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Abstract: Plant proteins with domains rich in leucine repeats play important roles in detecting
pathogens and triggering defense reactions, both at the cellular surface for pattern-triggered immunity
and in the cell to ensure effector-triggered immunity. As intracellular parasites, viruses are mostly
detected intracellularly by proteins with a nucleotide binding site and leucine-rich repeats but
receptor-like kinases with leucine-rich repeats, known to localize at the cell surface, have also been
involved in response to viruses. In the present review we report on the progress that has been
achieved in the last decade on the role of these leucine-rich proteins in antiviral immunity, with a
special focus on our current understanding of the hypersensitive response.

Keywords: LRR proteins; LRR-RLP; LRR-RLK; NB-LRR; defense response; virus; extreme resistance;
systemic necrosis; HR and HR-like; R gene; programmed cell death

1. Introduction

Viruses represent a major threat to crop plants and global food security [1], which will
most likely be further exacerbated by climate change and human population pressures [2,3].
This huge challenge will require integrated, knowledge-based management of plant virus
epidemics. Only combinations of measures are believed to provide efficient disease control
because they act at different levels and pathways [3,4]. Among these measures, natural and
engineered resistances are promising, provided that they are founded on robust knowledge
and long-term experiments under field conditions. To fight pathogens, plants rely on an
innate immune system based on a few defense mechanisms that will either become decisive
or be circumvented in an arms race against the pathogens.

Because plant viruses entirely depend on cellular processes, some plants with allelic
variants of host factors that do not interact with the virus present a recessive resistance [5–7].
This type of resistance opens great perspectives as virtually any newly identified host
factor required for virus multiplication becomes a potential source of resistance if a loss-
of-interaction mutant is identified or engineered. Another important kind of resistance
originates from RNA silencing [8,9] which has been discovered more recently but whose
mechanisms have been rapidly unveiled. It is triggered by double-stranded RNA (dsRNA)
and involves Dicer-like (DCL) endonucleases to generate small viral RNAs (vsRNAs) capa-
ble of guiding an RNA-induced silencing complex (RISC) for the degradation, or the transla-
tion inhibition, of long RNAs or for the transcription inhibition of DNA viruses [8–11]. This
mechanism underlies parasite-derived resistance, a general strategy deriving resistance
genes from the pathogen’s genome [12–14]. A better comprehension of this mechanism has
allowed the deployment of hairpin- and artificial microRNA-producing genes to confer
resistance to potentially any plant virus [14–19] with very limited production of pathogen-
derived RNA and hence limited risks of hetero-encapsidation or recombination [13].

Another level of plant resistance is conferred by dominant genes mainly encoding
proteins with domains rich in leucine repeats (LRR). In a first layer, pathogen-associated
molecular patterns (PAMPs) are recognized by membranous proteins at the cell surface:
pattern recognition receptors (PRRs, Figure 1A). They possess an extracellular LRR domain
and are either with no structured internal domain and are called receptor-like proteins
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(RLPs) or with a kinase domain and are called receptor-like kinases (RLKs). Upon ligand
binding, many PRRs associate with RLKs, leading to a rapid resistance to a broad range
of pathogens [20]. This pattern-triggered immunity (PTI) was long considered restricted
to bacteria, fungi, and oomycetes [21,22] because of the direct entrance of phytoviruses
within the cell, confining PTI against viral pathogens to animal viruses. The concept of PTI
was later broadened to include plant viruses and RNA silencing: dsRNA was seen as a
pathogen- or virus-associated molecular pattern which is detected by DCLs and followed
by a defense response [23]. RNA silencing has more recently been considered a kind of
adaptive immunity of plants [24,25]. PAMPs are generally conserved throughout classes of
pathogens (like flagellin in bacteria and chitin in fungi) and PTI is described as a weak basal
defense that can be overcome by pathogen-encoded effectors, including secreted bacterial
or fungal effectors and viral suppressors of RNA silencing. This gave rise to the so-called
zig-zag model [26] and modified zig-zag model for viruses [23] where the circumvention
of the first layer of defense is followed by a second layer, based on effector recognition,
essentially by intracellular proteins (Figures 1B and 2). These proteins also containing LRR
domains trigger a race-specific reaction reported to be quicker, more robust, and exceeding
the threshold of programmed cell death (PCD). This reaction is referred to as hypersensitive
response (HR) [23,26–29]. This effector-triggered immunity (ETI) results in the restriction
of the pathogen at its entry site. However, it can be overcome by evolved pathogen isolates
escaping recognition, and plant genotypes in turn may evolve new receptors to recognize
modified or new effectors. This dichotomic distinction between PTI represented in the plant
virus field by RNA silencing and ETI leading to HR is being increasingly undermined by
recent advances in specific pathosystems that revealed a link between plant viruses and PTI
independently of RNA silencing [20,30–32]. Moreover, HR as an antiviral defense against
viruses has been revisited during the last decade and is now rather seen as being at some
point along the continuum of plant–virus interaction ranging from extreme resistance (ER)
to total susceptibility [33]. In this review we report on recent advances in plant immunity
against viral infections with a special focus on the evolution of our knowledge on LRR
proteins, the concept of HR, and its regulation by ubiquitin and autophagy.
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Figure 1. Schematic representation of LRR proteins involved in plant immunity. (A). Receptor-like
proteins (RLPs) and receptor-like kinases (RLKs) are located at the cell surface. (B,C). NBS-LRR
proteins are cytoplasmic. (A). Domains are depicted and their designation is indicated under the
diagram, subdomains are identified in the forms, and consensus sequences of the motifs are specified
above the chart. The single letter code is used to represent amino acids. (C). Three classes of NBS-LRR
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proteins are distinguished depending on their N-terminus: TNL possess a domain with homology to
Drosophila Toll and human Interleukin 1 receptors (TIR), CNL have a classical coiled coil domain, and
RNL resemble RPW8 (Resistance to powdery mildew 8) with a potential transmembrane domain
(TM), a specific coiled coil domain of RPW8 type (CCR) and RPW8 repeats.
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Figure 2. The zig-zag model illustrates the arms race between plants and viruses. Silencing is
often seen as pattern-triggered immunity (PTI) with DCLs recognizing viral dsRNAs. PTI is also
involved in antiviral defense in a more classical way, through pattern recognition receptors (PRRs)
independently of silencing. This first layer of resistance is considered weak and can be overcome
by viral effectors, including viral suppressors of RNA silencing (VSRs). This results in effector-
triggered susceptibility (ETS). A second layer of resistance is based on the direct or indirect specific
recognition of viral effectors (Avr factors) by R-encoded NB-LRR proteins, leading to an effector-
triggered immunity (ETI) which is considered an amplified version of PTI if it is rapid and strong
enough to induce hypersensitive cell death (HR). Virus isolates can emerge with modified effectors
that escape recognition. In turns, plants can evolve new NB-LRRs able to recognize the new effector,
regaining ETI. VAMP: virus-associated molecular pattern, like viral dsRNA or other viral factors.
Adapted from [26] and from [23].

2. Resistance Genes to Viral Infection
2.1. Involvement of LRR-RLK Encoding Genes in Response to Viral Infection

Although viruses are intracellular parasites, several lines of evidence have emerged
in the last decade showing that LRR-RLK proteins, mainly located at the cellular surface,
play a role in the response to virus attacks [34]. In 2013, a seminal work showed that
the response of Arabidopsis thaliana to turnip crinkle virus (TCV) infection depends on
BAK1 (also named SERK3), an RLK known to interact with both the flagellin receptor
FLS2 and the peptide receptors PEPRs sensing the production of small peptides after
wounding [30]. Neither the PRR nor the elicitor of the response were identified but
this was the first robust evidence that plant viruses can induce PTI. A similar genetic
demonstration that known PTI actors contribute to immunity to plum pox virus (PPV)
was completed by the identification of PPV CP as a suppressor of early PTI [32]. In 2016,
Niehl and colleagues demonstrated that Arabidopsis plants can perceive dsRNA or its
analog poly(I:C) to induce PTI responses independently of DCLs, suggesting that dsRNAs
represent authentic PAMPs that are recognized through complexes containing the BAK1-
associated SERK1 RLK [31]. At the same time, protein P6 of the DNA virus cauliflower
mosaic virus (CaMV) was shown to suppress hallmarks of PTI-like ethylene production
and extracellular reactive oxygen species (ROS) burst induced by the flg22 elicitor [35].
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A dsRNA binding motif of P6 was necessary for PTI suppression but dispensable for
the silencing suppression activity, proving that these two activities are uncoupled. In
the case of begomoviruses in the family Geminiviridae, it was shown that viral DNAs
and RNAs, if applied by rubbing, induce an antiviral response through the LRR-RLKs
NIK1 and NIK2 belonging to the SERK clade. Autophosphorylation of these RLKs leads to
phosphorylation of RPL10 and global inhibition of the translation machinery [20]. Although
not involving the classical signaling of BAK1-dependent PTI, this pathosystem clearly
involves cell surface localized LRR-RLKs and recognition of viral PAMPs. Whether this
recognition occurs extracellularly following the release of PAMPs through wounding
or intracellularly via the kinase domain, and whether NIKs represent receptors or co-
receptors, remain to be elucidated [20]. Since then, other viral suppressors of PTI have been
identified, including proteins Rep and C4 from geminiviruses [36], the MP of cucumber
mosaic virus (CMV) [37], the begomovirus-associated satellite ßC1 protein [36], or the CPs
of necroviruses [38], although in the two latter cases, viral effectors act in the mitogen-
activated protein kinase (MAPK) cascades that are rapidly activated in PRR signaling and
undergo a slower but longer-lasting activation in ETI [39,40], making it difficult to identify
the inhibited pathway. Altogether these works identified (i) viral nucleic acids (dsRNA,
DNA or RNA) as elicitors, (ii) known LRR-RLK localized at the cell surface as receptors
or co-receptors of viral PAMPs, and (iii) viral effectors able to suppress PTI. In addition, a
number of genetic, transcriptomic, and proteomic analyses have identified LRR-RLKs and
other PTI actors in response to diverse viruses or viral protein overexpressed in different
plant species [41–46], further generalizing the role of LRR-RLKs and classical PTI in plant
antiviral immunity.

2.2. NBS-LRR Encoding R Genes

The second layer of plant defense to pathogens is operated in a gene-for-gene relation
first proposed by Flor [47]. This concept suggests that for each gene that conditions reaction
in a host there exists a corresponding gene in the parasite that conditions pathogenicity.
This is embodied by the specific interaction between the product of a resistance gene (R)
encoded by a plant genotype and the avirulence factor (Avr) encoded by a given strain of
the parasite [48]. This race-specific interaction leads to defense reactions and resistance and
is qualified as incompatible relation, whilst an absence of interaction and resistance leads
to a compatible relation where the parasite colonizes its host [49]. Both R and Avr genes
are dominantly inherited. The pathogen alleles escaping recognition and thus leading to a
compatible reaction, also known as virulence genes, are recessive. Similarly, alleles of the
R gene encoding proteins that do not recognize the Avr factor are recessive.

The first cloned R gene was the N gene conferring resistance to tobacco mosaic virus
(TMV). Cloning used a maize activator transposon to induce mutations and took advantage
of the reversible thermosensitivity of the N protein to turn the search for loss-of-function
mutants (TMV-susceptible) into a positive selection [50]. The protein deduced from the
cloned sequence contained a nucleotide binding domain (NB) encompassing the three
classical motifs: (i) the P-loop binding the phosphates of ATP or GTP (consensus se-
quence A/GXXXXGKS/T), (ii) the kinase 2 motif defined by four consecutive hydrophobic
residues followed by a conserved aspartic acid (D) which coordinates Mg2+ cations, and
(iii) the kinase 3a motif involved in purine or ribose binding, and a LRR domain containing
14 LRRs each composed of approximately 26 amino acids [50]. These two domains have
since been observed in the vast majority of cloned R gene products (Figure 1B). An addi-
tional domain has been described between NB and LRR called the ARC domain, where
ARC stands for APAF-1 (human apoptotic peptidase-activating factor 1), R (plant resistance
protein), and CED4 (cell death abnormal 4 of Caenorhabditis elegans), all playing a role
in PCD. ARC is further subdivided into subdomain ARC1 containing a GxP or GLPL
motif and ARC2 containing an MHD motif [21,51–53]. Both NB and ARC are thought
to contribute to nucleotide binding and hydrolysis and are thus together termed the
NBS (nucleotide binding site). These proteins are collectively called NBS-LRRs. Alter-
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nate names are NB-LRRs and NLRs for NOD (nucleotide-oligomerization domain)-like
receptors because NB-ARCs are structurally similar to NOD domains. Depending on
their N-terminal domain, two main classes were first described: TIR-NBS-LRR (TNL) pro-
teins possess a Toll/ Interleukin-1 Receptor like (TIR) domain and CC-NBS-LRR (CNL)
proteins have a coiled-coil (CC) N-terminal domain, TNL encoding genes being only
present in dicots [53]. Later, proteins with a specific CC domain (noted CCR) devoid
of the classical EDVID motif and similar to the CC domain of RPW-8 (Resistance to
powdery mildew 8) of Arabidopsis were distinguished and called RNLs. They contain
an N-terminal potential transmembrane domain and C-terminal repeats of unknown
activity [54–56].

Many R genes have been cloned from many different plant species, among which
26 confer resistance to viruses (Table 1). Cloning and identifying R genes remains a time-
consuming and laborious task. It mostly relies on marker-assisted mapping in experimental
crosses between susceptible and resistant parents [57]. Resistant parents either originate
from natural populations or from crops where the R gene was previously introgressed.
Although co-segregating markers are diverse (microsatellites, RFPLs, RAPDs, SNPs, etc.)
and positioned at high densities, some resistance genes/loci still await cloning and confir-
mation of their function. This is the case for resistances discovered many years ago, such as
the potato (Solanum tuberosum) genes Ny or Nc and Nb conferring resistance to PVY and
PVX, respectively, or the I locus of common beans (Phaseolus vulgaris) [58], and also for
more recently discovered resistance sources such as Ry(o)phu in potato or Cbd and Cbt in
Gossypium hirsutum [59–62]. Like for resistance toward non-viral pathogens, cloning efforts
have benefitted from high throughput sequencing in both genomic and transcriptomic stud-
ies [63]. Resistance gene enrichment sequencing (RenSeq) and single-molecule real-time
sequencing (SMRT) allowing long reads after capture of NLR encoding sequences [64,65]
were applied to identify the potato Rysto resistance gene (Table 1) [66]. Resistance genes
can also be identified through the loss of their function (loss of HR phenotype), as was
originally done using transposon tagging [50,67]. More recently, a library of hairpins was
used in a proof-of-concept experiment [68]. Virus-induced gene silencing followed by the
use of a library of guide RNAs in a Cas 9-based KO approach allowed the cloning and
confirmation of the soybean Rsc 4-3 resistance gene to soybean mosaic virus [69,70]. Con-
versely, a gain-of-function approach was employed for the identification of the potato Rx-2
gene [71] and the pepper gene Prv9 [72,73]. For that, a library of R gene homologues needs
to be cloned in a transient agrobacterium-mediated expression system. The virus or viral
Avr factor (if known) and the candidate R genes are expressed in a compatible host, which
is then screened for the expression of the HR phenotype. This is a rather straightforward
method, which has also been widely used for the final demonstration of the functionality
of many R genes isolated by mapping or homology cloning, as an alternative to transgen-
esis in susceptible plants [66,70,73–77]. There is no doubt that a combination of all these
techniques will increase the pool of cloned resistance genes to plant viruses in the few
next years.
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Table 1. Cloned genes conferring resistance to plant viruses.

Year ER/HR
Plant of

Resistance
Origine

Resistance
Gene(s)/Locus Type of NLR Virus (Genus;

Family)
Viral

Determinant References Cloning
Strategy

Identification
of Cognate Avr

Confirmation
of R Function

1995 HR

Tobacco

Nicotiana
glutinosa

N TIR-NBS-LRR

Tobacco mosaic
virus = TMV
(Tobamovirus;
Virgaviridae)

130K
Replicase

(p50 helicase
domain)

[50]
[78]

Transposon
tagging

Chimeric
viruses

Transgenic
expression

1999 ER (SHR in transgenic
N. benthamiana)

Wild potato

Solanum
andigena

Rx-1 (Chr XII) CC-NBS-LRR

Potato virus
X = PVX

(Potexvirus;
Alfaflexiviridae)

CP [79]
[80]

Map-based
cloning

Chimeric
viruses

(TMV vector
expressing
PVX CP)

Transgenic
expression

2000
ER

(HR under weak
promoter in tobacco)

Potato

Solanum acuale
Rx-2 (Chr V) CC-NBS-LRR PVX (Potexvirus;

Alfaflexiviridae CP [71]
[81]

Agrobacterium-
mediated

expression of a
library of Rx-
homologues

Point mutations
in CP gene

Transgenic
expression

2000 HR

Thale cress

Arabidopsis
thaliana

HRT CC-NBS-LRR

Turnip crinkle
virus = TCV

(Betacarmovirus;
Tombusviridae

CP [82] Map-based
cloning

Transgenic
expression

Transgenic
expression

2001 ER

Tomato

Solanum
peruvianum

Sw5-b CC-NBS-LRR

Tomato spotted
wilt virus = TSWV

and other
tospoviruses

(Orthotospovirus;
Tospoviridae)

Nsm (MP) [83]
[84]

Map-based
cloning

Bac screening

Chimeric
viruses (AlMV
vector with MP

of TSWV)

Transgenic
expression

2002 HR

Thale cress

Arabidopsis
thaliana

RCY1
same locus as

HRT
CC-NBS-LRR

Cucumber mosaic
virus = CMV
(Cucumovirus;
Bromoviridae)

CP [85]
[86]

Map-based
cloning

Chimeric
viruses

Transgenic
expression

2002
ER to PVA & PVV?
Systemic necrosis

to PVY

Potato

Solanum
tuberosum

Y-1 (Chr XI) TIR-NBS-LRR

Potato virus
Y = PVY, potato virus

A = PVA, potato
virus V = PVV

(Potyvirus;
Potyviridae)

? [87] Homology
cloning - Transgenic

expression
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Table 1. Cont.

Year ER/HR
Plant of

Resistance
Origine

Resistance
Gene(s)/Locus Type of NLR Virus (Genus;

Family)
Viral

Determinant References Cloning
Strategy

Identification
of Cognate Avr

Confirmation
of R Function

2003 ER

Tomato

Solanum
peruvianum

Tm-2
(alleles Tm-2 &

Tm-22)
CC-NBS-LRR

Tomato mosaic
virus = ToMV

& TMV
(Tobamovirus;
Virgaviridae)

30 K MP
(C-term)

[67]
[88]

Transposon
tagging

Homology
cloning (Tm-22)

Deletion of
C-terminus of
MP in virus
Transgenic
expression

Transgenic
expression

2006
SHR in transgenic

N. benthamiana
(ER in P. vulgaris?)

Common bean

Phaseolus
vulgaris

PvCMR1
(RT4-4) TIR-NBS-LRR

CMV
(Cucumovirus;
Bromoviridae)

2a [89] Homology
cloning

Transient
expression

(agrobacterium)

Transgenic
expression

2007 HR

Common bean

Phaseolus
vuulgaris

PvVTT1 TIR-NBS-LRR

Bean dwarf mosaic
virus = BDMV
(Begomovirus;
Geminiviridae)

BV1 (NSP) [90]
[91]

cDNA
substraction &

cloning

Chimeric
viruses

Transgenic
expression

2010 HR

Chinese
cabbage

Brassica
campestric

BcTuR3
(cloned but

not confirmed)
TIR-NBS-LRR

Turnip mosaic
virus = TuMV

(Potyvirus;
Potyviridae)

? [92] Homology
cloning - Not confirmed

2011 HR
Pepper

Capsicum spp.

L
(alleles L2–L4) CC-NBS-LRR

TMV, ToMV,
paprika mild

mottle
virus = PaMMV,

peper milds mottle
virus = PMMV
(Tobamovirus;
Virgaviridae)

CP [74]
[93]

Map-based (L3)
andhomology-
based cloning

(L1, L2, L4)

Chimeric
viruses &
mutants

Transient
expression
(agrobac-
terium)

2012 HR

White tobacco

Nicotiana
sylvestris

N′ CC-NBS-LRR

TMV & other
tobamoviruses
(Tobamovirus;
Virgaviridae)

CP [75]
[94]

Homology
cloning (L)

Point mutations
in CP gene

Transient
expression

(agrobacterium)
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Table 1. Cont.

Year ER/HR
Plant of

Resistance
Origine

Resistance
Gene(s)/Locus Type of NLR Virus (Genus;

Family)
Viral

Determinant References Cloning
Strategy

Identification
of Cognate Avr

Confirmation
of R Function

2012 HR
Black gram

Vigna mungo
CYR1 CC-NBS-LRR

Mungbean yellow
mosaic India

virus = MYMIV
(Begomovirus;
Geminiviridae)

AV1 (CP)? [95] Map-based
cloning In silico model Not confirmed

2013 ER
Melon

Cucumis melo
Prv TIR-NBS-LRR

Papaya ringspot
virus = PRSV

(Potyvirus;
Potyviridae)

? [96]
[97]

Map-based
cloning

BAC screening
- Genome

editing

2014 HR Pepper Pvr9 (Chr VI) CC-NBS-LRR

Pepper mottle
virus = PepMoV

(Potyvirus;
Potyviridae) NIb (Pol) [72]

[73]

Agrobacterium-
mediated

expression of a
library of R
candidates

Transient
expression

(agrobacterium)

Transient
expression

(agrobacterium)

2014 ER
Turnip

Brassica rapa

TuRBO7
(1 candidate

gene, not
identified,

not cloned)

CC-NBS-LRR
TuMV

(Potyvirus;
Potyviridae)

? [98] Map-based
cloning - Not confirmed

2016 ER (SHR with strain
SMV-G7)

Soybean

Glycine max

Rsv1-h
(2 candidate

genes
identified,

not cloned)

CC-NBS-LRR

Soybean mosaic
virus = SMV

(Potyvirus;
Potyviridae)

P3 & HC-Pro [99]
[100]

Map-based
cloning

Chimeric
viruses &
mutants

Not confirmed

2017 ER / HR

Pepper

Capsicum
annuum

Pvr4 / Pvr7
(ChrX) CC-NBS-LRR

PepMoV, PVY
(Potyvirus;

Potyviridae)
NIb (Pol)

[76]
[101]
[102]

Map-based
cloning

BAC screening

Transient
expression

(agrobacterium)

Transient
expression
(agrobac-
terium)

2017 HR

Pepper

Capsicum
annuum

Tsw (Chr X)
same locus as

Pvr4
CC-NBS-LRR

TSWV
(Orthotospovirus;

Tospoviridae)
NSs (VSR) [76]

[103]

Map-based
cloning

BAC screening

Transient
expression

(agrobacterium)

Transient
expression
(agrobac-
terium)
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Table 1. Cont.

Year ER/HR
Plant of

Resistance
Origine

Resistance
Gene(s)/Locus Type of NLR Virus (Genus;

Family)
Viral

Determinant References Cloning
Strategy

Identification
of Cognate Avr

Confirmation
of R Function

2017 HR
Sugar beet

Beta vulgaris
Rz2 CC-NBS-LRR

Beet necrotic
yellow vein

virus = BNYVV
(Benyvirus;

Benyviridae)

TGB1 (MP) [104]
[105]

Mapping-by-
sequuencing

Transient
expression

(agrobacterium)

Silencing by
hairpin in
transgenic
sugarbeet

2018 ER / HR

Wild tomato

Solanum
habrochaites

Ty-2 = TYNBS1 CC-NBS-LRR

Tomato yellow leaf
curl virus = TYLCV

(Begomovirus;
Geminiviridae)

Rep / C1
(replication-
associated
protein)

[77]
[106]

Map-based
cloning and
transgenic
expression

Transient
expression

(agrobacterium)

Transgenic
expression

2020 ER

Wild potato

Solanum
stoloniferum

Rysto = Ry-fsto TIR-NBS-LRR
PVY, PVA
(Potyvirus;

Potyviridae)

CP /
previously

NIa involved

[66]
[107]

Enrichment
sequencing &
Pac Bio single-

molecule
real-time

sequencing
(SMRT RenSeq)

Transient
expression

(agrobacterium)

Transient
expression
(agrobac-
terium)

2021 HR

Tomato

Solanum
lycopersicum

Sw5-a CC-NBS-LRR

Tomato leaf curl
New Dehli

virus = ToLCNDV
(Begomovirus;
Geminiviridae)

AC4 (VSR,
suppressor of

cell death)
[108]

miRNAomics
identified a
regulator of

Sw5-a

Identification of
Sw5-a

interactant
Transient

expression
(agrobacterium)

Virus induced
gene silencing

2021 ER
Soybean

Glycine max

Rsc 4-3 = Rsv 3
/ NBS_C CC-NBS-LRR SMV (Potyvirus;

Potyviridae)

CI
(cylindrical

inclusion
protein,

replication &
movement)

[70]

Fine mapping
Transient

expression
(agrobac-
terium)

Cas9-assisted
mutation of
candidate

genes

Chimeric
viruses &
transient

expression
(agrobacterium)

Transient
expression
(agrobac-
terium) &
genome
editing
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Table 1. Cont.

Year ER/HR
Plant of

Resistance
Origine

Resistance
Gene(s)/Locus Type of NLR Virus (Genus;

Family)
Viral

Determinant References Cloning
Strategy

Identification
of Cognate Avr

Confirmation
of R Function

2022 ER

Wild potato

Solanum
chacosense

Rychc (ChriX) TIR-NBS-LRR PVY (Potyvirus;
Potyviridae) ? [109] Map-based

cloning - Transgenic
expression

?: not identified or not confirmed, CP = coat protein, MP = movement protein, NSP = nuclear shuttle protein, NIb = nuclear inclusion b, Pol = polymerase, HC-Pro = helper
component-protease, VSR = viral suppressor of RNA silencing.
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3. Avr Factors and Avr–R Recognition Models

Identification of viral Avr factors is easier and quicker, provided that an inocula-
tion procedure or a transient expression system is working on the resistant plant. An
observation of the cell-death phenotype usually allows for rapid screening of the few
viral candidate sequences. Knowing avirulent and virulent isolates can greatly help in
designing these candidates through sequence comparison or construction of chimeric
viruses (Table 1). Transient expression systems include agrobacterium infiltration or vi-
ral vectors. The use of chimeric viruses or even heterologous viruses has the advantage
of allowing assessment of not only the cell-death response but also the virus restriction,
as well as the symptom reduction in non-inoculated leaves. These approaches have led
to the characterization of most cognate Avrs of known resistance genes to plant viruses
(Table 1) [70,73,78,80,84,91,94,100,103,106] and also to the identification of a lot more viral
Avrs, even with no or poor knowledge on the corresponding R gene, as exemplified by the
25 kDa MP of PVX eliciting the Nb potato gene [110], P0 of different poleroviruses elicit-
ing the RPO1 allele of N. glutinosa [111] and the Cbd and Cbt genes in cotton [111,112],
P6 of CaMV in Nicotiana edwardsonii [113], a nepovirus 2AHP in N. occidentalis [114],
the tomato spotted wilt virus (TSWV) NSm in N. alata [115], or a geminivirus RepA in
N. benthamiana [116]. Information for the identification of viral Avr candidates also arise
from the emergence of resistance breaking isolates [84,106,117,118]. Due to their efficiency
and ease of implementation, these techniques have barely evolved over the years.

The recognition of Avr factors by R-encoded products has been largely studied and
reviewed [119–121]. The C-terminal LRR domain of R proteins has been shown to deter-
mine the specific recognition of Avrs. This was primarily shown by domain-swapping
experiments and mutational analyses [74,76,122]. Although this corresponds to the general
case, the TIR domain of the N gene has been involved in the specific recognition of the
TMV helicase domain [123]. This could participate in a two-step recognition mechanism,
as proposed for the Sw5-b where the LRR and the N-ter domains both interact with NSm
to allow the detection of low levels of NSm and induce a robust HR [124].

Different models of R-Avr recognition have evolved to explain the detection of the
virus’ presence by the R protein (Figure 3). The virus can be detected through a direct
interaction between Avr and R. Such a direct interaction has been evidenced between the
tomato Sw5-b-encoded NLR and the American type of tospovirus cognate NSm Avrs [125].
Direct interactions have also been shown to be possible between the Sw5-a protein and the
ToLCNDV-encoded AC4 [108] and between the soybean Rcs 4-3 NLR and the potyvirus
CI protein [70]. Indirect interactions, requiring a plant cofactor, can also account for virus
detection following either the guardee model or the decoy model or the more recently
described integrated decoy model [119,126–128]. In the guardee model, the R protein
detects the virus’ presence through the high-jacking of the Avr’s cellular target; the R
protein surveys or guards the target that is termed guardee. Because host targets perform
essential functions, plants have evolved non-functional targets that act as decoys and have
increased abilities to evolve. Finally, some decoys seem to have fused with R proteins. Such
additional domains contained in R proteins are called integrated decoys (IDs), and the R–
Avr recognition follows the integrated decoy model (Figure 3). Among proteins interacting
with antiviral NLRs, the RanGAP2 protein of potato interacting with Rx was hypothesized
to act as a guardee [129,130]; however, no interaction with the Avr PVX CP could be proved,
unlike the chloroplastic NRIP1, which interacts with both the p50 Avr and N TNL [123]. Sun
and colleagues have recently listed seven kinds of NLR-interacting proteins and proposed
that guardees and decoys rather belong to kinase or pseudokinase families [131]. Antiviral
NLRs with supplemental domains that could fit the integrated decoy model are scarce,
although this type of NLR is widespread in plant genomes [128]. They include PvVTT1
which contains a second TIR domain [90], Sw5-b with an extended N-terminal domain
referred to as the Solanaceae domain (SD) shown to contribute to Avr recognition [124],
and the melon Prv containing an additional NBS domain in its C-terminus [97]. Many ID-
containing NLRs (ID-NLRs) act in a pair with a second NLR [127]; the ID-NLR is the sensor,
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whereas the second, a canonical NLR, is the executor acting as a signal transducer. The best
known examples are the RGA4/RGA5, Pik-1/Pik-2, and RRS1/RPS4 pairs against bacterial
and fungal pathogens. The paired NLR genes are in close proximity, in a head-to-head
orientation, and they share promoter sequences [132–134]. Such a head-to-head orientation
has been described for the Prv and the Fom-1 genes of Cucumis melo conferring resistance
to the papaya ring spot virus and to some races of the Fusarium oxysporum fungus [97].
Whether this pair of TNLs encoding genes and other resistance genes to viruses fully fits
the paired integrated decoy model will need further investigations.
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modifications that can be made in the R proteins to broaden their pathogen recognition 
range. An example is the single D to V substitution of the MHD motif of the ARC do-

AvrViral effector

Plant resistance protein

AvrViral effector

Functional target 
of viral effector

G

G G

Avr
Avr

Functional target 
of viral effector

Non functional target 
of viral effector D

Viral effector

AvrViral effector
ID

Functional target 
of viral effector

A – Receptor – ligand model

B - Guardee model

C - Decoy model

D - Integrated decoy model

R

D
Avr

D

ID

Avr Avr
G

R

R

R

Avr
IDID

R Sensor

Executor

E – Paired NLRs

CCR

Avr

R Sensor: TNL / CNL

Helper: RNL

F – Sensor / helper NLRs

Figure 3. Models of NB-LRR (R)–Avr recognition. (A). Direct recognition of the viral Avr by the plant
NB-LRR protein. (B). NB-LRR surveys the plant target of the viral effector and detects its modification
by the Avr binding. This host target becoming a cofactor of the recognition is termed a “guardee” (G).
(C). Selection may favor plant factors with decreased or no virulence that mimic the actual virulence
target. These so-called decoys (D) thus act as molecular sensors of the pathogen. (D). Some NB-LRR
proteins have integrated domains (IDs) that are essential in effector recognition. (E). ID-NLRs can act
in paired NLRs: they act as sensors, inhibiting the associated executor NLR in the absence of Avr.
(F). In the sensor/helper pair, the helper is induced after the sensor has detected the Avr but there is
no physical link between the sensor and the helper.

Another way for two NLRs to function in a common resistance pathway is the sen-
sor/helper mode where the sensor detects the Avr and transduces the signal to the helper
NLR [131,132,135]. The helpers, which belong to the RNL class of NLRs (Figure 1B), act
downstream of the sensor with no physical link detected so far. Moreover, unlike paired
NLRs, sensor and helper coding genes are not located at the same locus. In most an-
giosperms, these helper RNLs are encoded by two gene families [136], Activated disease
resistance 1 (ADR1) and N requirement gene 1 (NRG1). In the plant family Solanaceae, helper
NLRs are of the NRC (NLR required for cell death) clade, such as NRC2, which acts
downstream of the Rx NLR [137].

Whether working as singletons or in pairs, R proteins need to be tightly repressed
in the absence of effectors due to their death-inducing function. One of the numerous
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regulation points is at the protein level [138,139]. This includes intermolecular interactions
in paired NLRs, where the sensor interacts with the executor to repress it. In the singleton
NLRs (Figure 4), intramolecular interactions between the domains ensure an auto-inhibited
conformation known as the “Off” state where the nucleotide-binding pocket of the NB-ARC
domain is closed and bound to ADP. Upon pathogen recognition, an “On” active state is
favored with an opening of the binding pocket and ADP exchange for ATP. This molecular
switch model has been confirmed by structure–function studies for several R proteins
including antiviral examples [140–142]. This limits the modifications that can be made in
the R proteins to broaden their pathogen recognition range. An example is the single D to V
substitution of the MHD motif of the ARC domain that usually results in an autoactivated
protein due to its preference for ATP binding [143,144].
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tributable to protein 1a [145]. On the contrary, if markers of the typical HR are observed, 
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The decrease in resistance efficiency was estimated under HR-inducing and SHR-
inducing conditions compared to a compatible reaction in the RCY1-CMV pathosystem, 
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Figure 4. (A). In the classical switch model, intramolecular interactions of NB-LRR domains maintain
the protein in an “off” state in the absence of the elicitor (Avr). In the presence of Avr, the exchange
of ADP for ATP allows the NB-ARC domain to change conformation and protein to reach an “on”
state inducing downstream signaling. A rapid reset of intramolecular interactions is needed to allow
repeated rounds of recognition or limited signaling. In the N-encoded NB-LRR, the LRR domain
is involved in the specific recognition of the Avr and the N-terminal TIR domain interacts with
the NRIP1 cofactor. (B). An alternate model suggests an equilibrium between the “off” and “on”
states and that Avr binding to the “on” state shifts the equilibrium toward the signaling competent
form [138].

4. Important Advances in the Comprehension of HR
4.1. The Continuum of Resistance: Uncoupling Cell Death and Resistance

Due to an increasing number of papers relating that resistance and PCD, the two
components of HR, can be physiologically, genetically, and temporally uncoupled, Künstler
and colleagues proposed to consider HR as a combination of these two components with
varying contributions [33]. These relative contributions change according to the level of R
and Avr product expression, the presence of a dysfunctional PCD regulator, or according
to the timing and speed and therefore effectiveness of the resistance responses. This
leads to an array of outcomes ranging from a (macroscopically) symptomless extreme
resistance to an inefficient HR resulting in systemic HR (SHR or HLR for hypersensitive-
like response) or to complete susceptibility (Figure 5). As a consequence, the appearance
of necrosis on inoculated or non-inoculated apical leaves (phenotype) should be regarded
carefully; if a link with HR (resistance mechanism) can be established at the physiological,
molecular, or biochemical level, it should be called HR or SHR/HRL, whereas in the
absence of knowledge or any HR marker, the term “necrosis” or “systemic necrosis” should
apply (Figure 5). Necrosis with no link to resistance has been described for some CMV
isolates in many Arabidopsis ecotypes where it is attributable to protein 1a [145]. On the
contrary, if markers of the typical HR are observed, then the designation HLR is much more
appropriate [105,114,146].
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The decrease in resistance efficiency was estimated under HR-inducing and SHR-
inducing conditions compared to a compatible reaction in the RCY1-CMV pathosystem,
and SHR was suggested to represent a resistance mechanism at the plant population level
rather than at the individual level [147,148]. This view of a continuum of resistance has been
followed or confirmed in several virus–plant interactions [146,149–154] and has allowed
the study of ER, HR and SHR as belonging to a common process with common genes and
pathways [66,155,156].

If the transition from incompatible to compatible reactions is viewed as a continuum,
it raises the question of the continuity of necrotic to non-necrotic symptoms. This question
remains largely unanswered, although some observations could suggest such a continuity
as only small changes in a protein can dramatically change the phenotype of infected plants
from systemic mosaic to necrosis, or from systemic vein clearing to no symptoms. Thus, a
single amino acid substitution of the CMV 1a protein was responsible for changing necrotic
symptoms to systemic mosaic and vice versa on several Nicotiana species [157]. Similarly, a
single amino acid substitution was sufficient to change a symptomatic to an asymptomatic
GFLV [158]. A link has also been established between six cysteine rich carlavirus VSRs, and
either necrosis or leaf malformations in N. occidentalis [159]. In addition, mutants with a
single amino acid addition in a comovirus helicase, capable of inducing HR-type PCD upon
transient expression in N. benthamiana, were shown to either compromise or accelerate cell
death [160]. Recently, a single amino acid substitution in the MP of tomato mosaic virus
was associated with Tm-22 resistance breaking and systemic necrosis [161]. Whether these
different outcomes induced by variations in the viral pathogenicity determinant really
reflect a continuity in the symptoms needs to be further investigated.
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Figure 5. Outcomes of plant–virus interactions can be considered a continuum of host responses from
extremely efficient defense resulting in virus restriction without cell death to no apparent defense,
through cell death and virus spread limited to single or few cells and trailing cell death resulting in
systemic necrosis with partial or no virus restriction [33]. Total or single cell restriction of the virus
is viewed as extreme resistance as the virus is not easily detected and no macroscopic symptoms
are observed. Plants presenting a classical HR (or weak systemic HR) can be considered resistant
or tolerant according to the level of virus restriction and symptoms. Plants developing systemic
HR are often viewed as susceptible even if they partially limit the virus titer due to the dramatic
phenotype they present. Asymptomatic plants developing a compatible reaction meet the criteria
of tolerance and susceptibility. The systemic spread of the virus in a plant does not mean that there
is no resistance at all, as mutations in the salicylic pathway or in a viral effector can increase viral
titer [162]. The left side of the scheme presents the outcome of the gene-for-gene relation as originally
conceived by Flor [47].
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4.2. Resistosomes, NLR Networks, and Convergence

PRRs in PTI and NLRs in ETI, although differing in their structure and cellular local-
ization, share common downstream responses such as cell wall fortification, ion fluxes,
ROS and nitric oxide (NO) burst, phytohormone synthesis, lipid peroxidation, and tran-
scriptional reprograming [151,163,164]. However, they diverge in the timing and intensity
of the resulting defense (Figure 2), and most importantly, only ETI leads to PCD during
HR (or HLR) [26]. The recent discovery of plant resistosomes has greatly accelerated
our comprehension of NLR-induced reactions and PCD. In 2019, Wang and collaborators
showed that the activated, ATP-bound form of the CC-NLR ZAR1 sensing a Xanthomonas
campestris Avr adopted a pentameric wheel-like structure with the five very N-terminal
α-helices protruding and forming a funnel-shaped structure required for plasma mem-
brane (PM) association and PCD induction [165]. Due to its function in resistance, this
ATP-induced oligomer was called a resistosome to make a parallel with animal apopto-
somes and inflammasomes. This resistosome was shown to exhibit a cation-permeable
channel activity [166]. In the following year, two TIR-NLRs conferring resistance to an
oomycete [167] and a bacterium [168] were shown to assemble into tetrameric ATP-bound
resistosomes upon cognate Avr recognition, and form two active nicotinamide adenine
dinucleoside (NAD) hydrolase sites (each made of a dimer of TIR domains) involved in
HR establishment. Although a tetrameric structure was not demonstrated for the tobacco
N protein, its oligomerization in the presence of its Avr was demonstrated [169]. Helper
NLRs of the ADR1 and NRG1 families also form resistosomes at the PM and display
Ca2+-permeable channel activity [170,171] (Figure 6). The Tm-22 tomato protein conferring
resistance to tobamoviruses was shown to self-associate at the PM after recognition of the
viral MP, where it induces cell death [172] (Figure 6). The Rx CC-NLR, on the other hand,
does not oligomerize but was shown to induce the oligomerization of its helper NRC2
which accumulates at the membrane [137] (Figure 6). Altogether, a convergent working
model emerges where a homo or hetero-oligomer forms at the PM and induces a Ca2+

influx causing cell death [173].
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to oligomerize and localize at the plasma membrane upon tobamovirus MP recognition. The CC
domain induces cell death when tethered at the membrane [172]. (B). When activated by the PVX-CP,
the Rx CC-NLR triggers oligomerization of NRC2 at the membrane without forming a stable complex
with it. A channel activity has not, however, been demonstrated [137]. (C). TIR-NLRs such as N
assemble four mers to form a holoenzyme with NAD hydrolase activity. The signaling nucleotide-
derived small molecules induce an EDS1-SAG101 (alternatively an EDS1-PAD4 for other TNLs)
dependent hetero-oligomeric resistosome of NRG1 (alternatively ADR1) at the plasma membrane
and display a Ca2+-permeable channel activity leading to hypersensitive cell death [170,171].

Although R-Avr recognition is specific (often race specific), plant defenses are known
to be non-specific and provide a broad-spectrum resistance. This can be partly due to the
complex networks sensors can establish with helper NLRs; some hNLRs are redundant
and required for several sensors, as exemplified by NRC2, NRC3, and NRC4, which
redundantly contribute to the immunity mediated by several sensors including Rx and
Sw5 [56] or by NRG1 and ADR1, which are required for all known TNL signaling [174–176].
These complex networks are thought to increase evolvability while maintaining defense
robustness. They also avoid the need for specific pathways against each pathogen [176].

4.3. Subcellular Localization

The localization or relocation of sensor or helper NLRs forming resistosomes to the
PM is a crucial requirement for PCD. However, like for other pathosystems, a nuclear
localization of proteins conferring resistance to viruses is essential for effective host defense
and/or PCD [177]. EDS1 (Enhanced disease susceptibility 1) in complex with SAG101
(Senescence-associated gene 101) plays a key role in the TNL induction of resistance, not
only in the cytoplasm to form helper resistosomes, but also in the nucleus for transcriptional
reprogramming and resistance [178,179]. After tobamovirus p50 and NRIP1 recognition,
the N receptor associates, possibly as a dimer, with the transcription factor (TF) SPL6
(Squamosa Promoter Binding Protein Like 6) in the nucleus [180]. This TF is required
for restricting the virus. N-mediated resistance also depends on NPR1 (non-expressor of
pathogenesis-related genes 1), a receptor of salicylic acid (SA) which enters the nucleus and
controls the majority of SA-dependent genes by interacting with TGA TFs [181,182].

Moreover, CNLs shuttle between the cytoplasm and the nucleus to ensure complete
immunity. Thus, a proper localization of Rx in the nucleus is necessary for efficient restric-
tion of PVX and translational arrest [183], a common host antiviral response [184]. This
partitioning is ensured by the chaperone SGT1 (Suppressor of the G2 allele of skp1) [185]
and the cytoplasmic RanGap2 (RanGTPase-activating protein 2) cofactor, which retains a
pool of Rx [186]. In the nucleus, Rx binds DNA in its active state, with a preference for tran-
scription start bubbles. When complexed to GLK1, a Golden 2-like TF, it drives its sequence
specificity [187]. Recently a bromodomain-containing protein (DBCP) and an RNA-binding
protein (GRP7) were implicated in the nuclear regulation of the Rx accumulation level and
Rx-mediated defenses [154,188].

The nucleocytoplasmic distribution of Sw5-b was recently associated with different
roles in the defense against TSWV; the cytoplasmic Sw5-b was responsible for cell death to
inhibit the virus replication, whilst the nuclear Sw5-b was involved in a weak inhibition of
replication but a strong hindrance of both cell-to-cell and long-distance movements [189].
How the nuclear Sw5-b induces this layer of defense remains unknown. Similarly, the
Sw5-a protein, conferring resistance to a begomovirus, has a dual nucleus and PM dis-
tribution [190]. Even though cell death predominantly results from cytoplasmic events,
it seems to be under the control of nuclear actors such as the WRKY1 TF, which were
shown to regulate HR cell death induced by two geminiviruses belonging to different
genera [116,191]. Moreover, the RepA nuclear localization is required for the cell-death
induction [116].
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Other subcellular localizations might be important for sensing the virus and inducing
resistance, as exemplified by the Rsc4-3 CNL, which locates in the cell wall and needs
palmitoylation to induce HR upon recognition of the Avr CI directly in the apoplast [70].

4.4. HR Is Controlled by UPS and Autophagy

In recent years, progress has been made in understanding HR regulation by ubiquitin
(Ub) and the 26S ubiquitin-proteasome system (UPS). In 2019, a formal link was established
between the N-terminal Ub fused ribosomal protein Ub extension protein 1 (UEP1) and cell
death and resistance. A reduced expression of UEP1 led to increased ROS and PR protein
levels, cell death, and resistance to TMV and CMV [192]. UPS was also demonstrated to reg-
ulate the turn-over of positive (NPR1) and negative (NPR3/4) regulators of SA-dependent
genes [182,193]. UPS is also involved in the degradation of stress proteins including NLRs,
EDS1, and WRKY TFs in SA-induced NPR1 condensates (SINCs), promoting cell survival
during HR [194]. Finally, deubiquitinases have been shown to play a critical role in limiting
HR and cell death [195,196].

Autophagy also limits HR-related PCD through SA and ROS modulation [197], as
demonstrated in TMV-infected tomatoes [198]. Conversely, ROS favor autophagy through
disrupting the interaction between ATG3 and a cytosolic GAPDH (GAPC) during N-
mediated resistance to TMV [199]. Recently, autophagy was also found to be involved in
SA-dependent lignin deposition and cell-wall reinforcement during bacterium-induced
HR [200]. Many viral proteins interact with autophagy [201]; some interact with GAPCs,
resulting either in an increase or decrease in autophagy [202–204]. Others intervene at later
stages such as vacuole acidification [205]. Although this generally amounts to combating
a defense mechanism by inducing the degradation of antiviral factors (such as proteins
of the RNAi or autophagy pathways), it is not always quite clear whether these interac-
tions benefit the plant or the virus [206]. More studies will be required to grasp these
complex interplays.

Vacuolar cysteine proteases known as vacuolar processing enzymes (VPEs), although
presenting low sequence similarity, are related to caspases [207]. They were shown almost
twenty years ago to play a critical role in N-mediated PCD through the induction of
vacuole collapse [208]. How VPEs are connected to NLRs or autophagy-related regulation
of PCD needs to be investigated. For example, a link (direct or indirect) between VPEs
and resistosomes could be explored. This should be undertaken in the context of a viral
induction of HR, as the role of VPEs in PCD is suggested to be pathosystem dependent [207].

5. Conclusions

A lot has been learnt in the recent years about HR and how specific interactions can
lead to broad resistance through networks. However, the different pathosystems also
revealed specific requirements, such as those of Sw5-b, which does not rely on EDS1 nor
NPR1 [181]. Although proteins interacting with NLRs have been identified [131], their role
in the different mechanisms and their regulation needs to be further understood and more
antiviral NRLs need to be cloned and studied to elaborate a clearer picture. Of course,
the identification of antiviral RLPs and their cognate PAMPs would be of great interest to
the community.

The recent advances in the knowledge of the NLRs have opened the way to their
engineering in view to broadening or changing their specificity of recognition. Thus,
engineering of the ID of an ID-NLR sensor working in a pair with an executer has proved
effective at recognizing a new effector. This was achieved by a few substitutions in the ID
or by replacing it with a nanobody coding sequence [209,210]. An autoactivated mutant
of Pvr9 was also exploited to detect a viral protease by fusing its coding sequence to the
cleavage site of the potyvirus NIa and a tag. The tag inhibited the NLR auto-activity that
was recovered in the presence of the viral protease [211]. More recently, a single substitution
was introduced in the helper NRC2 to evade its binding to a virulence factor blocking its
oligomerization into a resistosome. This engineered NRC2 had a restored activity [212].
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These few examples illustrate how our knowledge can be exploited to help the plants in
their arms race against pathogens.
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