mutant (N501Y + E484K + K417N) binds more strongly to the ACE2 receptor [13]. The
total energy calculations revealed that the wild-type complex was the weakest, the triple
mutant was the strongest, and every single mutant complex for E484K, K417N, and N501Y
possessed intermediate stability (i.e., between the wild-type and triple-mutant). The pi–pi
interaction between 501Y (RBD) and Y41 (ACE2) dominates the interface’s intermolecular
interactions and is the closest atom interaction (~1.6 Å) of all interactions detected after
the MD simulation analysis. These driving forces may translate into stronger RBD-ACE2
binding with subsequent higher transmissibility and infectivity. Similarly, the triple muta-
tion L452R, E484Q, and P681H, which appeared in the Indian variant, results in a higher
affinity of the S-protein’s RBD for ACE2. Intermolecular and intramolecular interactions
stabilize the highly infective SARS-CoV-2 mutations N501Y, E484K, E484R, K417N, P681H,
and P681R on the S-protein and strengthen the complex stability of RBD-ACE2. These
interactions may render novel treatment targets by disrupting the RBD-ACE2 binding with
inhibitors and thus preventing infection by SARS-CoV-2. The P681R mutation at the rich
arginine FCS 680–686 (SPRRARS) enhances the cleavage and the subsequent infectivity
suggesting a critical role for basic arginine residues in the transmissivity of SARS-CoV-2.
The trend of mutations is, in general, the replacement of non-polar and hydrophobic amino
acids with polar and hydrophilic amino acids, which can potentially create more stable
networks allowing the mutant to escape the immune system, increasingly spreading. Our
studies suggest that arginine blockers such as ARBs can be a class of potential drugs for
treating COVID-19.
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