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Abstract: Autophagy, as a conserved protein degradation pathway in plants, has also been reported
to be intricately associated with antiviral defense mechanisms. However, the relationship between
chilli veinal mottle virus (ChiVMV) and autophagy has not been investigated in the existing research.
Here, we reveal that ChiVMV infection caused the accumulation of autophagosomes in infected
Nicotiana benthamiana leaves and the upregulation of autophagy-related genes (ATGs). Moreover, the
changes in gene expression were correlated with the development of symptoms. Treatment with
autophagy inhibitors (3-MA or E-64D) could increase the infection sites and facilitate virus infection,
whereas treatment with the autophagy activator (Rapamycin) limited virus infection. Then, ATG8f
was identified to interact with ChiVMV 6K2 protein directly in vitro and in vivo. The silencing of
ATG8f promoted virus infection, whereas the overexpression of ATG8f inhibited virus infection.
Furthermore, the expression of 6K2-GFP in ATG8f- or ATG7-silenced plants was significantly higher
than that in control plants. Rapamycin treatment reduced the accumulation of 6K2-GFP in plant cells,
whereas treatment with the inhibitor of the ubiquitin pathway (MG132), 3-MA, or E-64D displayed
little impact on the accumulation of 6K2-GFP. Thus, our results demonstrated that ATG8f interacts
with the ChiVMV 6K2 protein, promoting the degradation of 6K2 through the autophagy pathway.

Keywords: autophagy; ChiVMV; ATG8f; 6K2

1. Introduction

Autophagy is a conserved intracellular degradation pathway that degrades and recy-
cles functionally impaired organelles or other cytoplasmic components through vesicular
structures (vacuoles in plants and yeast, and lysosomes in mammals) [1,2]. Autophagy in
eukaryotes can be divided into chaperone-mediated autophagy (CMA), macroautophagy,
and microautophagy [3,4]. Macroautophagy is the formation of a unique double-membrane
structure (autophagosome) from the endoplasmic reticulum under external stimulation,
which encapsulates the autophagic cargo into lysosomes or vacuoles for degradation [5].
The commonly described autophagy represents macroautophagy. More than 40 ATGs
have been identified [6], and it is generally accepted that the autophagy process mainly
involves the induction, nucleation, and expansion of the phagophore; maturation of the
autophagosome; and fusion with the vacuole or lysosome for substrate degradation [7–11].

Autophagy is a key mechanism for the maintenance of homeostasis in plant cells, as it
provides energy and circulating nutrients to sustain survival under starvation stress [12,13].
Other abiotic stresses, including salt stress [14,15], drought stress, and hypoxia stress [16],
can also induce autophagy [16,17]. In addition to abiotic stresses, infection by pathogenic
microorganisms, including viruses, can also activate autophagy, as in the case of the necrotic
pathogenic fungus Botrytis cinerea after it invaded Arabidopsis thaliana. The signal pathway
was mediated by jasmonic acid (JA) and WRKY33-upregulated autophagy genes and pro-
moted the formation of autophagosomes [18]. The effector protein PexRD54 of Phytophthora
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infestans blocks the autophagic clearance of plant or pathogen proteins that negatively affect
immunity by interacting with ATG8 to enhance autophagosome assembly [19].

ATG8 is a key adaptor protein in autophagy, and it was first identified as an au-
tophagy protein in the early 1990s [20]. ATG8 is exposed to c-terminal glycine after
treatment with ATG4 cysteine protease. The mature ATG8 is bound to the membrane
lipid phosphatidylethanolamine, and the bound ATG8 connects the autophagy adapter
and receptor protein to the expanding phagophore [21,22]. Some viral proteins and plant
proteins had been reported to interact directly or indirectly with ATG8 family proteins in
plants [23–27]. For instance, the βC1 of cotton leaf curl Multan virus (CLCuMuV) interacted
with ATG8f and was degraded by autophagy [23], the NbP3IP directed the degradation
of rice stripe virus p3 protein through interaction with the autophagy-related protein
NbATG8 to limit virus infection [26], and the NIb encoded by the turnip mosaic virus
(TuMV) interacted with Beclin1 to limit viral infection through Atg8a-targeted autophagic
degradation [24].

Potyvirus is the largest genus of plant viruses with a positive single-stranded RNA
genome [28]. Chilli veinal mottle virus belongs to the genus Potyvirus of the family Potyviridae,
which encodes one polyprotein and hydrolyzes into 11 mature viral proteins, including
6K2, NIb, HC-Pro, Vpg, etc. The membrane-bound protein 6K2 can generate the formation
of endoplasmic reticulum (ER)-derived vesicles for intercellular movement of potyviral
replication complexes (VRCs) and viral RNA replication [29–31], and it is critical for inter-
cellular movement and systemic infection of potyviruses. NIb is a viral RNA-dependent
RNA polymerase (RdRp). HCPro and Vpg are two known RNA-silencing viral suppressors
(VSRs) [32]. In addition, NIb, HCPro, and VPg, when encoded by other viruses in the genus
Potyvirus, have been reported to interact with autophagic components [24,33,34].

In recent years, the outbreak of ChiVMV has caused great economic losses to the
tobacco industry of China and has severely restricted the production of tobacco [35]. It
is also a serious threat to solanaceous plants worldwide [36,37]. In this study, we demon-
strated that ChiVMV infection caused the specific expression of ATGs and accumulation of
autophagosomes in tobacco plants. Activation of autophagy promoted plants’ resistance to
ChiVMV, and ATG8f specifically interacted with the ChiVMV 6K2 protein, promoting 6K2
degradation through the autophagy pathway.

2. Materials and Methods
2.1. Plant Materials and Virus Inoculation

Wild-type N. benthamiana plants were grown in a greenhouse with a 12 h light/12 h
dark cycle (100 µM m−2 s−1) at 23–26 ◦C. Six-week-old seedlings were mechanically
inoculated with ChiVMV isolate Yp8 (GenBank: KC711055.1), and leaves inoculated with
phosphate-buffered saline (50 mM PBS, pH 6.8) were used as the mock treatment. The
virus source of inoculation was the same batch of virus-carrying leaf homogenates which
were prepared uniformly and stored in a −80 ◦C ultralow-temperature refrigerator.

2.2. Vector Construction and Agrobacterium Infiltration

The pTRV1, pTRV2, and TRV: PDS vectors used for virus-induced gene silencing
(VIGS), were prepared as described by Zhu et al. [38]. For the silencing of NbATG3 (Gen-
Bank: KX369396.1), NbATG7 (GenBank: KX369398.1), and NbATG8f (GenBank: KU561372.1),
cDNA fragments of the NbATG3, NbATG7, and NbATG8f sequences were amplified by
reverse-transcription PCR (RT-PCR) with specific primers and inserted into the pTRV2
vector to generate the TRV: NbATG3, TRV: ATG7, and TRV: ATG8f plasmid driven by the
CaMV 35S promoter. Next, the pTRV1, TRV: NbATG3, TRV: ATG7, and TRV: ATG8f vectors
were transferred separately into different Agrobacterium tumefaciens strain GV3101, and
then positive colonies were infiltrated into N. benthamiana plants, as previously reported by
Zhu et al. [38]. For the overexpression of NbATG8f and 6K2, the coding sequence (CDS) of
NbATG8f and 6K2 was amplified by RT-PCR with specific primers and inserted into the
pCM1307 (FLAG), pCAMBIA1300-eGFP (GFP), and pPGDR (RFP) vector to generate the
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ATG8f-GFP, ATG8f-flag, 6K2-GFP, and 6K2-RFP plasmid, respectively. All primers used for
vector construction are listed in Supplementary Table S1.

2.3. Transmission Electron Microscopy (TEM)

The fresh samples were prefixed in a mixed solution of 3% glutaraldehyde, followed
by post-fixing in 1% osmium tetroxide, dehydration in a series of acetone, and infiltration
in Epon812; then, they were finally embedded. The semi-thin sections were stained with
methylene blue, and ultrathin sections were cut with a Mond knife and stained with
uranyl acetate and lead citrate. The sections were examined using a transmission electron
microscope (TEM; HITACHI, H-600IV, Tokyo, Japan) [39].

2.4. RNA Extraction and Quantitative RT-PCR (qRT-PCR)

Total RNA was isolated from leaves, using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA), followed by the removal of genomic DNA with DNase treatment. Reverse tran-
scriptase was used to obtain cDNA for qPCR. Quantitative real-time PCR was performed
on Bio-Rad iCycler (Bio-Rad Laboratories, Hercules, CA, USA), using HIEFF qPCR SYBR
Green Master Mix (Yeasen, Shanghai, China). The expression level of N. benthamiana
Actin (NbActin, GenBank: AY179605.1) was detected and used for standardization. All
experiments were performed three times, and three independent biological replications
were performed [40]. The primers used for qRT-PCR analysis are listed in Supplementary
Table S1.

2.5. Protein Extraction and Western Blot Analysis

The method of extracting plant protein was based on Li et al. [41]. Proteins were
detected using anti-ChiVMV coat protein (CP) monoclonal primary antibody (1:5000)
and alkaline phosphatase conjugate goat anti-rabbit IgG (1:5000) secondary antibodies.
Enhanced blotting signals were detected using PIERCETM ECL Western blotting substrate
(Thermo Fisher Scientific, Waltham, MA, USA). Coomassie brilliant blue (CBB) staining of
the Rubisco large subunit was used as a loading control [40].

2.6. Chemical Treatments

Chemical treatments were performed post 24 h of virus inoculation. Rapamycin was
used as an autophagy activator (mammalian target of rapamycin inhibitor) at a concen-
tration of 1 µM. Then, 3-methyladenine (a representative autophagy inhibitor, 3-MA) and
proteinase inhibitor E 64 (a lysosomal enzyme inhibitor, E-64D) were used as autophagy
inhibitors at a concentration of 5 mM and 100 µM, respectively. MG132 was used as a
proteasome inhibitor at a concentration of 100 µM. For the method of diluent configuration,
we referred to Huang et al. [42]. Because the reagents were dissolved in dimethyl sulfoxide
(DMSO) before dilution, the DMSO solution was used as a control treatment. The prepared
solutions were infiltrated into the virus-inoculated leaves, respectively.

2.7. Yeast Two-Hybrid (Y2H) Assay

The CDS of NbATG3, NbATG7, NbNBR1 (GenBank: MG710800.1), NbATG8a (Gen-
Bank: KX120976.1), and NbATG8f were cloned into pGADT7 to generate the AD vectors,
respectively. Likewise, the CDS of VPg, P1, HCPro, P3N-PINO, P3, 6K1, CI, 6K2, NIa, NIb,
and CP were cloned into pGBKT7 to generate the BD vectors, respectively. The resulting
constructs were transferred into yeast strain AH109, and positive colonies were selected
and cultured on double dropout (DO) supplement (SD-Leu/-Trp) for 2–3 days. Then,
co-transformants were shifted onto quadruple DO supplement (SD-Leu/-Trp/-His/-Ade)
to test for possible interactions.



Viruses 2023, 15, 2324 4 of 12

2.8. Bimolecular Fluorescence Complementation (BiFC) Assay

The CDS of NbATG8f and 6K2 were inserted into the PXY103-nYFP and PXY104-cYFP
vector to generate the nYFP-ATG8f and cYFP-6K2 plasmid, respectively. The plasmids were
separately transferred into Agrobacterium tumefaciens strain GV3101 and co-infiltrated into
6-week-old N. benthamiana plants. Positive colonies were selected and cultured at 28 ◦C
for 24 h, and then the bacteria were centrifuged and resuspended in infiltration medium
(10 mM MES, pH 5.6, 10 mM MgCl2, and 150 µM acetosyringone) to a final OD600 of
0.8 for the transformation of N. benthamiana. The agroinfiltrated plants were grown in a
greenhouse for at least 36 h, and fluorescent signals were observed via a Leica DMIRBE
confocal laser scanning microscope (Leica Microsystems, Heidelberg, Germany) [36].

2.9. Co-Immunoprecipitation (Co-IP) Assay

The recombinant plasmids 6K2-GFP and ATG8f-flag were separately transferred into
A. tumefaciens strain GV3101 and co-infiltrated into 6-week-old N. benthamiana plants. After
being cultivated for 60 h in the greenhouse, these agroinfiltrated leaves were then ground
in protein extraction buffer (50 mM HEPES, pH 7.4, 150 mM KCl, 1 mM EDTA, 0.1% Triton
X-100, 1 mM DTT, and 1× protease inhibitor cocktail). After centrifugation at 12,000× g for
10 min at 4 ◦C, the supernatant was incubated with anti-GFP agarose affinity gel beads at
4 ◦C for 3 h. Subsequently, the beads were washed several times, using extraction buffer
(20 mM HEPES, pH 7.4, 3 mM MgCl2, 50 mM NaCl, 0.1 mM EDTA, and 0.05% Triton X-100),
and the adsorbed proteins were eluted from the beads by boiling in 2× SDS loading buffer.
After that, the pulled-down proteins were separated by SDS-PAGE and hybridized with
anti-flag and anti-GFP antibodies to evaluate the protein interaction.

2.10. Statistical Analysis

Samples were analyzed in triplicate, and the data are expressed as the mean ± SD, unless
noted otherwise. Statistical significance was determined using one-way ANOVA (Duncan
multiple comparisons) or Student’s t-test. A difference at p < 0.05 was considered significant.

3. Results
3.1. ChiVMV Infection Activates Autophagy in N. benthamiana

To understand the response of N. benthamiana to ChiVMV infection, stems and system-
ically infected leaves were observed and collected at 5 days post-inoculation (dpi), 8 dpi,
12 dpi, and 16 dpi, respectively. The results showed that there was obvious leaf shrinkage
and vein clearing in ChiVMV-infected plants at 8 dpi, and the whole leaves turned dark
green at 16 dpi (Figure 1a). The relative expression of the viral CP gene and accumulation
of viral coat protein in systemically infected leaves increased gradually, and this result
was consistent with the development of viral infection symptoms (Figure 1b,c). TEM
was performed to observe the damage on virus-infected leaf tissues caused by ChiVMV.
The result showed that virus inclusions (white arrow) and linear virus (red arrow) were
observed in ChiVMV-infected cells (Figure 1d, the left image of the lower panel). More
importantly, there existed autophagosomes (black arrow) densely distributed at the inner
edge of the vacuole in virus-infected cells (Figure 1d, the right image of the lower panel).
Because of the large number of autophagosomes observed in virus-inoculated leaf tissues,
the relative expressions of ATGs, including ATG3, ATG5, ATG7, ATG8f, Beclin1, NBR1, and
PI3K, were examined by qRT-PCR. The results showed that ATG7 and NBR1 were highly
expressed at 9 dpi (Figure 1e). The relative expression of ATG8f was also examined at 5 dpi,
8 dpi, 12 dpi, and 16 dpi (Figure 1f), and a strong response was found at the late stage of
infection (16 dpi). The above results showed that ChiVMV infection activated autophagy
in N. benthamiana.
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(a) Systemic leaf symptoms of N. benthamiana at 5 dpi, 8 dpi, 12 dpi, and 16 dpi, respectively.
(b) Relative expression of viral CP gene in N. benthamiana leaves at 5 dpi, 8 dpi, 12 dpi, and 16 dpi,
respectively. (c) Accumulation of viral coat protein (CP) in the systemic leaves. (d) Observation
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white arrow indicates virus inclusions, and the red arrow indicates linear virus. Cp, chloroplast; M,
mitochondria; V, vacuole; and N, nucleus. (e) Relative expressions of ATGs in the systemic leaves at
9 dpi. (f) Relative expression of NbATG8f at different time points after ChiVMV infection. Data are
shown as means ± SD (n = 3). Lower case letters indicate statistically significant differences (p < 0.05).

3.2. Autophagy Plays a Positive Role in the Antiviral Process of N. benthamiana

To investigate the role of autophagy during ChiVMV infection, an autophagy activator
(Rapamycin) and inhibitors (3-MA and E-64d) were used in virus-infected N. benthamiana.
The results showed that there were fewer viral fluorescent spots on Rapamycin-treated
plants than on DMSO-treated plants, whereas there were more viral fluorescent spots on
3-MA- or E-64D-treated plants than there were on DMSO-treated plants (Figure 2a,b). The
relative expression of viral CP and the accumulation of viral coat protein in inoculated
leaves were examined at 5 dpi. The results showed that the 3-MA- or E-64D-treated
plants showed a higher expression of viral CP and a greater accumulation of viral coat
protein, whereas the Rapamycin-treated plants exhibited the opposite results (Figure 2c,d).
ATG3 and ATG7 were known as the key genes regulating autophagy [23]. VIGS was
used to silence ATG3 and ATG7 in N. benthamiana to detect the effect of autophagy on the
plant response to ChiVMV infection. The results showed that ATG3/ATG7-silenced plants
displayed more fluorescent spots on inoculated leaves and stronger fluorescence intensity in
systemically infected leaves compared to that in TRV: GUS plants at 5 dpi (Supplementary
Figure S1a,b). Accordingly, the results of the qPCR and Western blot analysis showed
that the expression of viral CP and the accumulation of viral coat protein were higher
in ATG3/ATG7-silenced plants compared to that in TRV: GUS plants (Supplementary
Figure S1d–f). The above results proposed that autophagy played a positive role in the
response of N. benthamiana to ChiVMV infection.
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3.3. ATG8f Interacts with ChiVMV-6K2 In Vitro and In Vivo

Previous studies reported that ATG8a and ATG8f were directly involved in autophagy-
mediated degradation, and NBR1 was an autophagy cargo receptor protein [21,22,43].
Therefore, the Y2H assay was used to screen the possible interactions between four
autophagy-related proteins (ATG8a, ATG8f, NBR1, and ATG7) and the eleven proteins
encoded by ChiVMV. The results of the Y2H assay showed that only ATG8f interacted with
the 6K2 and cylindrical inclusion protein (CI) in yeast cells (Figure 3a and Supplementary
Figure S2a–c). Subsequently, the interaction between ATG8f and 6K2 was further investi-
gated. The results of the BiFC assay confirmed that there existed an interaction between
nYFP-ATG8f and cYFP-6K2 in plant cells (Figure 3b). Furthermore, fusion protein 6K2-
GFP and ATG8f-flag were co-infiltrated into N. benthamiana leaves, and flag protein were
detected after Co-IP with GFP-beads. The results of the Co-IP assay further proved the
interaction between 6K2 and ATG8f (Figure 3c). Finally, ATG8f and 6K2 were fused with
GFP and RFP fluorescence tags, respectively, and were co-infiltrated into N. benthamiana
leaves. Subcellular localization displayed that both green and red fluorescence signals
were located at the edge of the cell membrane or cytoplasm, and the positions of the two
fluorescence signals were mostly overlapping (Figure 3d). The above results confirmed
that ATG8f interacted with ChiVMV-6K2 both in vitro and in vivo.

3.4. Silencing of ATG8f Promotes the Accumulation of ChiVMV-GFP

It was reported in a previous study that the deficiency of ATG8a enhanced the ac-
cumulation of NIb and promoted the infection of TuMV [44]. In the present study, af-
ter confirming the direct interaction between 6K2 and ATG8f, the role of ATG8f in the
autophagy-mediated plant antiviral process was still unknown. Thus, ATG8f was silenced
by VIGS, and then the ATG8f -silenced plants were inoculated with ChiVMV-GFP (Figure 4a
and Supplementary Figure S3a). The results showed that the number of virus fluorescent
spots in virus-inoculated leaves was higher in ATG8f -silenced plants than that in the TRV:
GUS-infiltrated plants (Figure 4b). The systemic infection rate in systemic leaves was
also higher in ATG8f -silenced plants than that in the TRV: GUS-infiltrated plants at 5 dpi
(Figure 4c). Accordingly, the expression of viral CP and the accumulation of viral coat
protein in inoculated leaves or systemic leaves were higher in ATG8f -silenced plants than
that in TRV: GUS-infiltrated plants (Figure 4d,e).



Viruses 2023, 15, 2324 7 of 12

Viruses 2023, 15, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. Effect of chemicals treatment on ChiVMV infected N. benthamiana. (a) Symptom on 
ChiVMV-GFP-infected N. benthamiana leaves treated with Rapa, 3-MA, and E-64d, respectively. (b) 
The number of fluorescent spots on inoculated leaves. (c) Relative expressions of viral CP corre-
sponding to leaves in (a). (d) The accumulation of viral coat protein corresponding to leaves in (a), 
and the number represents the relative accumulation. Data are shown as means ± SD (n = 3). Lower 
case letters indicate statistically significant differences (P<0.05). 

3.3. ATG8f Interacts with ChiVMV-6K2 In Vitro and In Vivo 
Previous studies reported that ATG8a and ATG8f were directly involved in autoph-

agy-mediated degradation, and NBR1 was an autophagy cargo receptor protein [21,22,43]. 
Therefore, the Y2H assay was used to screen the possible interactions between four au-
tophagy-related proteins (ATG8a, ATG8f, NBR1, and ATG7) and the eleven proteins en-
coded by ChiVMV. The results of the Y2H assay showed that only ATG8f interacted with 
the 6K2 and cylindrical inclusion protein (CI) in yeast cells (Figure 3a and Supplementary 
Figure S2a–c). Subsequently, the interaction between ATG8f and 6K2 was further investi-
gated. The results of the BiFC assay confirmed that there existed an interaction between 
nYFP-ATG8f and cYFP-6K2 in plant cells (Figure 3b). Furthermore, fusion protein 6K2-
GFP and ATG8f-flag were co-infiltrated into N. benthamiana leaves, and flag protein were 
detected after Co-IP with GFP-beads. The results of the Co-IP assay further proved the 
interaction between 6K2 and ATG8f (Figure 3c). Finally, ATG8f and 6K2 were fused with 
GFP and RFP fluorescence tags, respectively, and were co-infiltrated into N. benthamiana 
leaves. Subcellular localization displayed that both green and red fluorescence signals 
were located at the edge of the cell membrane or cytoplasm, and the positions of the two 
fluorescence signals were mostly overlapping (Figure 3d). The above results confirmed 
that ATG8f interacted with ChiVMV-6K2 both in vitro and in vivo. 

 

Figure 3. The interaction between ChiVMV-6K2 and ATG8f in vitro and vivo. (a) Y2H screening of
the interaction between NbATG8f- and ChiVMV-encoded proteins. (b) BiFC assays. The green fluo-
rescence indicates an interaction between ATG8f and 6K2. Bars = 200 µm. (c) Co-IP assays. GFP-6K2
was co-expressed with FLAG or FLAG-ATG8f in N. benthamiana plants. After immunoprecipitation
with FLAG beads, the proteins were detected via a Western blot analysis with an anti-FLAG or
anti-GFP antibody, respectively. (d) Subcellular localization assays of ATG8f and 6K2. Bars = 20 µm.
ATG8f-GFP and 6K2-RFP were incorporated into N. benthamiana leaves. GFP corresponds to the
position of ATG8f, and RFP corresponds to the position of 6K2.

Viruses 2023, 15, x FOR PEER REVIEW 7 of 12 
 

 

Figure 3. The interaction between ChiVMV-6K2 and ATG8f in vitro and vivo. (a) Y2H screening of 
the interaction between NbATG8f- and ChiVMV-encoded proteins. (b) BiFC assays. The green flu-
orescence indicates an interaction between ATG8f and 6K2. Bars = 200 µm. (c) Co-IP assays. GFP-
6K2 was co-expressed with FLAG or FLAG-ATG8f in N. benthamiana plants. After immunoprecipi-
tation with FLAG beads, the proteins were detected via a Western blot analysis with an anti-FLAG 
or anti-GFP antibody, respectively. (d) Subcellular localization assays of ATG8f and 6K2. Bars = 20 
µm. ATG8f-GFP and 6K2-RFP were incorporated into N. benthamiana leaves. GFP corresponds to the 
position of ATG8f, and RFP corresponds to the position of 6K2. 

3.4. Silencing of ATG8f Promotes the Accumulation of ChiVMV-GFP 
It was reported in a previous study that the deficiency of ATG8a enhanced the accu-

mulation of NIb and promoted the infection of TuMV [44]. In the present study, after con-
firming the direct interaction between 6K2 and ATG8f, the role of ATG8f in the autophagy-
mediated plant antiviral process was still unknown. Thus, ATG8f was silenced by VIGS, 
and then the ATG8f-silenced plants were inoculated with ChiVMV-GFP (Figure 4a and 
Supplementary Figure S3a). The results showed that the number of virus fluorescent spots 
in virus-inoculated leaves was higher in ATG8f-silenced plants than that in the TRV: GUS-
infiltrated plants (Figure 4b). The systemic infection rate in systemic leaves was also higher 
in ATG8f-silenced plants than that in the TRV: GUS-infiltrated plants at 5 dpi (Figure 4c). 
Accordingly, the expression of viral CP and the accumulation of viral coat protein in in-
oculated leaves or systemic leaves were higher in ATG8f-silenced plants than that in TRV: 
GUS-infiltrated plants (Figure 4d,e). 

 
Figure 4. The silencing of ATG8f promotes the infection of ChiVMV-GFP. (a) Symptoms shown on 
inoculated and systemic leaves of the ATG8f-silenced plants (TRV: ATG8f) and the control plants 
(TRV: GUS) at 5 dpi. (b) The number of fluorescent spots on inoculated leaves at different time 
points. (c) The systemic infection rate of the virus at different time points after ChiVMV inoculation. 
(d) Relative expression of viral CP in inoculated and systemic leaves of ChiVMV-GFP-infected 
plants. (e) Accumulation of viral coat protein in inoculated and systemic leaves of ChiVMV-GFP-
infected plants. Data are shown as means ± SD (n = 3). Lower case letters indicate statistically signif-
icant differences (P<0.05). 

3.5. Overexpression of ATG8f Inhibits the Infection of ChiVMV-GFP 
Next, plants with transient overexpression of ATG8f were used to explore the func-

tion of ATG8f in plants’ response to ChiVMV infection further. The results exhibited that 
there was lower virus fluorescence intensity in systemic leaves of ATG8f-overexpressing 
plants compared to that in the control plants (35S: 00) (Figure 5a,b and Supplementary 
Figure S3b,c). Corresponding to the symptoms and manifestations, the results of the qPCR 

Figure 4. The silencing of ATG8f promotes the infection of ChiVMV-GFP. (a) Symptoms shown on
inoculated and systemic leaves of the ATG8f -silenced plants (TRV: ATG8f) and the control plants
(TRV: GUS) at 5 dpi. (b) The number of fluorescent spots on inoculated leaves at different time
points. (c) The systemic infection rate of the virus at different time points after ChiVMV inoculation.
(d) Relative expression of viral CP in inoculated and systemic leaves of ChiVMV-GFP-infected plants.
(e) Accumulation of viral coat protein in inoculated and systemic leaves of ChiVMV-GFP-infected
plants. Data are shown as means ± SD (n = 3). Lower case letters indicate statistically significant
differences (p < 0.05).

3.5. Overexpression of ATG8f Inhibits the Infection of ChiVMV-GFP

Next, plants with transient overexpression of ATG8f were used to explore the function
of ATG8f in plants’ response to ChiVMV infection further. The results exhibited that
there was lower virus fluorescence intensity in systemic leaves of ATG8f -overexpressing
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plants compared to that in the control plants (35S: 00) (Figure 5a,b and Supplementary
Figure S3b,c). Corresponding to the symptoms and manifestations, the results of the qPCR
and Western blot analysis showed that the accumulation of viral coat protein and the
expression of viral CP were lower in ATG8f -overexpressing plants compared to that in the
control plants (35S: 00) (Figure 5c,d). Combined with the results in Section 3.4 regarding the
increased susceptibility in ATG8f -silenced plants, it could be concluded that ATG8f played
a positive role in the antiviral response of N. benthamiana to the infection of ChiVMV-GFP.
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Figure 5. Overexpression of ATG8f inhibits the infection of ChiVMV-GFP. (a) Symptoms of systemic
leaves in the ATG8f -overexpressing plants (35S: ATG8f) and the control plants (35S: 00) at 5 dpi.
(b) Fluorescent intensity in systemic leaves at 5 dpi. (c) Accumulation of viral coat protein in
inoculated and systemic leaves of ChiVMV-GFP-infected plants at 5 dpi. (d) Relative expression
of viral CP in inoculated and systemic leaves of ChiVMV-GFP-infected plants. Data are shown as
means ± SD (n = 3). Lower case letters indicate statistically significant differences (p < 0.05).

3.6. 6K2 Is Degraded by Autophagy

It has been reported in previous studies that autophagy could target plant viral
proteins through direct recognition by ATG8 [23,25]. Since, in the previous experiment,
ATG8f was proved to be positively correlated with plants resistance, and there was a direct
interaction between ATG8f and 6K2, we speculated that the degradation of 6K2 protein
might also be associated with autophagy. Therefore, the 6K2 protein fused with GFP (6K2-
GFP) was agroinfiltrated into ATG7- or ATG8f -silenced N. benthamiana plants to monitor
the expression of 6K2-GFP. The results showed that stronger fluorescence was observed
in ATG7- or ATG8f -silenced plants compared to that in TRV: GUS plants (Figure 6a,b),
and the accumulation of 6K2-GFP fusion proteins in ATG7- or ATG8f -silenced plants was
significantly higher than that in TRV: GUS plants (Figure 6c). To test whether the 6K2
protein was degraded by the autophagic or ubiquitin pathway, the 6K2-GFP-expressing
plants were treated with an autophagy activator (Rapamycin), two autophagy inhibitors
(3-MA and E-64d), and an inhibitor of the ubiquitin pathway (MG132), respectively; GFP-
expressing plants were used as the control. The results showed that there were no significant
fluctuations in the accumulation of GFP protein without 6K2 fusion under the treatments of
Rapamycin, 3-MA, E-64d, and MG132, respectively (Figure 6d). However, the accumulation
of GFP-6K2 was decreased in Rapamycin-treated plants and increased in those treated
with E-64d or 3-MA (Figure 6e). Furthermore, the amount of 6K2-GFP protein in MG132-
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treated plants was similar to that in E-64d-treated plants. These results suggested that
the degradation of 6K2-GFP protein might be independent of the ubiquitin degradation
pathway, but mainly through the autophagy pathway.
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ATG7- or ATG8f -silenced plants two days after infiltration with the 6K2-GFP vector. Bars = 500 µm.
(b) Statistics of fluorescence intensity of 6K2-GFP in different test groups. (c) Protein accumulation
of 6K2-GFP in the ATG7- or ATG8f -silenced plants and control plants (TRV: GUS). (d) Fluorescence
intensity of GFP in N. benthamiana plants treated with Rapamycin, 3-MA, E-64d, and MG132, re-
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E-64d, and MG132, respectively. Data are shown as means ± SD (n = 3). Lower case letters indicate
statistically significant differences (p < 0.05).

4. Discussion

In this study, we showed that autophagy is involved in responses to ChiVMV infec-
tion in N. benthamiana. ChiVMV infection caused the accumulation of autophagosomes
in infected N. benthamiana leaves and the upregulation of ATGs. Furthermore, ATG8f
interacts with the ChiVMV 6K2 protein, promoting the degradation of 6K2 through the
autophagy pathway.

Autophagy responds to the occurrence of factors that are detrimental to plant growth,
including viral infection [18,23]. As the core adaptor of autophagosome, ATG8 has been
widely reported to interact with plant endogenous proteins [22,45], but it is also a key
interaction target of pathogens, including viruses, e.g., ATG8h interaction with Geminivirus
nuclear protein C1 from tomato leaf curl Yunnan virus (TLCYnV) by a potential AIM
motif to degraded C1 by autophagy [25]. NBR1, a selective autophagy receptor protein
bonding with ATG8, interacted with P4 from Caulimovirus to mediate the degradation
of P4-associated viral particles [46]. On the other hand, some studies demonstrated that
autophagy can be manipulated or evaded by some viral factors. The γb protein from the
barley strip mosaic virus (BSMV) directly bound itself to autophagy key regulator ATG7
to disrupt the interaction between ATG7 and ATG8, thereby repressing the formation of
autophagosomes [44]. Hafrén et al. showed that TuMV appeared to antagonize NBR1-
dependent selective autophagy by VPg and 6K2 during infection [33]. In the present study,
the expression of ATG8f was correlated with the response of N. benthamiana to ChiVMV
infection, and ATG8f played a positive role in the antiviral response of N. benthamiana to
ChiVMV-GFP.
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Furthermore, 6K2, a small integral membrane protein coded by potyvirus, could
remodel the host ER for the formation of VRCs and contribute to viral replication [47,48]. In
addition, 6K2-induced vesicles could also move from cell to cell during TuMV infection [49].
The 6K2 of the sugarcane mosaic virus could interact with lactate dehydrogenase to support
virus infection [50]. In addition to its functions related to viral pathogenicity, TuMV
6K2 could serve as an elicitor for the unfolded protein response (UPR) and upregulate
the selective autophagy receptor gene NBR1 in a UPR-dependent manner [27]. TuMV
6K2-derived VRCs are always co-localized with some autophagy proteins, like ATG8a,
Beclin1, and NBR1 [24]. In the present study, ChiVMV 6K2 directly interacted with ATG8f,
indicating that 6K2 protein might be targeted for degradation by autophagy.

Autophagy acts as a double-edged sword when fighting plant viruses: it can serve as a
dependent pathway for plant antiviral activity and can also be favored by viruses [33,51–53].
For example, ATG8 interacted with movement protein (MP) from Citrivirus to mediate
the degradation of MP, thus limiting viral movement [51]. NBR1 bonded with ATG8 to
mediate the degradation of HCPro-associated PGs of TuMV [33]. On the contrary, TuMV
VPg interacted with antiviral host factors and mediated their autophagic degradation
to counteract Remorin-mediated and Suppressor of Gene Silencing 3 (SGS3)-mediated
antiviral activities [52,53]. In the present study, the interaction between ATG8f and ChiVMV
6K2 was beneficial for plants. The interaction between ATG8f and ChiVMV 6K2 promoted
the degradation of viral factor 6K2 through the autophagy pathway. Therefore, our results
provided new evidence for the role of autophagy in the “arms race” between plants and
viruses. However, it is not yet known whether other viral proteins encoded by ChiVMV can
also be degraded by autophagy pathways. Future work is worthwhile to comprehensively
explore the interaction between viral proteins and autophagy-related proteins and provide
clues for developing potyvirus resistant cultivars.
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